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Abstract. The purpose of this paper is to introduce the Trans-mesh method and
the Moving computational domain method as a progressive Moving-grid finite-volume
method. In the Trans-mesh method, the bodies can move freely in a main mesh that
covers the entire flow field. On the other hand, in the Moving Computational Domain
method, the whole of the computational domain including bodies inside moves in the
physical space without the limit of region size. These methods are constructed based on
the four-dimensional control volume in space-time unified domain such that the method
assures to be divergence-free in the space-time unified domain and thus satisfies both the
physical and geometrical conservation laws simultaneously. The methods are applied to
a falling sphere by gravity in an infinite long bending pipe and a trajectory of a flying
ball over ground in incompressible fluid. The results indicate that these methods are
promising in simulating the interaction of incompressible fluid-rigid body.

1 Introduction

Today, one of the interesting problems in CFD is a moving boundary problem. Es-
pecially, in the case of fluid-bodies interaction is interesting on engineering. For this
problem, the body-fitted coordinate is usually applied. When multiple bodies move a
long distance in the flow field, a body-fitted coordinate system hardly adapt the mesh
to the motion of the bodies. This decreases an efficiency and accuracy. To overcome
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this problem, we have proposed a Trans-mesh Method [1]. In the Trans-mesh method, a
body moves freely in a stationary mesh while mesh planes are added, removed, and/or
shifted in the main mesh satisfying both physical and geometric conservation laws. Next,
we consider a flow around a sphere in the long pipe. It is necessary to make the com-
putational mesh for whole of the pipe. Then, a huge number of computational mesh
is needed. As the result, this simulation by using traditional method spends a lot of
time. We have proposed the Moving Computational Domain method [2]. This method
is kind of moving mesh method. The feature of this method is to move computational
domain with the body. The Moving Computational Domain method can consider the
region without limit. The only necessary assumption is that the conditions just in front
of the computational domain should be known a priori, such as, stationary fluid state or
uniform flow and so on. As these flow solvers, we modified the Moving-grid Finite-volume
method [3]. The method is constructed based on the four-dimensional control volume in
space-time (z,y, z,t) unified domain such that the method satisfies the divergence-free
character in the (z,y, z,t) space and both the physical and geometrical conservation laws
simultaneously [4]. Due to the use of four-dimensional control volume, the method has
a lot of merits or freedom. The purpose of this paper is to introduce applications using
the Trans-mesh method and Moving Computational Domain method. The methods are
applied to a falling sphere by gravity in an infinite long bending pipe and a trajectory of
a flying ball over ground in incompressible fluid.

2 Trans-mesh Method and Moving Computational Domain Method
2.1 Governing equations

The governing equations are the continuity equation and the incompressible Navier-
Stokes equations. These are written as follows:

V.q=0, (1)
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Here q is the velocity vector, E,, F,, and G, are advection flux vectors in the z, y, and
z directions, respectively, E,, F,, and G, are viscous flux vectors, and E,, F), and G,
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are pressure flux vectors. The elements of the velocity vector and flux vectors are:
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Where u, v, and w are the velocity component of the x, y, and z directions respectively,
p is the pressure, and Re is the Reynolds number. The subscripts x, y, and z indicate
derivatives with respect to x, y, and z, respectively.

As for motion of the body, six degrees of freedom is assumed, and the combined motion
of the translation and rotation of the body is considered. The rigid body equations of
motion are written as follows:

dpg
B _ 4
dt fB7 ( )
dLg
—— = Ng. 5
dt B (5)

Here, py is the momentum vector of the body, fj is the external force vector, Ly is the
angular momentum vector, and Np is the torque vector, respectively.

2.2 Moving-grid Finite-volume method

To assure the geometric conservation laws, we adopt a control volume in the space-
time unified domain (z,y, 2, t), which is four-dimensional in the case of three-dimensional
flows. Now, Eq. (2) can be written in divergence form as,

V-F=0 (6)
where
~ T ~
V=[# & & &1 . F=[E F G q],
EFE=FE,-E,+E,, F=F,-F,+F, G=G,-G,+G,. (7)

The present method is based on a cell-centered finite-volume method and, thus, the
flow variables are defined at the center of the cell in the (z,y,z) space. The control
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Figure 1: Schematic view of control volume in (z,y, z,t) space-time unified domain.

volume becomes a four-dimensional polyhedron in the (z,y, z, t)-domain, as schematically
illustrated in Fig. 1.

