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Abstract. Computational methods, for large displacements of continua in the elasto-
plastic range, rely on the mathematical modeling of the nonlinear constitutive behavior.
In last decades an increasing favor has been deserved to nonlinear models based on a chain
decomposition of the deformation gradient. The troubles involved in a structural analysis
based on this model are well-known and have not been overcome although many efforts
devoted to this end. Our investigation towards a more satisfactory model starts from the
new analysis of the rate elastic behavior performed in [1, 2] since the difficulties faced by
previous formulations were the very motivation for the discard of rate constitutive models
in elasto-plasticity [3]. The new definition of hypo-elasticity, the detection of simple inte-
grability conditions and a new formulation of conservativeness, lead to a definition of rate
elasticity suitable for an effective modeling of rate elasto-plastic constitutive behaviors
[4]. The treatment is based on a geometric definition of spatial and material fields and
on the statement of a geometric paradigm assessing the rules for comparison of material
fields naturally provided by push-pull according to the relevant transformation. The rates
involved in constitutive relations are Lie-derivatives of stress field and constitutive param-
eters. Geometric compatibility requires that elastic and plastic stretchings additively give
the Lie-derivative of metric field. No privileged reference configuration is involved and
no consequent multiplicative decomposition of deformation gradient is assumed. Compu-
tational methods are shown to be based on the pull-back of constitutive relations to a
straightened out trajectory segment which plays the role of computation chamber wherein
linear operations of differentiation and integration may be performed. Accordingly, finite
elastic and plastic stretches are considered as purely computational tools with no phys-
ical interpretation in constitutive relations. Both 3-D and lower dimensional structural
models, such as wires and membranes, may be analysed by a direct application of the
theory. The outcome is a significant improvement of physical insight and computational
effectiveness with respect to previous treatments of finite elasto-plasticity.
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1 INTRODUCTION

To comply with principles of Geometric Naturality and Dimensionality Independence
and with the dictates of the ensuing Geometric Paradigm, enunciated in [1, 2, 4], the
elasticity model will be introduced with a rate formulation by a complete rephrasing of
the original hypo-elastic model proposed by Truesdell [5]. The basic distinctive feature
is that stress time-rate is defined in the natural way as Lie derivative of the stress field
along the motion and that the constitutive law is inverted, so to provide the definition
of elastic stretching. By virtue of this new definition, a simple and complete analysis
of time-independence, integrability and conservativeness may be performed and this is a
major merit of the geometric approach to elasticity. The consequent brand new analysis of
rate constitutive relations, lead naturally to a clear, definite and computationally effective
theory of elasto-plastic constitutive behavior in the non-linear range. The geometric treat-
ment reveals that the rate formulation of the elasticity model, defined as a time-invariant
and integrable hypo-elastic model, is self-proposing as natural and physically meaningful.
Moreover, compatibility with a hyper-elastic behavior and conservation of elastic energy
are ensured by conservation of mass and by directly verifiable integrability conditions.
The key answer given by a proper geometric formulation concerns the way material ten-
sors should be compared and differentiated in time along the trajectory. This requires a
clear distinction between spatial and material tensor fields in continuum mechanics. The
topic was first pointed out in [1] with reference to hypo-elasticity and then investigated
in comprehensive geometrical terms in a space-time framework [2, 4]. Once the basic
tools have been made available, the natural and geometrically consistent choice in elasto-
plasticity is to formulate the rate constitutive behavior in terms of Lie-derivatives of the
relevant material tensors along the trajectory, by performing an additive split of the total
stretching into an elastic stretching and a plastic stretching. These latter are not Lie-
derivatives of material fields, unless either the elastic or the plastic stretching vanishes.
The hypo-elastic relation is governed by a constitutive operator which is non-linearly de-
pendent on the stress tensor and provides the elastic stretching as a linear function of
the stressing tensor. The visco-plastic flow rule is governed by a multi-valued operator.
Indeed the current values of stress and tensorial internal state parameters determine a
convex set of variation of the visco-plastic stretching. The evolution law for the internal
parameters may be included in the visco-plastic flow by suitably enlarging the stress and
the stretching spaces, for instance according to the treatment proposed in [6]. No privi-
leged reference configuration nor mysterious intermediate states are needed. Finite plastic
and elastic strains may however be conveniently introduced in reference linear spaces as
purely computational tools to perform there, on suitable tensor fibers, basic linear opera-
tions such as time differentiations or integrations and approximate numerical evaluations.
This computational trick is based on the peculiar properties of Lie derivatives under
push-pull transformations, but no physical interpretation is given to finite plastic and
elastic strains. The conclusions of the new theory restore credit to early computational
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choices of a rate description of elasto-plastic behavior, but with the decisive improvement
that the rules of the game are now clearly assessed. The theory leads to a conceptually
clean, methodologically definite model and to drastic simplifications of both theoretical
and computational aspects of geometrically non-linearized elasto-visco-plasticity.

