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Abstract— Trajectory Prediction (TP) is fundamental in Air 

Traffic Management (ATM). This research focuses on TP for the 

execution phase of the flight. In contrast to exploit black-box 

machine learning-based solutions, we tackle TP as an estimation 

problem, resorting to mathematical tools arising from statistical 

signal processing. Our first goal is to find an optimal and robust 

4D (3D space plus time) TP solution, and the real-time estimation 

of the aircraft's active guidance mode, observing flight data 

collected from Automatic Dependent Surveillance-Broadcast 

(ADS-B), and transponder selective mode (Mode S) 

transmissions. Notice that this work is at a very early stage and 

only preliminary results are available. 
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I.  INTRODUCTION AND BRIEF TP STATE-OF-THE-ART  

It is a fact that the airspace is becoming denser with increasing 

air traffic. In this situation, airspace management faces a big 

challenge in maintaining the safety level. Having a precise 

flight planning for flights is the first step to overcome inherent 

system problems. The trajectory is a sequence of aircraft states 

during the flight. State variables such as position, airspeed and 

aircraft mass are considered as the main variables to describe 

the trajectory of the aircraft. The estimation of prediction of 

these states leads to more information for a better flight 

control. Accurate and reliable trajectory prediction (TP) is 

fundamental for the design of next generation air traffic 

services (ATS), decision support tools for traffic 

synchronization and separation management; as well as 

enhanced safety nets and collision avoidance tools; either in a 

(partially) automated environment, on-ground, airborne or in a 

distributed system. In addition, w.r.t. standard 3D TP, 

estimating 4D trajectories (i.e, 3D plus time) can bring more 

realistic results. Indeed, information on the exact position of 

the aircraft at a certain time can avoid conflicts.  

State-of-the-art TP technology mostly relies on heuristic 

decision rules, using simplified dynamic models and strong 

assumptions when using filtering techniques. In practice, these 

approaches are not able to cope with system modelling 

inaccuracies and lead to a lack of robustness, which is known 

to be a key requirement for safety-critical applications such as 

Air Traffic Management (ATM). In this research we propose 

to tackle the TP problem from a probabilistic perspective, 

approaching it with powerful mathematical tools arising from 

the statistical signal processing field. Advanced robust 

statistical inference techniques have been shown in other 

contexts to provide a remarkable performance and/or 

robustness improvement in comparison to conventional 

approaches, allowing to relax stringent assumptions. We focus 

on accurate and robust real-time TP to provide a short-term 

prediction. Accurate TP in the execution phase of the flight is 

expected to support new or enhanced tools for advanced ATS 

into a Trajectory Based Operations (TBOs) environment, 

increasing safety, capacity, predictability, and cost-

effectiveness of the future European ATM system. 

The segmentation of the aircraft trajectory into distinct flight 

phases is a key aspect in TP problems. When considering 

machine learning (ML) TP algorithms the segmentation 

process is applicable since unpredictable behaviors are 

considered as outliers in real data. A methodology for 

automated TP analysis is introduced in [1], specifically 

designed for splitting the process into separated stages 

according to different flight phases. A Neural Network (NN) 

algorithm to predict the aircraft trajectories in the vertical plane 

was introduced in [2]. Two configurations were considered: a) 

strategic prediction, which is a long-term prediction, and b) 

tactical prediction or execution phase of the flight, which is a 

short-term prediction. A similar approach to infer the future air 

traffic flows using NNs is shown in [3]. The TP task in the case 

of aircraft intents in the terminal phase is investigated in [4], 

identifying the associated intent model and calculating the 



Doctoral Symposium   ICRAT 2020 

2 

 

specific intent based on the such model knowledge. A 4D 

trajectory prediction model for both strategic and tactical TP 

was proposed in [5] mainly relying on historical data and real-

time radar data. In the strategic TP, the method exploited the 

flying data history, while for the tactical or short-term 

prediction the predicted trajectory was updated with real-time 

radar data, begin able to predict the trajectory for the whole 

flying process. A novel approach to combine a clustering 

algorithm and Kalman filters (KF) for the TP problem was 

introduced in [6]. Hybrid estimation and intent inference 

algorithms are common approaches in long-term TP. In [6] a 

clustering algorithm was applied to process historical radar 

data and to derive aircraft trajectories. Subsequently, the 

representative trajectory set is used to feed a hybrid predictor 

that instantiates an Interacting Multiple Model (IMM) filter 

[7]. An improved trajectory prediction algorithm was proposed 

based on such representative trajectories. 

