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Abstract. In many practical situations it is impossible to measure directly such characteristics 
of analyzed materials as thermal and radiation properties. The only way, which can often be 
used to overcome these difficulties, is indirect measurements. This type of measurements is 
usually formulated as the solution of inverse heat transfer problems. Such problems are ill-
posed in mathematical sense and their main feature shows itself in the solution instabilities. 
That is why special regularizing methods are needed to solve them. The experimental 
methods of identification of the mathematical models of heat transfer based on solving of the 
inverse problems are one of the modern effective solving manners.  

The goal of this paper is to estimate thermal and radiation properties of advanced materials 
using the approach based on inverse methods (as example: thermal conductivity (T)λ , heat 
capacity  and emissivity C(T) ( )Tε ). New metrology under development is the combination 
of accurate enough measurements of thermal quantities, which can be experimentally 
observable under real conditions and accurate data processing, which are based on the 
solutions of inverse heat transfer problems. In this paper, the development of methods for 
estimating thermal and radiation characteristics is carried out for thermally stable high 
temperature materials. Such problems are of great practical importance in the study of 
properties of materials used as non-destructive surface coating in objects of space 
engineering, power engineering etc.  

Also the corresponded optimal experiment design problem is considered. The algorithm is 
based on the theory of Fisher information matrix. 

1 INTRODUCTION 
In the modern engineering systems we deal with structures operating in the conditions of 

intensive, often extreme thermal effects. The general tendency in the development of 
technology is connected with the increase of the number of responsible, thermally loaded 
engineering objects. For such systems the support of thermal conditions is one of the most 
important aspects of design, determining the main design solutions. The modern approaches 
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to the design of structures assume broad application of mathematical and physical simulation 
methods. But mathematical simulation is impossible if there is no true information available 
on the characteristics (properties) of objects analyzed. In the majority of cases in practice the 
direct measurement of materials’ thermophysical properties, especially of complex 
composition, is impossible. There is only one way which permits to overcome these 
complexities - the indirect measurement. Mathematically, such an approach is usually 
formulated as a solution of the inverse problem: through direct measurements of system’s 
state (temperature, component concentration, etc.) define the properties of a system analyzed, 
for example, the thermophysical properties. Violation of cause-and-effect relations in the 
statement of these problems results in their correctness in mathematical sense (i.e., the 
absence of existence and/or uniqueness and/or stability of the solution). Hence to solve such 
problems we develop special methods usually called regularized. 

In estimating properties of modern structural, thermal-protective and thermal-insulating 
materials - as temperature-dependent - the most effective are methods based on solution of the 
coefficient inverse heat conduction problems. The most promising direction in further 
development of research methods for non-destructive composite materials using the procedure 
of inverse problems is the simultaneous determination of a combination of material’s 
thermophysical and radiation properties (thermal conductivity ( )Tk , heat capacity  and 
integral emissivity 

( )TC
( )Tε ). Such problems are of great practical importance in the study of 

properties of composite materials used as non-destructive surface coating in objects of space 
technology, power engineering etc. [1], [2], [3], [4], [5], [6], [7]. The experimental equipment 
and the method developed could be applied for determination of material's three 
characteristics; the availability of two specimens of the material allows us to provide 
uniqueness of the solution. The mathematical model of heat transfer in specimen is 
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In model (1)-(4) the quantities ( )TC , ( )Tk and ( )Tε  are unknown. If emissivity of the 
heater material ( hε ) is known a-priori, and its temperature is measured, the heat flux from the 
heater can be calculated as irradiation with known (measured by thermocouple) temperature 
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of the heater ( )τhT  and a-priory known (theoretically) emissivity of heater ( )Thε . In presented 
paper a case is considered, when )(Thε  is not known a-priori and should be estimated. At this 
paper the emissivity of the heater is considered as additional (forth) estimating functions. 
Therefore the accuracy of the inverse problems, considered bellow, will not depend to the a-
priory information about the radiation properties of the heater’s material. 

