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ABSTRACT: This study presents a new two-stage stochastic programming decision 
model for assessing how to introduce some new manufacturing technology into 
any generic supply and distribution chain. It additionally determines the optimal 
degree of postponement, as represented by the so-called customer order decoupling 
point (CODP), while assuming uncertainty in demand for multiple products. To 
this end, we propose here the formulation of a generic supply chain through an 
oriented graph that represents all the deployable alternative technologies, which 
are defined through a set of operations that are characterized by lead times and cost 
parameters. Based on this graph, we develop a mixed integer two-stage stochastic 
program that finds the optimal manufacturing technology for meeting each 
market’s demand, each operation’s optimal production quantity, and each selected 
technology’s optimal CODP. We also present and analyse a case study for 
introducing additive manufacturing technologies. 

KEYWORDS: manufacturing; postponement; stochastic programming; supply 
chain network design; 3D printing; additive manufacturing 

1. Introduction 

According to Govindan et al. (2017), supply chain network design (SCND) forms part of 
the planning process in supply chain management, which itself determines the 
infrastructure and physical structure of a supply chain (SC). Due to changes in technology 
and consumer behaviours, as well as product life cycles and variety, companies are forced 
to redesign their production schemes in search of flexible supply chains and 
postponement strategies. Two opposing production strategies can be chosen for the 
strategic design of a supply chain: speculation or postponement. According to Bucklin 
(1965): “The principle of speculation holds that changes in form, and the movement of 
goods to forward inventories, should be made at the earliest possible time in the marketing 
flow”. Regarding form and logistics postponement, Alderson (1957) established that 
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these “postpone changes in form and identity to the latest possible point in the marketing 
flow; postpone change in inventory location to the latest possible point in time”. Giesberts 
and Tang (1992) define the customer order decoupling point (CODP) as “(…) the point 
in the flood of goods of the supply chain where forecast-driven (pushed) production and 
customer order-driven (pulled) production are separated”. According to Yang and Burns 
(2003), it is the point where the customer order penetrates and that distinguishes forecast 
and order-driven activities. Therefore, the CODP specifies the extent to which operations 
perform a speculative or postponed strategy. Furthermore, it sets the operation/facility at 
the point in the SC where finished or semi-finished production is stored before delivering 
the customer’s orders. The optimal positioning of the CODP within the SC remains an 
open question in today’s SCND research, and it constitutes one of the main contributions 
of this study (see Section 2). The practical motivation behind this research is to, first, 
ascertain when and where to apply postponement as a supply chain strategy and, second, 
demonstrate how additive manufacturing (3D printing) can be used to accelerate the 
deployment of postponement strategies. In order to conduct this study, we adopted the 
methodology of Two-Stage Stochastic Programming (TSSP): the degree of uncertainty is 
significant for selecting an appropriate postponement strategy, Yang, Burns and 
Backhouse (2004), and TSSP models are generally considered to be among the most 
effective at incorporating stochasticity into SCND problems, Govindan et al. (2017). 
Beyond that, we use TSSP in this work to introduce a completely new form of modelling 
for postponement, specifically to calculate the optimal positioning of multiple CODPs 
and other relevant decision variables in SCND. The capabilities of this TSSP model are 
then assessed as an analytical tool by using the model afterwards to introduce additive 
manufacturing into a real-case SCND problem for the toy industry. The main 
contributions of this study are: 

1. A new and general two-stage stochastic programming model for addressing a general 
SCND problem with demand uncertainty. It determines the optimal selection of 
facilities and manufacturing technologies; production and distribution flows; the 
degree of form and logistics postponement. This is accomplished by optimally 
positioning the CODPs and the associated inventory level for the selected 
technologies/facilities. 

2. A generalized understanding of CODPs, which allows for defining multiple CODPs 
within the optimal SC network of selected operations/facilities. Having multiple 
CODPs for each process also requires redefining the classical dichotomist 
categorization in which every operation is run as either speculation or postponement. 

3. A detailed analysis of a real-case SCND problem in the toy industry. Here, the goal 
is to assess the use of 3D printing as a means for implementing postponement 
strategies. 

The remainder of this paper is structured as follows. Section 2 provides a literature 
overview on supply chain network design problems and postponement strategies. Section 
3 introduces the mathematical formulation of the optimization problem. Finally, Section 
4 presents the results of the proposed model using the real-world case of a manufacturing 
company. Section 5 draws some conclusions, managerial insights and proposes further 
work for this project. 