Without relying in any ML approach, which may lead to a lack 

of understanding of the estimator behavior and the physical 

phenomena under study, a stochastic approach to track the 4D 

aircraft motion considering weather conditions was proposed 

in [8], where the optimal state sequence is computed in the 

maximum likelihood sense. Indeed, the method uses a Viterbi 

algorithm [9] to calculate the most likely sequence of states 

driven by a Hidden Markov Model (HMM) [10]. In [11], also 

resorting to a TP stochastic modelling, the flight phases are 

identified by a Viterbi algorithm to find the most likely 

sequence of hidden states. The combination of a kinematic 

stochastic model with a Monte Carlo method allowed to 

predict the possible aircraft trajectories given the initial state. A 

real-time aircraft active guidance mode estimation solution was 

proposed in [12], An IMM based on a set of Extended KF 

(EKF) was assessed for TP in the descent phase, which is more 

complicated w.r.t. the cruise phase, providing promising results 

for precise short-term TP. The validation was performed with 

Airbus Performance Engineering Program (PEP) data, which 

allows to obtain realistic synthetic trajectories and guidance 

modes, but also with real flight data collected from Automatic 

Dependent Surveillance-Broadcast (ADS-B) and transponder 

selective mode (mode S). 

Even if a plethora of solutions exist in the literature, there is 

still a need to overcome the lack of understanding of ML-based 

solutions, and to improve the robustness and precision of 

stochastic approaches. In this contribution we focus on the 

latter, review challenges and possible alternatives, in order to 

pave the way towards a precise TP and real-time guidance 

mode identification. 

II. STATISTICAL SIGNAL PROCESSING APPROACH FOR TP: 

CHALLENGES AND ALTERNATIVES 

In contrast to other approaches, when considering a stochastic 

representation of the TP problem it is assumed that parametric 

models are available for the aircraft dynamics, uncertainties 

and performance models. The ultimate goal is to overcome the 

limitations of state-of-the-art stochastic approaches, and for 

that purpose one may seek to explore, for instance: i) nonlinear 

Bayesian inference techniques, ii) noise statistics estimation, 

iii) robust filtering methods, iv) Bayesian nonparametric 

solutions, v) multi-object/multi-sensor filtering if multi-aircraft 

TP is considered, and vi) Bayesian detection strategies for 

collision detection/avoidance. That is, these alternatives may 

provide solutions to different challenges within the TP problem 

for a complete probabilistic TP framework. 

In general, accurate knowledge of aircraft performance data 

and flight-intent is available for ownship TP algorithms. 

However, on-board applications for intruder trajectory 

prediction rely on simplified aircraft performance data and 

have a very limited (or non-existent) knowledge of the 

intruder’s flight-intent, for instance, to enable self-separation or 

conformance monitoring applications [13]. A similar limitation 

exists for ground-based TPs, which typically use the Airline 

Procedure Model (ARPM) - embedded in the Base of Aircraft 

Data (BADA) [14]. The ARPM, however, is generalist for 

most applications [15]. 

Precise flight-intent data is highly critical in the vertical 

domain since slight input inaccuracies easily lead to notable 

discrepancies in the vertical (and speed) trajectory profile that 

is finally computed by the TP. A sequence of flight phases with 

different parametrized guidance modes (e.g., descent at 

constant Mach and idle thrust) and end conditions (e.g. until 

reaching the target altitude) composes the aircraft vertical 

intent. These guidance modes describe how the throttle and 

elevator can operate to follow the planned trajectory and must 

be known by the TP to integrate the equations describing the 

aircraft dynamics. Additionally, flight intent is one of the main 

sources of uncertainty. 

The TP problem can be seen from an estimation/detection 

point of view, and thus optimally be tackled using statistical 

signal processing (SSP) tools, avoiding current heuristic 

decision rules, being able to cope with realistic probabilistic 

dynamic models, and providing a principled data fusion 

strategy. The underlying problem is the estimation (prediction) 

of time-varying hidden quantities of interest (states/parameters, 

i.e., position and velocity of the aircraft, or its corresponding 

flight mode), from a set of available noisy observations. The 

dynamic complex system can be time-varying, nonlinear, non-

Gaussian, and probably with a certain model uncertainty (i.e., 

model mismatch). A more complicated system model must be 

accounted for if the single aircraft TP case is generalized to 
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multiple aircraft TP. Self-separation and conformance 

monitoring automated assistance tools, on top of the TP system 

outcome, must consider collision detection and resolution 

(CDR) strategies that can be seen as a Bayesian detection 

problem. 

         • For nonlinear/Gaussian systems, it has been shown 

that deterministic sampling-based strategies are a powerful 

filtering solution [16], then this should be the basis for state 

estimation if the assumptions hold. If the dynamic system is 

non-Gaussian, we must resort to sequential Monte Carlo 

methods. These techniques have already been successfully 

applied to ATM [17].  

         • All the standard filtering rely on perfect known noise 

statistics, then to ensure system robustness we must resort to 

robust filtering techniques: i) Gaussian covariance estimation, 

ii) exploiting hierarchically Gaussian models, or iii) use 

Bayesian nonparametric techniques to estimate the complete 

density [18]. 