2 CONSTITUTIVE LAWS

Let E be a four-dimensional events manifold in which a nonlinear trajectory manifold
T , possibly lower dimensional, is immersed [4]. In a theoretical framework suitable for
investigating a sufficiently general class of material behaviour for engineering applications,
a constitutive law may be defined in terms of a constitutive operator HT , as follows.

Definition 2.1 (Constitutive laws) A constitutive operator HT , in a body motion de-
tected by an Euclid observer, is a possibly multivalued material tensor bundle morphism
whose domain and codomain are Whitney products1of material tensor bundles.

The tensor bundle morphism requirement means that material tensors in the domain
and codomain of the constitutive map should have the same base point in the tangent
trajectory bundle, that is, they should be evaluated at a common event (i.e. a pair
particle position, time instant) in the trajectory. The covariance (or geometric) paradigm
[1, 2, 4] allows to compare the constitutive laws at displaced configurations of a body.
Invariance of the constitutive law is the property that material tensor fields related by
the constitutive law must be still related:

• either when transformed by push according to the relevant material displacement
map ϕτ,t , and this is the meaning of time invariance (TI) of the constitutive law,

• or when transformed by push according to a relative motion between observers,
and this is the meaning of frame invariance (FI) of the constitutive law, which is
named material frame indifference (MFI) when changes of Euclid observers are
considered.

These definitions modify the standard TI and FI definitions as enunciated in [8] and
quoted in subsequent literature, e.g. [9, 10, 11, 12, 13, 14, 15]. The change is from an
invariance property to a property of variance by push [1, 2, 4]. In standard statements
equality between constitutive responses measured by different observers is imposed with-
out taking into account that constitutive operators to be compared do not have the same
domain and codomain. This improper identification is responsible for the wrong assertion
that FI implies isotropy, see [8] formula 99.5.

1The Whitney product of two tensor bundles (N,πM,N,M) and (H,πM,H,M) , over the same base
manifold M , is the linear bundle defined by [7]:

N ×M H := { (n ,h) ∈ N × H | πM,N(n) = πM,H(h) } .

3

289



G. Romano, R. Barretta and F. Marotti de Sciarra

Definition 2.2 (Constitutive time invariance) According to the covariance paradigm,
time invariance of the constitutive operator means that, along the motion:

HT ,τ = ϕτ,t↑HT ,t ,

for any time instants τ, t ∈ I . Explicitly the condition writes:

HT ,τ (ϕτ,t↑sT ,t) = (ϕτ,t↑HT ,t)(ϕτ,t↑sT ,t) = ϕτ,t↑(HT ,t(sT ,t)) .

This means that time-invariant material tensor fields, fulfilling the constitutive relation
at time t ∈ I , are still related by the law at time τ ∈ I .

2.1 HYPO-ELASTICITY

The hypo-elastic constitutive law is properly formulated as a linear dependence of
the elastic stretching upon the stressing, by means of a stress dependent compliance
constitutive operator, as follows [1].

Definition 2.3 (Hypo-elasticity) A hypo-elastic constitutive model is expressed by the
law:

elT = HT (σT ) · σ̇T ,

where elT ∈ C1(T ;Cov(VT )) is the covariant elastic stretching and the stressing σ̇T :=
LvT σT is the Lie derivative of the contravariant stress tensor σT ∈ C1(T ;Con(VT )) ,
along the motion. A purely elastic process occurs when the elastic stretching is equal to
the total stretching, i.e. elT := εT = 1

2
LvT gT , where gT ∈ C1(T ,Sym(VT )) is the

material metric [2].

Lemma 2.1 (Integrability) The hypo-elastic compliance operator is integrable if and
only if the constitutive operator HT and its fiber derivative (i.e. the derivative taken at
a fixed event in the trajectory) are symmetric:

〈dFHT (σT ) · δσT · δ1σT , δ2σT 〉= 〈dFHT (σT ) · δσT · δ2σT , δ1σT 〉 ,
〈HT (σT ) · δ1σT , δ2σT 〉= 〈HT (σT ) · δ2σT , δ1σT 〉 ,

for all δσT , δ1σT , δ2σT ∈ C1(T ,Sym∗(VT )) . The fiber-derivative dF is taken by holding
the base point fixed.