We apply volume integration to Eq. (2) with respect to the control volume illustrated
in Fig. 1. By using the Gauss theorem, we can write Eq. (6) in surface integral form as,

¥ Fan- f'l%d(aﬁ)zi(ﬁ.ﬁ)lzo. )

06 =1

Here, k is an outward unit vector normal to the surface, 812, of the octahedron control
volume 2, in the space-time unified four-dimensional domain, and, 72; = (7, Ty Tz, )1
(I = 1,2,... 8) denotes the surface normal vector of the control volume and its length
equal to the boundary surface area in four-dimensional (z,y, z,t) space. The upper and
lower boundaries of the control volume (I = 7 and 8) are perpendicular to the t-axis, and,
therefore, they only have an n; component, and its length corresponds to the volume of
the cell in the (z,y,z2)-space at times ¢" and ¢"™! respectively. Thus, Eq. (8) can be
expressed as,

q" ! (fy)s + q" (7ig)7 + Z (ﬁ"“+1/2 . ﬁ)l =0. 9)

2.3 Concept of Trans-mesh method

In the Trans-mesh method, a body moves freely in a stationary mesh while mesh planes
are added, removed, and/or shifted in the main mesh, as illustrated in Fig. 2. The front
mesh plane of the moving body is eliminated from the main mesh in order to prevent the
mesh from folding because of the reduced mesh spacing that occurs due to the movement
of the body. Moreover, a new mesh plane is added between the rear plane of the moving
body and the main mesh in order to maintain the maximum allowable mesh spacing. At
the same time, the cells existing and connecting between the main mesh and the side
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of the moving body are skewed due to the movement of the body. Thus, reconnection
or exchange of mesh lines between the moving body and the main mesh is necessary.
Hence, the present method essentially includes three inevitable procedures: addition and
elimination of mesh planes as well as changes in the connecting relationships of structured
mesh lines.
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Figure 2: Concept of Trans-mesh method.

2.4 Concept of Moving Computational Domain method

The basic coordinate system of the Moving Computational Domain method is the gen-
eral, fixed, stationary (z,y, z) Cartesian coordinate system. The computational domain
itself, including the body inside, moves in the fixed (z,y, z)-space. The flow around the
body is calculated as the moving boundary problem. Unknown flow variables, such as
pressure p, x-directional velocity v and so on, are defined at each grid cell center in the
computational domain. The motion of the computational domain according to the mo-
tion of the body in the physical space is arbitrary, and thus the any kind of the motion
of the body can be simulated by the Moving Computational Domain method. The flow
field driven by the body is calculated in the computational domain in which the body
fitted mesh system is used. Since the computational domain itself moves in the physical
(x,y, z) space time-dependently and thus the mesh system of the computational domain
also moves in the (z,y, z) space, the flow solver has to be constructed for the moving
grid system. In the present Moving Computational Domain method, the Moving-Grid
Finite-Volume method [3] is adopted. Only necessary and essential assumption is that
the condition in front of the moving computational domain has to be known because it
is necessary as a boundary condition of the flow solver. The natural assumption may be
the stationary fluid condition in front of the moving computational domain.

2.5 Numerical method

To solve the discretization equation of equation (2) using the Trans-mesh method and
the Moving Computational Domain method, we apply the SMAC method [5]. Thus,
this equation can be solved in three stages. The equation to be solved at the first stage
contains the unknown variables at (n+ 1)-time step in the flux terms. Thus, the equation
is iteratively solved using the LU-SGS method [6]. The equation to be solved at the
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Figure 3: Conventional method (left) and Moving Computational Domain method (right).

second stage is the Poisson equation about the pressure correction. This equation is
iteratively solved using the Bi-CGSTAB method [7]. The incompressible fluid-rigid body
interaction with collision is calculated in the first step of the SMAC method. Figure 4
shows the flowchart of the fluid-body interaction. First, we calculate the force applied
to the body. This force includes the force of collision. The collision force is evaluated
based on Glowinski’s method[8]. The Transmission Mesh method does not require special
treatment when collisions happen. Next, the equation of motion for the body is calculated,
and the mesh is moved. Then, the Navier-Stokes equations are calculated. If the physical
amounts converge, we proceed to the second step of the SMAC method.

1st step of SMAC method
t" step 1

—> Calculating the force applied to the body
v

Calculating the equation of motion for the body
v

Moving the computational mesh
v

Calculating the Navier-Stokes equations

Yes

2nd step of SMAC method

Figure 4: Flowchart for calculation of interaction.
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3 Numerical Results
3.1 Falling sphere by gravity in the infinite long bending pipe

As an application of the present methods, the movement of a sphere falling by gravity
in the infinite long bending pipe is investigated, as illustrated in Fig. 5.

