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ABSTRACT

Sobolev norm error bounds are derived for interpolation
remainders on triangles using two types of Taylor expansion.
These bounds are applied to the finite element analysis of

Poisson's equation on a triangulation of a polygonal region.



1. INTRODUCTION

In this paper we consider two methods of calculating
Sobolev norm bounds for linear functionals defined on a triangle.
These are based on a rectilinear Taylor expansion and a directional
derivative Taylor expansion, respectively. The first is a

generalisation of the Sard Taylor expansion in B for rectangles [8].

The second is a special case of the Frechet derivative expansions of

Ciarlet and Wagschal [5] and Ciarlet and Raviart [6].

We apply these methods to the finite element analysis of Poisson's

equation on a polygonal region QQ. The energy pseudonorm ||v|| A(Q)

is defined by

IVl A _” [ 8,1 } dx dy (1.1)

Q
If u is the weak solution of Poisson's equation, then the

Galerkin approximation U to u satisfies the beat approximation
property

||u—U||A(Q) <|lu-u ||A(Q) (1.2)

for all U in the same subset of the Sobolev space W%(Q) as U.
(See, for example, Barnhill and Gregory [1].) For a triangulation
Q =UT ,

i 1

1

[ w-Ula@ = {Zle-Ulie ¥ (1.3)



If U Is an interpolant, Inequality (1.2) is the relationship
between interpolation remainder theory and the Galerkin method.
We let U be the piecewise linear interpolant that interpolates
to u at the vertices of the sub triangles and, in particular on
the triangle T with vertices at (0,0), (1,0) and (0,1). A
change of variable to similar triangles, indicating the order of
convergence, is given in the Appendix.

The two methods can be generalized to handle higher order

elliptic operators, different regions, and other interpolants.

RECTILINEAR TAYLOR EXPANSION IN A TRJANGLE .

Let QO be a rectangle with (a,b) € Q . For u in the Sard

space ]ill (Q) and (x,y) € Q, the Sard Taylor expansion is the

following:

u(xy) = u@b) + (x-a) ujy (@b) + (y=b) ug; (a,b)
+ j (x=%)uy o (X,b) & + Jj j u &) & 0

y ~ ~ i~
+ [T, @ & (2.1)

Let L be a linear operator that involves only point evaluations



of a function and its first partial derivatives, that is,

Lu = Z oy (X y)u(xgyy) + z Pre X y)upg (X yy)
it i/

+ Y (%Y) Uy (Xpy,) (2.2)
i’

The remainder is R =1 - L, where I is the identity operator,

that is,

Ru (x,y) =u(x,y) - Lu(x,y). (2.3)
Also let

8i+j
Riju = ———= Ru=u;(xy - Ljjuxy , 0<i+ <l (2.4)

’ dy’ 0 x ’ ’
8i+j
where Liju = — Tu.
’ oyl 0 x'

Then Rij can be applied to (2.1) and, if Rij has linear

polynomial precision, upper bounds can be found for
|Ri’j[u(x,y)]| in terms of norms of the derivatives Uy (X,b),

Uy (X,¥), and uojz(a,if) [1,2], for example, in terms of



w0 &0 I, 1w B9 I, g5, o

(The notation Lz(;()

H upz (a9) H L, 5)

means the L, norm with respect to the variable X over its domain

of definition etc.) Since the norms of u,, (X,b) and ugy, (a,y)

are taken only with respect to X and y respectively, this upper

(6]
bound is not the Sobolev norm W22(Q) defined by

o lgl g =4 2,1 CRTN 23)

where a = (a,,0,) and |0c| =o, +a,. For some applications, such

as finite element analysis, the Sobolev norm is preferable to

the Sard norm.

Birkhoff, Schultz and Varga [3] used the Sard kernel theorem
instead of the Taylor expansion, and also they evaluated
Rij [u(x,y)] at (x,y) = (a,b). Then they varied (a,b) over the
rectangle to produce a Sobolev norm in the variables a and b.
However, this method is restricted to rectangles as we now explain.

We consider a region () that is not necessarily a rectangle. For each
point (x,,y,) in (2.2), the method of Birkhoff, Schultz and Varga

yields error bounds that involve the values of derivatives in the

rectangle with opposite corners at (x,,y,) and (a,b), where



(a,b) varies over (Q For most common bivariate interpolants

this amounts to the assumption that 0 be a rectangle.