2. Literature Review 

There is a vast literature on Two-Stage Stochastic Programming models (TSSP) for 
SCND problems. In order to orient this study with precision in the field of study, we 
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follow a classification similar to that of Govindan et al. (2017). To this end, Table 1 shows 
some of the main characteristics of the most representative TSSP models for SCND, 
specifically in terms of both: the SC network structure in the associated facility location 
problem; and the SC management problem’s characteristics. 
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Cardona-Valdés et al. (2014) 1   V V              V  
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Soleimani et al. (2014) >3 V  V V V V V V       V  V   

Ayvaz et al. (2015) 3 V  V V       V    V V    

Li and Hu (2014) 2   V V    V V V V     V    

Ramezani et al. (2013) 2 V  V  V V   V V V    V V V V  

Kaya et al. (2014) 2 V  V   V V    V    V V    

Amin and Zhang (2013) 1 V  V V V          V     

Table 1: TSSP formulations for SCND problems. 

We can make distinctions among those studies by considering, first, a forward logistic 
network in which it is impossible to recover products rejected by customers and, second, 
those models that allow for some recovery (reverse logistics). Facility location (FL) 
problems in supply chain management (SCM) consist of selecting different potential 
facilities in the same layer (i.e.: suppliers, plants, warehouses, and distribution, among 
others). Studies on SCND usually allow for deciding on locations in no more than 3 
layers. One exception to this trend is Soleimani et al. (2014), who allow for locating a 
reverse logistic network in every layer. Our work allows for complete flexibility in the 
embedded FL problem, because location decisions may affect operations and facilities in 
every existing layer of the network: suppliers, manufacturing plants, warehouses, and 
distribution centres. Our SC network also allows for any number of products (which is 
not very usual in FL works) and product flows between the facilities of the same layer 
(see columns MP and ILF in Table 1). The A set of columns in Table 1 display the most 
common characteristics of SC management costs considered by SCND studies, such as 
transportation, production, inventory, stock-out, and others. Aside from those common 
features, the model presented in this paper includes some characteristics that are quite 
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unusual in the area (columns B). Only the paper by Tong et al. (2013) considers the costs 
associated with the different manufacturing technologies available, but it is restricted to 
an integrated hydrocarbon biofuel and Petroleum refinery problem. Similarly, only 
Madadi et al. (2014) consider the discarding costs associated with the excess production. 
Moreover, none of the other works in Table 1 consider the cost of establishing a 
transportation link between two facilities, which is fundamental for connecting the two 
candidate SC operations in our model. In contrast, our model lacks the characteristics 
displayed in the C set of columns, which some other studies consider as recovery costs, 
penalties for unused capacity, and modelling risk/robustness. 