The former condition ensures Cauchy integrability, stating the existence of a stretching-
valued stress potential ΦT ∈ C1(Con(VT ) ;Cov(VT )) such that dFΦT = HT . Both
conditions ensure Green integrability, stating existence of a scalar-valued stress potential
E∗

T ∈ C1(Con(VT ) ;Fun(VT )) such that:

d2FE
∗
T = dFΦT = HT .

Integrability of a time-invariant hypo-elastic constitutive operator, at a given time, implies
integrability at every time.
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3 ELASTICITY AND HYPER-ELASTICITY

Definition 3.1 (Elasticity) An elastic (resp. hyper-elastic) constitutive model is a time-
invariant and Cauchy (resp. Green) integrable hypo-elastic model, so that:

elT = dFΦT (σT ) · σ̇T , (elT = d2FE
∗
T (σT ) · σ̇T ) ,

with time-invariance expressed by:

ΦT ,τ = ϕT ,t↑ΦT ,t , (E∗
T ,τ = ϕτ,t↑E∗

T ,t) .

Denoting by ρT ∈ C1(T ;Fun(VT )) the scalar density field, the material mass form is
defined by mT := ρT µT ∈ C1(T ;Vol(VT )) , where µT is the material volume form
[2]. The next result shows that conservation of mass and Green’s integrability of the
hypo-elastic operator imply conservation of the mechanical energy [4].

Proposition 3.1 (Conservativeness) The constitutive operator of a hypo-elastic ma-
terial, which is hyper-elastic when expressed in terms of the Kirchhoff stress tensor, is
conservative, that is: ∫

I

∫

Ωt

〈σT ,t, elT ,t 〉mT ,t dt = 0 ,

for any covariantly closed stress path, i.e. any path such that its pull-back to any fixed
reference placement is a cycle, a property expressed by the condition:

σT ,t2 = ϕt2,t1↑σT ,t1 , I = [t1, t2] .

3.1 Computational issues

In computational algorithms of the static evolution of an elastic structure undergoing
large displacements, the equilibrium process is approximated by finite step incremental
solutions in time. To underline the decisive role of a referential formulation, let us briefly
describe the iterative scheme leading to the solution of the elastostatic problem in a finite
time step. The control process is described by a time-parametrized curve c ∈ C1(I ;C)
in a control set C . The force acting on a body at time τ ∈ I is assumed to depend on
the control point c(τ) and on the displacement ϕτ,t from a given placement Ωt , so that
we may write

f(τ) = F(c(τ),ϕτ,t) : ϕτ,t(Ωt) �→ T∗(ϕτ,t(Ωt)) .

An iterative trial and error procedure is then formulated as follows.

1. The start point is an equilibrium solution at time t1 ∈ I under a force system

f(t1) = F(c(t1), idΩt1
) : Ωt1 �→ T∗(Ωt1)

and a stress field σ(t1) fulfilling the virtual power variational equality

〈f(t1), δv〉 =
∫

Ω(t1)

〈σ(t1), ε(δv)〉m .
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2. An initial guess of the displacement ϕt2,t1 corresponding to the update of the input
control point from c(t1) to c(t2) may be obtained by computing the force system
F(c(t2), idΩt1

) : Ωt1 �→ T∗(Ωt1) solution of the linear elastostatic problem

〈F(c(t2), idΩt1
), δv〉 =

∫

Ω(t1)

〈H(σ(t1)) · ε(u), ε(δv)〉m .

3. Setting ϕt2,t1(x) = u(x) + x for any x ∈ Ωt1 , the control algorithm provides the
trial force system

f(t2) = F(c(t2),ϕt2,t1) : ϕt2,t1(Ω(t1)) �→ T∗(ϕt2,t1(Ω(t1))) .

The trial referential finite step elastic strain is given by

elref(t2, t1) = ϕref(t1)↓ 1
2
(ϕt2,t1↓gT − gT ) .

The updated stress in the trial placement Ω(t2) is evaluated by

σ(t2) = ϕref(t2)↑
(
σref(t1) +Φ−1

ref

(
elref(t2, t1)

))
,

and the related elastic response is provided by the virtual power principle

〈r(t2), δv〉 =
∫

Ω(t2)

〈σ(t2), ε(δv)〉m .