Thus (a,b) can either be fixed to produce univariate
integrals or, for a rectangle, (a,b) can be varied over the
rectangle to produce bivariate integrals and a Sobolev norm.
We consider the second possibility over a non-rectangular region,

namely, the triangle T with vertices at (0,0), (1,0) and (0,1).

Theorem 2.1. Let (a,b) € T and let A;, A and A3 be subsets

of T as follows:

Ay ={xy)eT :x >1-b}, Ay ={xy) e T:y>1-a},

and A =T - (AJjUA,). (See Figure 1).

(0,1)

(0;1' a)

(0,0) (l—b,O) (1,0)

Figure 1.



Let X,. (x,y) denote the characteristic function
i

15 (X7Y) € A1

Then (x, e T implies
0, otherwise (x.y) P

XAi(XJY) = {

that

u(x,y) =u(ab) + (x—a) U (a,b) + (y—-b) Ug (a,b)

X Yy x
s xy [ j (x=%) u,, (X,b) dX + jb j u, (X,3) & dy

y
69w, @) 47 ]

y ~ -~ i~ X X \ ~ Ve
+ X, (XY) .[b (Y=Y ugp(a,y) dy + L J.a uyo (x', 1-X) dx'dx

X 1-X

X Ly
+ ,L, ‘[b ul,l (aoy*) dy* dX + J-a J;,i u1,1 ()*(" y) d? dx ]
~ - - 1—% N s
+ XA3 (x,y) [J.: (x,X) Uzo (X,b)dX + J.by J'a y u &.b) &X &5

y X y ¥
Pl Ly @D & ] ug, -5y dy' dy ] (2.6)

We assume that the derivatives in (2.6) exist, in the generalized

S€nsc.



Proor: For (x,y) € Ay, (2.6) is the usual Sard Taylor expansion

(2.1). For (x,y) € Ay,
uxy) = u@y) + [ou, &y &,

y
u(@.y) = u(@b) + (y=b) ug;@b) + [ (y-F) up, @) .

We make the following expansions (compare with Figure 2):

y

by @y o= wy & -0+ [ ou; &Y &

uy 1-% = u o @ 1-%) + j uy o (1-%) dx'
1-X

uo @I=%) = ug@b) o+ jb upp Gy dy*.

Hence

u (x,y) =u (a,b) + (x -a)uyo(a,b)+ (y-b)up,:1 (a.b)

X

y y
LD @y &+ [ e (RLY) &

+ j j U, (xI-%) dx' &R+ j j: uyy (a, y*) dy* o

The proof for (x,y) € A3z, is dual. Q.E.D.



0,1)
(asb)"
(a)yﬁ)"
(351"3) (x'_:;-;) (x!1'x)
(2,7} G
(a,y) Gy) o)
(0,0) (1,0)
Figure 2.

LINEAR INTERPOLATION ON THE TRIANGLE

In this section, the Taylor expansion (2.6) is used to
derive a bound on the linear interpolant over the triangle T,

in the energy pseudonorm (1.1).

The remainder for linear interpolation on T evaluated

at (a,b) is
R u(a,b) = u(a,b)- [u(0,0)(l-a-b)- u(l,0)a- u (0,1)b]
Hence

Ry, o u(a,b) =u, o (a,b) + u(0,0) -u(l,0)

R o, 1 u(a,b) =uy, 1 (a,b) + u(0,0) -u(0,1)

2.7)

(2.8)

(2.9)



R0 and Ry, are of finite element interest because of
(1.2) and (1.1) and with @ as the above linear interpolant

we have

1
Tu=Tllaey = LR pu Il gy + IR ouu B, 2 - (2.10)

The application of Ry o to (2.6) yields

0 0 0
R umwb):j;iuzﬁ(ixndi+jaLu1J(zgmd§d§

b

I 1-X

- J.:j:uz,o(x', 1 -X)dx ' —jajb uljl(a,?)dydi

1

0
—jaL_iuIJ(z,y)dydz ] (2.11)
Thus
IRy gu@D) Il (4 p) 1], Ruy o (R,b) dR 1L, (a,b)

1 . ' '
113 15w, 4 (R.5)dF d% I oy H I L a0 =Ry axaxl o)
2 >

1 1-% 1 o
P e @Ay # I ey R avaxl )
2 s

(2.12)



10.