Considering the relevance of postponement in this work, we discuss the relationship 
between a responsive supply chain (RSC) and postponement. According to Chopra and 
Meindl (2013) an RSC model should include the supply chain’s ability to “respond to 
wide ranges of quantities demanded, meet short lead times, handle a large variety of 
products, build highly innovative products, [and] meet a high service level”. For 
Gunasekaran et al. (2008), an RSC provides flexible solutions to changing 
market/customer requirements. Ivanov and Dolgui (2019) identifies postponement as one 
of the key factors of resilience in SC disruption risk management, an one of the gaps to 
be filled in current SC research, while Winkelhaus and Grosse (2019) mention 
postponement as one of the key facilitator in Logistics 4.0. Among the SCND works in 
Table 1 (apart from our study), only four of them include any responsiveness in the SC 
(see column Re). A classical strategy for RSC is to consider some of the objective 
function’s terms that account for either minimizing customer service time, Cardona-
Valdés et al. (2014), or maximizing customer service level in terms of suitable delivery 
time, Ramezani et al. (2013). Although postponement is recognized as one of the keys for 
RSC, it is quite unusual for TSSP models on SCND to explicitly introduce postponement 
in the mathematical formulation. In fact, and as far as we know, only Biller et al. (2006) 
and Weskamp et al. (2019) have proposed a TSSP model in which the degree of 
postponement is somehow optimized explicitly. Even if we broaden our review beyond 
the scope of TSSP methodology, we cannot find many studies that deal with qualitative 
mathematical models for postponement; and considerably less address postponement 
through the optimal positioning of the CODP – as our proposal does. Table 2 displays 
some of the most representative studies considering the optimal degree of SC 
postponement. The first five studies in Table 2  rely on deterministic optimization models 
that have normally distributed demands with known 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 for every product 𝑗𝑗. The 
first four references consider form postponement (i.e., delayed product differentiation), 
and find the optimal differentiation point 𝑛𝑛 (i.e., the operation after which the products 
assume their unique characteristics) through either dynamic programming or by 
minimizing the single-variable cost function 𝐶𝐶(𝑛𝑛). Nevertheless, these four works 
assume that product differentiation remains forecast-driven and, therefore, takes place 
before customer demand materializes. Therefore, none of them includes CODP 
positioning. The work by Ernst and Kamrad (2000) finds the optimal product quantity for 
the two opposite strategies of complete speculation / complete postponement, doing so 
with a pre-set CODP  in a very simple SC. Jabbarzadeh et al. (2019) propose a multi-
objective robust optimization model for form, production, and logistic postponement, 
which is restricted to the second manufacturing layer of a four-layered SC (primary and 
secondary manufacturing; and central and regional distribution centres). 
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The works by Bish and Suwandechochai (2010) and Biller et al. (2006) introduce the idea 
of associating postponement decisions (price and production quantities) with the second-
stage variables in a TSSP model. The approach in Bish and Suwandechochai (2010) 
theoretically analyses optimal postponement as the solution of a TSSP problem, using 
just two products while considering an inverse demand function 𝑝𝑝𝑗𝑗 = 𝛼𝛼𝑗𝑗 − 𝑑𝑑𝑗𝑗 − 𝛾𝛾𝑗𝑗𝑑𝑑3−𝑗𝑗, 
where 𝑝𝑝𝑗𝑗 and 𝑑𝑑𝑗𝑗 are the price and demand of product 𝑗𝑗 respectively, 𝛾𝛾𝑗𝑗 a measure of 
product substitutability (see the reference), and 𝛼𝛼𝑗𝑗 is the price intercept of product 𝑗𝑗, with 
𝛼𝛼𝑗𝑗 being continuous random variables with a known joint probability density function. 
Biller et al. (2006) propose a scenario-based multi-product TSSP for price and quantity 
postponement, using stochastic demand functions 𝑑𝑑𝑗𝑗 = 𝜉𝜉𝑗𝑗 − 𝛽𝛽j𝑝𝑝𝑗𝑗, with  𝛽𝛽𝑗𝑗 being the 
known slope, and 𝜉𝜉𝑗𝑗 ≥ 0 the intercept, a random variable with mean 𝜇𝜇𝑗𝑗 and standard 
deviation 𝜎𝜎𝑗𝑗. Recently, Weskamp et al. (2019) proposed a TSSP approach for SCND that 
is very similar to our proposal (see details in Table 2). Nevertheless, there are two major 
differences: first, they pre-set every facility for postponement operations, except for those 
in the first layer (factories); while any facility in any layer in our problem could operate 
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Table 2: Postponement formulations for SCND problems. 
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in either postponement or speculation. Second, Weskamp et al. (2019) pre-set the CODPs 
to be positioned in every open factory, while our model finds which is the optimal 
positioning of CODPs at any operation in the SC (manufacturing, warehouses, 
distribution centres, and markets). 

We can see that none of the reviewed formulations on postponement optimize the CODP 
positioning, meaning that the decision-maker must decide which of the SC operations and 
facilities are going to be operate in speculation (before receiving demand orders) and 
which will be delayed (postponed) until orders are placed. Wikner and Rudberg (2005) 
state that “the actual positioning of the CODP has not yet been thoroughly analysed in 
the literature”; and Boone et al. (2007) declare that the optimal positioning of CODPs is 
one of the new challenges for future postponement models. Our work fills this gap in the 
existing literature by providing a TSSP model for any general SNCD problem where 
form, production and logistics postponement can be optimized through optimal CODP 
positioning at every point in the SC. 