Figure 5: The moving computational domain for falling sphere in a bending pipe.

The diameter of the pipe is 3.0d, where d denotes the diameter of the sphere. The
wavelength and amplitude of the pipe are 12d and 0.75d, respectively. The moving com-
putational domain is red domain in the pipe shown as Fig. 5. The initial position of the
sphere is in the center of the moving computational domain. The ratio between body
and fluid density (py/ps) is 1.167. The initial stationary condition of pressure, velocity
components in the x, y, z directions are given by p = 1.0, u = v = w = 0.0. The Reynolds
number is 300 based on the diameter of the sphere d, the terminal speed of the sphere
W, and the kinematic viscosity. A mesh system of 52 x 52 x 104 is adopted. The time
step size is At = 0.01. Table 1 shows setup of physical quantity.

Table 1: Setup of physical quantity
d[mm] g[m/s’] prlkg/m’] pe[Ns/m’] woo[m/s] Re
15 9.81 960 10 x 1073 0.220 300

As a result, Fig. 6 shows the pressure distribution and velocity vectors on central plane
of y as well as the sphere position at the time ¢ = 2.80 and 3.01. The sphere moves along
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the wall of the pipe after the sphere collides against the wall. It is confirmed that the
pressure in the front of the sphere is always higher than the pressure in the rear.

t=2.80

t=3.01

Figure 6: Overall view, pressure distribution, and velocity vectors on central plane of y.

Figure 7 shows the computational mesh near the sphere on central plane of y. We
confirmed that the computational mesh holds its shape well even if the computational
mesh and the sphere move in any direction.
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t=2.80 t=3.35
Figure 7: Computational mesh near the sphere at t = 2.80 and 3.35.

3.2 A trajectory of a flying sphere over ground in incompressible fluid

A flying sphere over ground in incompressible fluid, as illustrated in Fig. 8 is presented.

Figure 8: The flying ball over ground in incompressible fluid.

The size of the moving computational domain is L, = 21.0d, L, = 21.0d, L. = 21.0d,
where d denotes the diameter of the sphere. The initial stationary condition of pressure,
velocity components in the x, y, z directions are given by p = 1.0, u = v = w = 0.0. Table
2 shows setup of physical quantity. The size and mass of the sphere are the same as a
soccer ball. It is assumed that the sphere is a rigid body. The stitching of the soccer ball
is not considered. The Reynolds number is 3000 based on the diameter of the sphere d,
the initial speed of the sphere, and the kinematic viscosity. A mesh system of 81 x 81 x 81
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is adopted. The time step size is At = 0.01.

Table 2: Setup of physical quantity.

Diameter of ball 0.22m
Mass of ball 0.43kg
Initial velocity | 10.0m/s
Initial angle 45.0°

As a result, Fig. 9 shows the pressure distribution and velocity vectors on central plane
of y as well as the sphere position at the time ¢ = 0.28s,0.55s,0.82s,1.10s, and 1.38s.
Figure 10 shows the trajectory of the sphere and angular velocity of the sphere where
Wy, wy, and w, are the angular velocity component of the z, y, and z axis of rotation,
respectively. The sphere is accelerated at t = 0.22s. The sphere rises with a negative
angular velocity of x. Next, pressure distribution in a rear of the sphere changes from a
symmetric shape to dissymmetric shape as time goes by. The movement in the y direction
is not confirmed because the Reynolds number is low and a viscosity is high. The sphere
begins to fall at ¢t = 0.8 s and the magnitude of the angular velocity becomes small. It is
confirmed that the sphere collides into the ground at ¢t = 1.3s.

4 Concluding Remarks

In this paper we introduced the applications using Trans-mesh method and the Mov-
ing Computational Domain method and described its application to a falling sphere by
gravity in an infinite long bending pipe and a trajectory of a flying ball over ground in
incompressible fluid. The results indicated that physically meaningful flows were obtained
and the computational mesh holds its shape well even if the computational mesh and the
sphere move in any direction. Therefore, we confirmed that the Trans-mesh method and
the Moving Computational Domain method are useful for simulating the interaction of
incompressible fluid-rigid body.
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Figure 9: Pressure distribution and velocity vectors on central plane of y at t = 0.28s, 0.55s, 0.82s, 1.10s,
and 1.38s.
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Figure 10: Trajectory of the sphere and angular velocity of the sphere.
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