The results of temperature measurements inside the specimen are assigned as necessary 
additional information to solve an inverse problem 

( ) ( ) M1,=m    ,f,xT mm
exp τ=τ  (5)

With the presented statement of inverse problem, the data gained in one experiment are not 
sufficient for simultaneous recovery of three thermal and radiative characteristics (thermal 
conductivity, heat capacity and emissivity), because data by values of the heat flux applied to 
a specimen are also needed.  

The execution of the single experiment is not enough to provide the conditions of 
uniqueness of the inverse problem solving by simultaneous estimating of thermal conduction, 
heat capacity and emissivity of the testing material. To solve this problem the data of several 
N (in partial three) similar experiments with equal material specimen and different heating 
regimes were processed simultaneously. 

The experimental equipment and the method described below could be applied for 
estimating of material's three characteristics; the availability of a few specimens of the 
material allows us to provide uniqueness of the solution. This paper is concerned with 
modification of the approach, presented at [8]. 

   
2. INVERSE PROBLEM ALGORITHM 

In the inverse problem Eqn.(1)- Eqn.(5) it is necessary first of all to indicate as a 
temperature range  of the unknown functions, which is general for all experiments, 
and for which the inverse problem analysis has a unique solution. For  the minimum 
value of initial temperature is used. Of much greater importance is a correct sampling of value 

. Proceeding from the necessity to provide uniqueness of solution, it seems possible to 
sample, for , a minimum among maximum temperature values gained on the 
thermocouple positioned on the heated surface at every testing specimen. The same should be 
done for the heater temperature range 

[ maxmin ,TT ]
minT

maxT

maxT

[ ]max,min, , hh TT  . 
Suppose then that the unknown characteristics are given in their parametric form. With this 

purpose introduce in the interval [ , three uniform difference grids with the number 
of nodes . 
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When solving practical problems, B-splines are used with so-called "natural" boundary 
conditions   

( ) ( ) 0" maxmin
" == TuTu  (6b)

where u  is desired function. 
Then, in case of cubic B-splines (j-1=3), the unknown function is presented as 
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This property makes the computational algorithm simpler. 
Approximating the unknown functions on grids Eqn. (6) using the cubic B-splines 
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where , , , , kC 1,1,k N…= kk 2,1,k N…= kε , 3,1,k N…=  - parameters. 
Let’s introduce in the interval [ ]maxmin , hh TT  uniform difference grids with the number of 

nodes  4N

( ){ } 1N1,=k   ,1 4min4 −Δ−+== hhk TkTTω  (6l)

and approximate the unknown function )(Thε on grids (6a) using the cubic B-splines 
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where khε ,  - parameters. 41,..,k N=
As a result of approximation, the inverse problem is reduced to the search of a vector of 

unknown parameters { }kpp = , PN,1,k …= , with dimensions 4321 NNNNN P +++= . 
Writing down a leas-square discrepancy of the calculated and experimental temperature 
values in points of thermal sensors positioning, than the residual functional will depend to 
four functions 
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where is determined from a solution of the boundary-value problem Eqn. (1)- Eqn. (4) 
for n-th experiment using the approximations of Eqn. (7). It is assumed here that the 
conditions of uniqueness of the inverse problem solving are satisfied. Bellow to simplify the 
notation of equations index n will be excluded. 

( τ,xT n )

So, proceeding from the principle of iterative regularization [8], [9], [10], the unknown 
vector can be determined through minimization of functional Eqn. (8) by gradient methods of 
the first order prior to a fulfilment of the condition 
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and mσ - measurement variance. 
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To construct an iterative algorithm of the inverse problem solving a conjugate gradient 
method was used.  

The greatest difficulties in realizing the gradient methods are connected with calculation of 
the minimized functional gradient.  In the approach being developed the methods of calculus 
of variations are used.  
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where ( )τψ ,x  - solution of a boundary-value problem adjoint to a linearized form of the 
initial problem Eqn. (1)- Eqn. (4). 