The notation L,(a,b) means the L, norm with respect to the
variables (a,b) ever the triangle T. We next compute upper

bounds for each of the five norms on the right hand side of (2.11).

1st term:

I 1-a
g Xuy o (X.b)dX ||12“2(a’b): J, [ 8%, o (X.0)dx} % db da

1 1 1 1
where —+ —=1=—+ — -
p p r r

Letr = p/2, which impliesr=p/(2-p) and hence 1 <p<2 andp'>2.
Then the above is bounded by

2 2

L2+ |

~ 2 1 p p
lu, o (XK,b) [ — [ a (1-a)P  da - (2.13)
2,0 Lp'(X,b) (p+1)7' l

The univariate integral in (2.13) equals B (3+%,%) , where

B(m,n), m, n > 0, is the beta function, which has the properties
that if m and n are integers,
then

(m-D)!(n-1)!

B(m,n) = (m+n-1)!



11.

and
1 oam-b (-
B(m+7,n+7): (m+n)'
2nd term :
1] uy (R, 9)d5 d% |2
0do L1 L, (a,b)
2
< w %.5 o 2.14
o« y)HLp.(x,y)[iziij [%+1,%+ 2], (2.14)
3rd term :
1% , B Lo
]|Iajau2,0(x,1—x)dx dx||L2(a’b)
<fluy o (x1-%) (]2 1 215)
- 2,0 ’ L )

P

(x',1-%) (24 42270
p



12.

4th term:

I 1-X
~N 4= 1~ (12
1] ], wp (a.3)dydx L (aub)

o T AT IREIER L

2
1 .1-b 2+2 I-a ! =
= JOJO (1-a) 7 {, e @HlP dy}P da db
2-p | 421+D 25]:)
~ _ p -p
Slup @I gy G =" 7)) 7 db

p

1
The integral (l—xoc)8 dx, with the change of variable
g 0

x* = u, equals lB(6+1 ,l) . Hence the above is bounded by
o o

2
2 — P 2 2 - ~ ~\
[ PJP{B(H—, pﬂnm,l(a,y)li2 (a,7).p > 2
p 4+p

4+p

Huy, @9, @.3)p =2. (2.16)



13.

5th term :

0 X,y)dy dx 2
1] ] wy (R.9)dyd% ||}

,(a,b)
< Hu (R s, =2 L 2.17)
’ p' Y p+2 2—+1

2p

||RO 1 u(a,b) ||L2(a,b) is dual to ||R1,O u(a,b) ||L2(a,b) ;

Therefore, from (2.12) - (2.17) with p = 2, we obtain the

following norms over the triangle T :

UR e w o+ IR L, )

+ ||R 0,1

IN

”R 10 U ||L2(T) u ||L2(T)

IN

== ool oy * ozl o) |
2 2 3 2010, (1) 0:21lL 5 (1)

(2.18)

+2(L+L+1juu H
22 242 Pl (ry

3. DIRECTIONAL DERIVATIVE TAYLOR EXPANSION

We consider Taylor expansions at the point (x,y) about

the point (a,b) along the line between (x,y) and (a,b).



For example
u(x,y)=u(a,b)+(x - a)u1 0 (a,b)+(y - b)uO,1 (a,b)

1

+ ] [ —a)?u, gla+0(x —a)b+0(y=b)

+2(x—a)(y-b)u, [a+0(x-2a),b+0(y-Db)]

+ (y—b)zuoz [a+6(x-a),b+0(y-b)]1-6)db.

For remainders R; j of the form (2.4) evaluated at (a,b),
each point function evaluation and derivative evaluation is
expanded in a. line Taylor expansion about (a,b). This is
the same as applying R; j to the Taylor expansion if R; ;
does not contain derivatives at points other than (a,b).

If R; ; has derivatives at points other than (a,b),

the above is necessary since the direct application of

R; jto (3.1), for example, would involve derivatives of
Uz o, ur,; and ug2 . This occurs because the variables

x and y are not covered by integrals. This is in contrast

to the rectilinear expansion in which the variables are

* An example that involves derivative data functionals is
the piecewise quintic interpolant, see for example
Mitchell [ 7 ], which is useful for fourth order elliptic

equations.

14.