3. Problem formulation 

Let us consider a company that must choose the best available manufacturing process 
from a portfolio in order to satisfy the future demand of a given set of products. A process 
is defined as a set of sequential operations (purchasing, manufacturing, assembling, 
storage, distribution and selling), which transforms the raw materials into a finished 
product that is sold to some market. The Optimal Supply Chain Strategy (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) model 
determines: (a) the best operations and processes to be deployed for satisfying the demand 
of several products over a time horizon; (b) the optimal production quantities for the 
speculation/postponement strategy of each deployed operation and process; and (c) the 
positioning of the deployed CODPs and their associated inventory levels. In this section, 
we define the two-stage stochastic mixed-integer linear programming model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) and 
develop the mathematical formulation for this problem. Model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) considers the 
following two-stage decision process:  

• The first decision stage, the so-called speculation stage, involves selecting the 
operations to be deployed, positioning the CODPs, and deciding on the production 
flow from the initial operations for periodically replenishing the CODP inventory. 
This production is called speculative production. 

• The second decision stage, the so-called postponement stage, is where customer 
orders are received and production is triggered from the CODP inventory up to 
the final operations. This production is called postponed production. 

3.1. Topology 

The (𝑂𝑂𝑆𝑆𝑆𝑆𝑆𝑆) model represents all the possible operations and processes in a supply chain 
through an oriented graph 𝒢𝒢 = (𝒩𝒩,𝒜𝒜), where the nodes 𝒩𝒩 correspond to  operations and 
the arcs 𝒜𝒜 represent the precedence between operations. Graph a) in Figure 1 illustrates 
an instance based on a graph with 7 nodes (operations) 𝒩𝒩 = {1, … ,7} and 12 arcs 𝒜𝒜 =
{(1,3), (1,4), … , (5,7)} . This graph represents a packaging and distribution company that 
purchases manufactured products (node 1) and packages (node 2). The products can be 
packaged in three different packaging factories (nodes 3, 4 and 5), and they must be 
delivered to two different customer centres (nodes 6 and 7). 
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𝒩𝒩 Operation 
1 Manufacturing of raw product 
2 Purchase of packages 
3 Packaging at factory A 
4 Packaging at factory B 
5 Packaging at factory C 
6 Customer centre at location 1 
7 Customer centre at location 2 

𝒩𝒩𝑂𝑂 = {1,2}, 𝒩𝒩𝐷𝐷 = {6,7}  
𝒩𝒩𝐴𝐴 = {3,4,5}, 𝒩𝒩𝐵𝐵 = {1,2,6,7} 

Figure 1: Example of a packaging process 

Given graph 𝒢𝒢, we define the subset of origin operations 𝒩𝒩𝑂𝑂 ⊆ 𝒩𝒩 for the nodes with no 
ingoing arcs, allowing it to stand for the initial operation of a process. Analogously, we 
define the subset of final operations 𝒩𝒩𝐷𝐷 ⊆ 𝒩𝒩 for the nodes with no outgoing arcs, each 
one standing for a market to be supplied. We will assume that every manufacturing 
process starts at some origin operations with complete availability of raw materials, and 
ends at some final operation where production is sold. All operations can have as many 
suppliers (ingoing arcs) as needed, and all suppliers can have as many operations 
(outgoing arcs) as needed. In terms of relationships with the suppliers, we distinguish two 
types of operations: 

• Assembly operations 𝒩𝒩𝐴𝐴 represent operations that take several parts from their 
suppliers and assemble them. Here, we assume each ingoing arc is the production 
flow of each part to assemble. 

• Base operations 𝒩𝒩𝐵𝐵 represent the remaining operations. Here, we assume all 
ingoing arcs to be different possible suppliers of the same product. All origin and 
final operations are considered base operations. 

In Figure 1, 𝒩𝒩𝐴𝐴 = {3,4,5} indicates that all the packaging factories behave as assembly 
operations, i.e. they need one unit of raw product (from node 1) and one unit of package 
(from node 2) for operating one unit of packaged production. The base operations are 
𝒩𝒩𝐵𝐵 = {1,2,6,7}. To manage the assembly operations, we declare the subset of assembly 
arcs 𝒜𝒜𝐴𝐴 = {(𝑖𝑖, 𝑗𝑗)|𝑗𝑗 ∈ 𝒩𝒩𝐴𝐴} ⊆ 𝒜𝒜 (𝒜𝒜𝐴𝐴 = {(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)} in 
Figure 1). Graph b) in Figure 1 shows one possible setup. In this configuration, the 
selected operations are 1,2, 3, 5, 6 and 7, while operations 3 and 5 (in bold) correspond to 
two CODPs. The speculative production flows are (1,3), (1,5), (2,3) and (2,5), drawn 
with solid lines; while the postponed production flows are (3,6) and (5,7), drawn with 
dashed lines. The artificial final arrows indicate the sales of each respective, final 
operation. Henceforth, we will use 𝒪𝒪𝑗𝑗  and 𝒟𝒟𝑗𝑗 as, respectively, the origin operations and 
destination operations of operation 𝑗𝑗; that is, 𝒪𝒪𝑗𝑗 = {𝑖𝑖 ∈ 𝒩𝒩: (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜} and 𝒟𝒟𝑗𝑗 =
{𝑘𝑘 ∈ 𝒩𝒩: (𝑗𝑗,𝑘𝑘) ∈ 𝒜𝒜}. 
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Set-up cost parameters, operations 𝒊𝒊 ∈ 𝓝𝓝 Sales parameters, final operations  𝒊𝒊 ∈ 𝓝𝓝𝑫𝑫 