4. The residual force gap

f(t2)− r(t2) : ϕt2,t1(Ω(t1)) �→ T∗(ϕt2,t1(Ω(t1))) ,

is then applied to perform a correction to the previous guess concerning the dis-
placement ϕt2,t1 by solving the linear elastostatic problem

〈f(t2)− r(t2), δv〉 =
∫

ϕt2,t1
(Ω(t1))

〈H(σ(t2)) · ε(u), ε(δv)〉m ,

and then performing the replacement ϕt2,t1(x) �→ u(x)+ϕt2,t1(x) for any x ∈ Ωt1 .

The procedure is iterated on the new guess until the ratio between a suitable norm of
the force gap and of the trial force system becomes less than a prescribed tolerance,
thus reaching the approximated fixed point of the algorithm. The next time-step is
then performed starting at the solution placement Ω(t2) = ϕt2,t1(Ω(t1)) under the force
system f(t2) = F(c(t2),ϕt2,t1) : Ωt2 �→ T∗(Ωt2) . The hyper-elastic model can be extended
to nonlocal models presented in [16, 17].
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4 Elastic extension of a wire

Let us consider, as a simple example, a wire of initial length L under the action of
an axial force increment F . The elastic constitutive relation writes El := HMix(K) · K̇
with El mixed elastic stretching, K is mixed Kirchhoff stress and K̇ := σ̇◦gT mixed
alteration of the Kirchhoff stressing σ̇ . The hypo-elastic constitutive operator is given
by

HMix(K) :=
1

2µ
I − ν

E
I⊗ I .

The referential mixed elastic stretching is given by the pull-back formula Elref = Tϕ−1
ref ◦

El ◦ Tϕref . The force increment is equal to 1 and the initial linearized response is equal
to 1.5 for a Poisson ratio ν = 0.00 . The initial length is equal to 1 and is doubled by
the first linearized estimate. Convergence features of the algorithm are shown in fig.1 for
the values ν = 0.00, 0.30, 0.40, 0.49 . The physically significant example is the one with
Poisson ratio ν = 0.49 , which is appropriate for a rubber wire.2
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Figure 1: Elastic extension of a wire.

Upper diagrams represent the length while lower diagrams represent the elastic re-
sponse, as the iterative algorithm described in Sect.3.1 proceeds.

5 ELASTO-PLASTICITY

Once that the hypo-elastic model has been properly formulated and the right conditions
for time invariance and conservativeness have been assessed, the rate model of elasto-visco-
plastic constitutive behavior, which is of primary applicative interest in NLCM, may be

2Computations and graphics implemented with Wolfram Mathematica 8.
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readily described by the relations:





εT = elT + plT ,

elT = d2FE
∗
T (σT ) · σ̇T ,

plT ∈ ∂FFT (σT ) ,

with FT ⊂ Fun(VT ) a fiberwise subdifferentiable convex potential [18]. These consti-
tutive relations are in fact extensions of the classical formula introduced, with reference
to visco-elasticity, by James Clerk-Maxwell in [19]. Neither the elastic stretching
elT ∈ C1(T ,Sym(VT )) nor the plastic stretching plT ∈ C1(T ,Sym(VT )) are convec-
tive time derivatives of a material field. The elastic and plastic stretchings should then
not be denoted by a superimposed dot, as usually made in literature. The issue will be
further addressed in Sect. 6. Elasto-plasticity is modeled by assuming that the stress po-
tential is the indicator function of the convex set of admissible stresses KT ⊂ Sym∗(VT ) ,
so that:

∂FFT (σT ) = NKT (σT ) ,

where NKT (σT ) is the outward normal cone to σT ∈ KT . The visco-plastic constitutive
relation specializes then into the plastic flow rule:

plT ∈ NKT (σT ) .

A nonlocal model of elastoplasticity has been analysed in [20, 21]. Moreover a local
elastoplastic behavior and a nonlocal damage model in the strain space has been addressed
in [22, 23].

5.1 Computational issues

By a pull-back procedure the elasto-visco-plastic constitutive relations may be formu-
lated in terms of material tensor fields defined in a fixed placement Ωref . Setting

elrefT ,t = ϕt,ref↓elT ,t , σref
T ,t = ϕt,ref↓σT ,t ,

plrefT ,t = ϕt,ref↓plT ,t , Fref
T ,t = ϕt,ref↓FT ,t ,

with ϕt,ref : Ωref �→ Ωt , we get:




∂τ=t ε
ref
T ,τ,t = elrefT ,t + plrefT ,t ,

elrefT ,t = ∂τ=t dFE
∗
ref(σ

ref
T ,τ ) ,

plrefϕ,t ∈ ∂FFref
T ,t (σ

ref
T ,t ) .