3.1)



15.
covered. The use of higher derivatives of u is undesirable

because it increases the smoothness assumption.

The above method is applicable to regions which are star
shaped with respect to the data functionals in the operators
L; j (2.4). That is, for each (a,b) in Q the line from
(a,b) to (xx, y,) 1s in Q .

LINEAR INTERPOLATION ON A TRIANGLE

A bound is now derived on the linear interpolant over the

triangle T in the energy paeudonorm (1.1 ), c.f. Section 2.

A Taylor expansion of each term of the functional

R0 u(a,b), equation (2.8), gives the following :

1
Rl,O u(a,b)=-[0{a2 uz’o[a(l—ﬁ),b(l—ﬁ)]+2ab upg [a(1-8),b(1-8)]

2

+b a(1-0),b(1-6)]} (1-6) do

up ol

1
- jo f(1-2a)? uy gla+0(1-a).b(-0)]-2(1-a)b uj [a(l-0).b(1-0)]

4 b2 ug 5 la-+0(1-a),b(1-0)] }(1-0)do (3.2)

(We note that the linear precision of the functional implies

that all but the integral remainder terms to zero .)

A bound on |[R;, u(a,b) ||L2 (a.b) is obtained from (3.2) by the

application of the triangle inequality to the right hand side.



The first term in the result is the following:

||j 0[a1=0) b= -0)d0 Il (4 1)

1
jj ja u, [a(l—@),b(l—e)](l—e)da|2da db |2

' 2

1 1-b 4 ¢ P =1 %
s[jo jo a {jo Uy [a1-0), b(1-6) ] 1-6) | d6} dadb ]

1.1 1-b

2

1

=[la% 1,y L] [ g laa-0100-0)1 0 of dadb o} ]

2-p

where l+l'=1,p'22.
p p

1
-0 (1-6)(1-b) !

P ~
| a ||Lp @b {j ) | uyo@h[ dadb a-6P

IN

1

1 -

4 2 I |p' o~
Ha HL P (a,b) ( ,_J HU2’O (a,b)HL ' (E,E)
I P p

2-p

IN

do}"”

Equation (3.3) together with a similar consideration of the other

terms require the following results :

16.

(3.3)
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! 1

=|a* |2 — | b4]2
a(r) =|la IILr(a,b) | HLr(a,b)

- L 2r o
ey 7o (3.4)

1 s r = o ,
1 1
2 2
B(r):H 422 b2 | _ |y B@re22eey Pro
Lr(a,b) 2r +1
1
R (3.5)

1 1 Tor
4
y(r) = H (1-a) H fr(a,b) - [4r+2} , T < 0, (3.6)

1, r = o ,

1

2

2|: 1 :| s T 0.0]
1 (4r+2) (2r +1)
(r) H (1-a) L b

Zar=e 3.7)
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We then obtain the following bound

| Rig @b | 1, )

L P P ~ 7 ~
G (1) o) oo s

FABGE) H8CE) F e @RI o
p‘ >

+ 20 (2%) H ug, (3.b) H . (55)} (3.8)

p

The norm || RO,I u (a,b) || L2 (a,b) is dual to || RO,I u (a,b) || L2 (a,b)

With p' = p = 2 we obtain the following bound :

1
2 2 2
LI Roy wlIE ey + 11 Rgy w Iy §

+ ||R

< |IR
Roy vl (m) o1 "l (m)

IA

4 llugg |l + 5 {[uyy |l + 4llug,y | (3.9)

L,(T) L,(T) L,(T)



Appendix : Change of Variable Formula

Let x' = hx, y = hy be a change of variable from the
triangle T with vertices at (0,0), (1,0) and (0,1) to the
triangle T* with vertices at (0,0), (h,0) and (0,h).

Then

defines the transformation of a function u(x,y) defined on T, to

a function u* (x* , y*) define on T*.

Thus
.. 1 x* y*
%k * 3k = - R ~
u 19.](X 7y)_ hi+j ul,] (h s hj
and hence
1 1y p b ROy P 1
_ J A . * *
J I, tupgeen odedy = [ T e sy e dy

We thus obtain the following change of variable formula :

piti- 2/p *

| Ui (X,y) HLp (Ty = | i, (x*,y%) HLp(T*)
We note the dependence of the order of h on p.

A general change of variable for triangles is given in Bramble

and Zlamal [4].

19.
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