𝑓𝑓𝑖𝑖: operation set-up cost (€) 𝑝𝑝𝑖𝑖: selling price (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) 

𝑧𝑧𝑖𝑖: CODP set-up cost (€) 𝑜𝑜𝑖𝑖: stock-out cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) 

Production parameters, arcs (𝒊𝒊, 𝒋𝒋) ∈ 𝓐𝓐 CODP inventory parameters, base operations 𝒊𝒊 ∈ 𝓝𝓝𝑩𝑩 

𝑐𝑐𝑖𝑖𝑖𝑖 : variable production cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) ℎ𝑖𝑖𝐵𝐵: holding inventory cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ⋅ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄ ) 

𝑒𝑒𝑖𝑖𝑖𝑖: fix production cost (€) 𝑔𝑔𝑖𝑖𝐵𝐵: discarding inventory cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) 

𝑎𝑎𝑖𝑖𝑖𝑖 : variable lead time (ℎ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) 𝑞𝑞𝑖𝑖𝐵𝐵: inventory capacity (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) 

𝑏𝑏𝑖𝑖𝑖𝑖 : fixed lead time (ℎ) CODP inventory parameters, assembly arcs (𝒊𝒊, 𝒋𝒋) ∈ 𝓐𝓐𝑨𝑨 

Bill of materials, assembly arcs (𝒊𝒊, 𝒋𝒋) ∈ 𝓐𝓐𝑨𝑨 ℎ𝑖𝑖𝑖𝑖𝐴𝐴 : holding inventory cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ · 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝑟𝑟𝑖𝑖𝑖𝑖 : number of units to assemble 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴 : discarding inventory cost (€ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢⁄ ) 

  𝑞𝑞𝑖𝑖𝑖𝑖𝐴𝐴 : inventory capacity (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) 

Table 3: Parameters related to supply chain operations 

The parameters used in the (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) model to characterize the supply chain are displayed 
in Table 3. Production parameters are indexed by arcs (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜, instead of operations 
𝑖𝑖 ∈ 𝒩𝒩, because flexible operations 𝑖𝑖 ∈ 𝒩𝒩 may possibly yield either the same or different 
products to several subsequent operations 𝑗𝑗 ∈ 𝒟𝒟𝑖𝑖 (for instance, the same 3D printer can 
make different parts for several products; see case study in Section 4. Moreover, the 
inventory parameters of the assembly operations 𝑗𝑗 ∈ 𝒩𝒩𝐴𝐴 depend also on the piece 𝑖𝑖 ∈ 𝒪𝒪𝑗𝑗  
to be assembled, because the different pieces might have different holding and discarding 
inventory costs, as well as for inventory capacities. 

3.2. Decision stages and stochasticity 

As mentioned previously, the first decision stage of the (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) model represents the 
speculation stage, which involves setting the operations to deploy and the positioning of 
the CODPs, as well as deciding on the CODP inventory levels and speculative production 
flow for replenishing the inventory before demand is known. The second decision stage 
represents the postponement stage, which is where the speculative CODP production 
stock is released, finished, and served once the demand value is known. We assume that 
the postponement stage spans a time horizon comprised of 𝑛𝑛𝑃𝑃 periods of equal length 𝑙𝑙𝑃𝑃, 
and that during this stage there are going to be 𝑛𝑛𝑅𝑅 periodical replenishments of the CODP 
inventories evenly distributed through the total time horizon. The stochastic parameters 
of this model are the demand along the time horizon in the final operations of every 
product. As usual in stochastic programming, demand 𝑑𝑑 = 𝑑𝑑𝑗𝑗 , 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 is going to be 
represented in our model by a set of scenarios: 𝑑𝑑𝑗𝑗𝑗𝑗 , 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ Ω, with probability π𝑠𝑠 
and size  |Ω| = 𝑠̅𝑠. 