( )

( ) ( ]maxmin11+M001

2

2

,  ,1+M1,=m  ,  x, x,, x

  ,   = 

τττ
∂

ψ∂
∂τ
∂ψ

∈==∈

−

− XXxx
x

kTc

mm

mm

 (14)

( ) [ ]   ,x,x   x,  0, m1-mmax ∈=τψ xm 1+M1,=m  (15)

( ) ( ) ( ) ( )+
∂
∂

−
∂
∂

−−+− +
+ τψεεεεεε
∂

τ∂ψ ,1,
11

11 X
x
Tk

x
T

dT
d

x
Xk Mhhh

M  

 6

845



Aleksey V. Nenarokomov, Oleg M. Alifanov and Dmitry M. Titov 
 
            

( )( ) ( ) ( ) ,0,),(4,, 1121
3

111
44 =−−

∂
∂

+ ++ τψτεετψτσεε XXTXXTT
x
T

dT
d

mhMhh  
(16)

( ) ( ) M1,=m   ,,, 1 τψτψ mmmm xx +=  (179)

( ) ( ) ( ) ( ) ( )( ) MmfYT
x
x

x
xTk mm

mmmm ,1,,2,, 1 =−=⎟
⎠
⎞

⎜
⎝
⎛ −⋅ + ττ

∂
τ∂ψ

∂
τ∂ψ  (18)

 
3. OPTIMAL EXPERIMENT DESIGN 

As has been said above, the developed method of determining the ( )TC , and ( )Tk ( )Tε  of 
a material necessitates the solution of an ill-posed inverse problem. The accuracy of 
estimating of the desired properties is determined largely by the experimental merits, and one 
is connected with the problem of optimal experiment design. When the processing of the 
experimental data is the solution of ill-posed problems, optimal experiment design essentially 
entails the sampling of merits that will ensure the best conditioning of the computational 
algorithm [9]. The available a priori information about the experimental data are used to 
formulate a certain scalar criterion of optimality ( )ξΦ , which depends on the experiment 
design ξ  and characterizes the conditioning of the algorithm for solving the inverse problem. 
It is reasonable to assume that ( )ξΦ  has a lower bound on the set of possible designs Σ  and 
that optimal design  exists such that *ξ

( )ξξ
ξ

Φ=
Σ∈

infarg*

 
(19)

In order to formulate the experiment design problem, it is necessary to select the design 
criterion ( )ξΦ , to identify the experimental merits comprised in its actual design, i.e., the 
merits that significantly influence the criterion ( )ξΦ , and to formulate the domain of possible 
designs .  Σ
On the basis of the simulation presented at [9]the following set of merits is used in the present 
paper for the experiment design  

{ }M1,=m,x,M m=ξ  (20)

Where M is the namber of thermocouple and M1,=m,xm is the coordinate of the 
thermocouple installation. In order to solve the problem (11), it is necessary to determine the 
domain of possible designs Σ . The following considerations must be taken into account in 
forming this set:  
1) ;  [ ]1om X;Xx ∈
2) ; [ ]3;1M ∈
 

Following [9] the determination of the vector { } pN
1pp =  can be reduced to the solution of 

the system of linear equations 
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dpA =  (21)

where (without number of experiments) 
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where  and ( τϑ ,xmn ) )( τϑ ,xmk  are the corresponded sensitivity functions, and  is the 
Fisher information matrix of the considered system [9]. Following [9], the determinant of  
is adopted as the optimality criterion of the experimental design: 

A
A

 

( ) ( ).det ξξ A−=Φ  (22)

Problem (11) then acquires the form  

( )( )ξ−=ξ
Σ∈ξ

Adetinfarg*

 
(23)

The optimal design problem (23) is solved by the numerical projective gradient method of 
optimization. The iterative process is formulated as follows in this case:  
1) an initial approximation of the experiment design  is specified, 0ξ

2) the value of the gradient of the functional ( )Sξξ
'Φ , the descent step , and the 

experimental design in the next iteration are computed, where 

Sα

( )( ) Σ∈=Φ+=+ ξξαξξ ξ ,...,2,1,0,'1 s
ssss

 (24)

3) the iterative process is stopped when the optimality criterion has the same value in two 
successive iterations, i.e., when the following condition is satisfied 

( ) ( ) ( )( ) *1 εξξξ <ΦΦ−Φ + sss

 (25)

where  is the a priori specified relative error of exit from the iterative process. 0>*ε
The size of the step  is selected on the basis of the condition Sα
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⎠
⎞⎜

⎝
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sss
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ξαξ ξ
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'
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min

 
(26)

by one of the conventional techniques of one-dimensional optimization.  