         • Taking into account the problem at hand, instead of 

using a single dynamic system, a better idea may be to consider 

a set of different dynamics. The natural solution to this 

problem within a filtering framework is the IMM filter. This 

idea has already been applied to TP for ATM purposes [12, 19-

20], but several points need to be improved for real-life 

applicability, i.e., robustness, weather uncertainty, extension to 

the 4D TP problem. 

         • The general extension of the previous approaches to 

multiple aircraft TP, where the number of aircraft in the air 

space is unknown and may vary over time, can be formulated 

as a multiple target tracking (MTT) problem. Most MTT 

techniques developed in the past decade rely on Random Finite 

Sets (RFS) [21]. This provides a new statistical framework to 

cope with the unknown time-varying number of targets, false 

alarms, missed detections, clutter, and unresolved targets. This 

approach has not been yet applied to the specific ATM 

problem at hand. 

To summarize, there are a plethora of different advanced SSP 

techniques that may be relevant to the next generation of TP 

for ATM applications in the execution phase of the flight. 

Another important issue is the data sources available to 

validate the new methodologies. In order to correctly test the 

TP methods three families of data sources may be required: 1) 

Aircraft surveillance data: the main input for any TP in the 

execution phase of the flight. ADS-B data from FlightRadar24, 

OpenSky, and other similar databases may be used for this 

purpose. These datasets might be complemented with 

secondary surveillance radar tracks provided by the 

corresponding Air Navigation Service Provider (ANSP), in our 

case by spanish ENAIRE/CRIDA; 2) Weather data: from 

public sources such as NOAA, ECMWF or EUMETSAT (for 

convective weather); 3) It may be fundamental for validation 

purposes to have in-flight recorded data. In our case we may 

have access to quick access recorders (QAR) datasets provided 

by UPC. 

In addition to the previous three families of data sources, and 

in order to statistically characterize the estimator or TP method 

behavior, another key tool is a realistic simulator which allows: 

i) to know the true trajectory, ii) to control the system 

uncertainties, iii) the possibility to induce possible model 

mismatches, and iv) to perform representative Monte Carlo 

simulations. 

III. ILLUSTRATIVE RESULTS: IMPACT OF PILOT INPUT 

MISMATCH ON GUIDANCE MODE TRACKING 

In the sequel we provide some preliminary results. Notice that 

these results are obtained with a custom trajectory simulator 

which allows, as previously mentioned, to obtain a meaningful 

statistical characterization. It is worth mentioning that the 

original IMM-based guidance mode identification in [12] 

assume a perfect system knowledge (i.e., ideal nominal 

scenario without mismatch), as reproduced in the sequel. 

 

 

 

Figure 1.  Simulated and IMM estimated aircraft descent trajectory (top), 

real guidance mode (middle) and IMM mode probability (bottom). 
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Fig. 1 (top plot) shows a particular simulated realistic aircraft 

descent trajectory including altitude, True AirSpeed (TAS) 

and Calibrated AirSpeed (CAS), together with the IMM-based 

estimated values. Notice that the estimates coincide with the 

true values, so one can state that the IMM works surprisingly 

well for TP. In addition, the middle and bottom plots in Fig. 1 

illustrate the true guidance mode and the corresponding one 

identified by the IMM (i.e., model probability), which again 

confirms the good behavior of the filter.  

But notice that the previous results were obtained with a 

perfect system knowledge. In real-life applications, all 

guidance modes are controlled by a set of pilot inputs, which 

may be unknown to a certain extent. Therefore, a question 

naturally arises: which is the impact of a possible pilot input 

mismatch? We illustrate the impact of a possible model 

mismatch for the CAS-FPA guidance mode in Fig. 2, where 

we provide the root mean square error (RMSE) degradation 

w.r.t. the optimal KF. In this case, the two pilot inputs are the 

energy share factor at constant CAS, and the flight path angle 

(FPA). The mismatch is induced in the FPA. It is obvious that 

the mismatched KF deviates from the optimal, which should 

be considered within the IMM for real-life applicability. 

 
 

 

Figure 2.  Altitude prediction error in model mismatch 

IV. CONCLUSION 

This paper presented the Trajectory Prediction (TP) problem in 

the execution phase of the flight. The main goal was to 

introduce our research path within the new concept of 

Trajectory Based Operations based air traffic services 

environment, resorting to statistical signal processing in order 

to increase the optimality and robustness of the solution. The 

preliminary results illustrated the IMM-based guidance mode 

identification under nominal conditions, and the impact of 

model mismatch, both with the proposed trajectory simulator. 

In future works, different statistical signal processing methods 

will be explored for robust TP.   
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