3.3. Variables and constraints 

The model formulation is composed of three blocks: SC production flow, SC design, and 
lead time. The first block models the feasibility of the production flow along the deployed 
supply chain graph; the second block sets the design of the SC graph that determines the 
operations and the CODPs to be deployed; the third block guarantees maximum service 
time for postponed production. 
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3.3.1. SC production flow 

SC production flow variables and equations guarantee that the sequence of selected 
operations and links defines feasible manufacturing processes from origin to final 
operations. The so-called Production variables are displayed in Table 4. 

 Name Domain Definition 

Sp
ec

ul
at

io
n 

(f
ir

st
 st

ag
e)

 Speculative 
Production 𝑃𝑃𝑖𝑖𝑖𝑖0 ≥ 0 Speculative production at operation 𝑖𝑖 delivered to 

operation 𝑗𝑗 through arc (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜. 
Inventory 

(Base ops.) 𝐻𝐻𝑗𝑗𝐵𝐵 ≥ 0 Speculative production stored in the CODP inventory for 
base operation 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵. 

Inventory 
(Assembly ops.) 𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴 ≥ 0 Speculative production of piece 𝑖𝑖 ∈ 𝒪𝒪𝑗𝑗 stored in the 

CODP inventory for assembly operation 𝑗𝑗 ∈ 𝒩𝒩𝐴𝐴. 

Po
st

po
ne

d 
(s

ec
on

d 
st

ag
e)

 

Postponed 
Production 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 Postponed production at operation 𝑖𝑖 delivered to 

operation 𝑗𝑗 through arc (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 in scenario 𝑠𝑠 ∈ Ω. 
Released 

Speculative 
Production 

(Assembly ops.) 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≥ 0 
Speculative production of piece 𝑖𝑖 ∈ 𝒪𝒪𝑗𝑗 released from the 
CODP inventory for the assembly operation 𝑗𝑗 ∈ 𝒩𝒩𝐴𝐴 in 
scenario 𝑠𝑠 ∈ Ω. 

Released 
Speculative 
Production 
(Base ops.) 

𝑅𝑅𝑗𝑗𝑗𝑗𝐵𝐵 ≥ 0 
Speculative production released from the CODP 
inventory for the base operation 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵 in scenario 𝑠𝑠 ∈
Ω. 

Excess 
Speculative 
Production 

(Assembly ops.)  

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≥ 0 
Excess of speculative production of piece 𝑖𝑖 ∈ 𝒪𝒪𝑗𝑗 stored 
at the end of the time horizon at the CODP inventory for 
the assembly operation 𝑗𝑗 ∈ 𝒩𝒩𝐴𝐴 in scenario 𝑠𝑠 ∈ Ω. 

Excess 
Speculative 
Production 
(Base ops.)  

𝐹𝐹𝑗𝑗𝑗𝑗𝐵𝐵 ≥ 0 
Excess of speculative production stored at the end of the 
time horizon in the CODP inventory for the base 
operation 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵 in scenario 𝑠𝑠 ∈ Ω. 

Stock-Out  𝐵𝐵𝑗𝑗𝑗𝑗 ≥ 0 Stock-out of final operation 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 in scenario 𝑠𝑠 ∈ Ω. 

Sold Production 𝑉𝑉𝑗𝑗𝑗𝑗 ≥ 0 Sold production at final operation 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 in scenario 
𝑠𝑠 ∈ Ω. 

Table 4: Production variables 

In the production flow equations (1)-(8) below, we model the production flow through 
the supply chain graph as a set of balance equations. They also consider the possibility of 
placing a CODP in a given operation that may receive some speculative production in 
advance of taking an order (first-stage production), and then releasing it once the demand 
is known (second-stage production). The production flow equations for assembly, base 
and final operations are, respectively: 

𝑃𝑃𝑖𝑖𝑖𝑖0 = 𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑟𝑟𝑖𝑖𝑖𝑖 � 𝑃𝑃𝑗𝑗𝑗𝑗0

𝑘𝑘∈𝒟𝒟𝑗𝑗

 (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜𝐴𝐴 (1) 

𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜𝐴𝐴, 𝑠𝑠 ∈ Ω (2)  

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 � 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘∈𝒟𝒟𝑗𝑗