4. EXPERIMENTAL VERIFICATION  
An example to how apply the approach suggested is presented bellow. Given are the 

results of data processing of specimen experimental investigations with modern composite 
materials. The investigations were carried out on a set of pairs of specially manufactured 
specimens (the first in the pair for simultaneous estimating material’s heat capacity per and 
thermal conductivity and the second for determining boundary conditions).  
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Figure 1:  Experimental module: 1 – heater, 
2 - test specimen, 3 - insulating basement, 

4 - insulating cover, 5 - control thermocouple. 

The models of test material are the square plates of 50x50x15 mm (Fig. 2) with four 
thermocouples installed in the specimen. An installation of thermosensors in specimens was 
chosen from a solution of the problem of optimal experiment design. The co-ordinates of 
thermocouple positioning (according optimal experiment design) in the first set of specimens, 
for estimating the material’s thermal characteristics, had the following values:  (for 
a boundary condition of the first kind sensor readings on the internal surface were used), 

, ,  (positioned on the exposed surface). The second set 
of specimens, for defining the emissivity, has the thermocouples at points , 

, , . 

 mmx 00 =

 mmx 5.71 =  mmx 8.112 =  mmx 153 =
 mmx 00 =

 mmx 65.121 =  mmx 65.132 =  mmx 153 =
The number of approximation parameters N1, N2, N3 and N4 for every characteristic was 

assumed to be 5.  During specimen heating a theoretically preset time dependence of surface 
temperature (Fig. 3) was provided. The measurement errors were estimated as 5 %. A 
comparison of experimentally measured and calculated (with the help of thermal 
characteristics obtained from a solution of the inverse problem) temperature values in points 
of thermocouple positioning is shown on Fig. 3 (only for one specimen). The results are in 
agreement, which shows the robustness of the inverse problem algorithm. 

The results proper of the inverse problem solving - the composite material thermal 
characteristics and emissivity are given on Fig. 4 (the results for two sets by two experiments 
in vacuum and air). The accuracy of these results of the inverse heat conduction problem was 
ere verified using different (quite distinct from each other) initial approximations for an 
iterative process. The results show reasonable agreement. 

 9

848



Aleksey V. Nenarokomov, Oleg M. Alifanov and Dmitry M. Titov 
 
            

 

 
 
Figure 2: Test specimen:  1 - test materials, 2 - metallic 

basement, 3-6   - thermocouples. 
 

Figure 3: Temperature values in points of 
thermocouple positioning: 1 - calculated,  2 – 
experimentally measured 

 

 
 

 
Figure 4: Results of testing: a - heat capacity, b - conductivity, c – emissivity. 

1 – vacuum, 2 – air. 
CONCLUSIONS 

The paper seeks to describe the algorithm developed to process the data of unsteady-state 
thermal experiments. The algorithm is suggested for determining these unknown on the 
surface of a slab as a solution of the nonlinear inverse heat conduction problem in an extreme 
formulation. 

The following main factors have an influence on the accuracy of the inverse heat 
conduction problem (in sequence of significance): the errors in coordinates of thermosensor 
positions; the errors in values of different characteristics; the errors in estimating the residual 
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level. It was shown that in the cases considered the accuracy of the inverse problems solution 
is compatible with the errors of the simulated "experimental measurements". Next step in the 
development of the proposed approach is to consider an estimating interface conductance 
between periodically contacting surface of specimen and heater foil using the approach 
similar [11]. 
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