In an evolution process, the computations of the pull-back of the stress fields are conve-
niently carried out by a discrete time integration scheme and by an iterative algorithm,
for the solution at each time step of the non-linear discrete constitutive relation, on the

8
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basis of trial estimates of the elastic stretching evaluated at a fixed placement [24, 25].In
conclusions, the constitutive relations of elasto-visco-plastic behavior, in the non-linear
geometric range, differ by the ones pertaining to the linearized theory just because the
Lie derivatives of the material metric tensor and of the stress tensor are approximated, in
the linearized theory, by partial time derivatives at a fixed point in space. An expression
in terms of partial time derivatives may be got also in the non-linear geometric range
by pulling back the constitutive relations to a fixed configuration. Numerical solution
algorithms are then analogous to the ones adopted in the linearized theory, but with the
additional task of taking care of the fact that the unknown differential of the displace-
ment map, from a fixed to the current configuration, is involved in the expression of the
referential stress.

6 FINITE ELASTIC AND PLASTIC STRAINS

Given a plastic stretching field on the trajectory, a finite plastic strain from an initial
time to to the current time t , may be defined by integration, in the time interval I =
[to, t] , of the plastic stretching field pulled-back from the current to a fixed configuration
along the displacement ϕt,ref ∈ C1(Ωt ;Ωref) :

plrefT ,I :=

∫

I

ϕt,ref↓plT ,t dt ∈ C1(Ωref ;Cov(TΩref)) .

This operation defines a tensor field in the fixed configuration and, by push forward, also
a tensor field in the current configuration. By performing a time-differentiation in the
fixed configuration and then a push forward from the fixed to the current configuration,
the plastic stretching field is recovered:

ϕt,ref↓plT ,t = ∂τ=t

∫ τ

to

ϕτ,ref↓plT ,τ dτ ∈ C1(Ωref ;Cov(TΩref)) .

Anyway this fact does not motivate a definition of the plastic stretching as convective time
derivative of the plastic finite strain, because the latter was not introduced independently
of the notion of plastic stretching. The same occurs for elastic stretching fields and
corresponding finite elastic strain fields. In fact the usefulness of finite plastic and elastic
strains in the description of mechanical behaviors is rather questionable, the only directly
definable finite strain being the total strain, which is expressed in terms of material
displacements and of material metric tensors by:

εrefT ,I :=
1
2

∫

I

∂τ=t ϕτ,ref↓gT ,τ dt = 1
2
ϕt2,ref↓gT ,t2 − 1

2
ϕt1,ref↓gT ,t1 .

7 CONCLUSIONS

The findings of the geometric approach compel to perform a revisitation of theo-
retical contributions to non-linear constitutive laws adopted in most recent geometri-
cally non-linear formulations of elasto-plasticity, elasto-visco-plasticity, poro-elasticity,
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poro-plasticity, phase transformations, growth of biological tissues, and to carry out
a consequent modification of relevant computational procedures. The results restore
credit to early computational choices of a rate description of elasto-plastic behavior,
but with the decisive improvement that the rules of the game are now clearly assessed
also in the fully nonlinear range. The theory leads to a conceptually clean, method-
ologically definite model and to drastic simplifications of both theoretical and compu-
tational aspects of geometrically non-linearized elasto-visco-plasticity. The geometric
approach to nonlinear continuum mechanics developed in this paper, with explicit ap-
plication to the theory of elasto-plastic constitutive models, is a major step in a ge-
ometrization program of continuum mechanics carried out under several points of view in
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 1, 37, 2, 4, 38].
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[3] Simò, J.C. A framework for finite strain elastoplasticity based on maximum plastic
dissipation and the multiplicative decomposition: Continuum formulation. Comp.
Meth. Appl. Mec. Eng. (1988) 66:199–219.

[4] Romano, G. and Barretta, R. Geometric constitutive theory and frame invariance.
Int. J. Non-Linear Mech. (2013) 51:75–86.

[5] Truesdell, C. Hypo-elasticity. J. Rational Mech. Anal. (1955) 4:83–133, 1019–1020.

[6] Halphen, B. and Nguyen, Q.-S. Sur les matériaux standard généralisés. J. Mécanique
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