 (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜𝐴𝐴, 𝑠𝑠 ∈ Ω (3) 
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�𝑃𝑃𝑖𝑖𝑖𝑖0

𝑖𝑖∈𝒪𝒪𝑗𝑗

= 𝐻𝐻𝑗𝑗𝐵𝐵 +  � 𝑃𝑃𝑗𝑗𝑗𝑗0

𝑘𝑘∈𝒟𝒟𝑗𝑗

 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵 ∖𝒩𝒩𝑂𝑂 (4) 

𝐻𝐻𝑗𝑗𝐵𝐵 = 𝑅𝑅𝑗𝑗𝑗𝑗𝐵𝐵 + 𝐹𝐹𝑗𝑗𝑗𝑗𝐵𝐵 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵, 𝑠𝑠 ∈ Ω (5)  

𝑅𝑅𝑗𝑗𝑗𝑗𝐵𝐵 + �𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒪𝒪𝑗𝑗

= � 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘∈𝒟𝒟𝑗𝑗

 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵 ∖𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ Ω (6) 

𝑅𝑅𝑗𝑗𝑗𝑗𝐵𝐵 + �𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑗𝑗𝑗𝑗
𝑖𝑖∈𝒪𝒪𝑗𝑗

 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ 𝛺𝛺 (7) 

𝑑𝑑𝑗𝑗𝑗𝑗 = 𝐵𝐵𝑗𝑗𝑗𝑗 + 𝑉𝑉𝑗𝑗𝑗𝑗 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ 𝛺𝛺 (8) 

Figure 2 illustrates the meaning of equations (1)-(6), where solid arcs are the production 
flow in speculation, dotted arcs are production flow in postponement. Equation (1) 
describes the speculative flow equation of any assembly operation 𝑗𝑗: the ingoing 
production 𝑃𝑃𝑖𝑖𝑖𝑖0  of each piece can be either stored in a CODP or processed and delivered 
to further operations. If some quantity 𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴 is stored, the operation becomes a CODP, as 
modelled by equation (2) with the capacity to release this production 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  during the 
second stage and a remaining excess production 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 . Equation (3) takes the released 
production 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴  together with the postponed ingoing production 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 and transforms it into 
assembled production for delivery to further operations. Every assembly operation (1)-
(3) assumes that 𝑟𝑟𝑖𝑖𝑖𝑖 units of part 𝑖𝑖 ∈ 𝒪𝒪𝑗𝑗  are used to assemble a unit of product 𝑗𝑗. Equations 
(4)-(6) are analogous to equations (1)-(3) for base operations, which are unlike the 
assembly case in that each ingoing arc is assumed to carry the same type of product. 
Production ultimately reaches the final operations in equation (7) , where delivery occurs 
to fulfil demand 𝑑𝑑𝑠𝑠 in scenario 𝑠𝑠 ∈ Ω. The model allows for both an excess and a shortage 
of production through variables 𝐹𝐹𝐴𝐴,𝐵𝐵 and 𝐵𝐵, respectively. While the excess production 
𝐹𝐹𝐴𝐴,𝐵𝐵 is considered in equations (2) and (5), the numbers of sales and stock-out production 
are modelled in equation (8). We do not consider backorders; therefore unsatisfied 
demand is lost. 
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Figure 2: Production flow through assembly and base operations, equations (1)-(6).  

3.3.2. SC design 

Table 5 shows the so-called design variables. This set of binary variables determines the 
design of the SC; that is, which operations are going to be deployed and which of these 
deployed operations are going to be a CODP. 

 Name Domain Definition 

Sp
ec

ul
at

io
n 

 
(f

ir
st

 st
ag

e)
 

Operation 
Deployment 𝑌𝑌𝑗𝑗 ∈ {0,1} 𝑌𝑌𝑗𝑗 = 1 ↔ operation 𝑗𝑗 is deployed for 𝑗𝑗 ∈ 𝒩𝒩. 

CODP 
positioning 𝑍𝑍𝑗𝑗 ∈ {0,1} 𝑍𝑍𝑗𝑗 = 1 ↔ a CODP is deployed for operation 𝑗𝑗 ∈

𝒩𝒩. 
Speculative  
production 

indicator 
𝑋𝑋𝑖𝑖𝑖𝑖0 ∈ {0,1} 

𝑋𝑋𝑖𝑖𝑖𝑖0 = 1 ↔ operation 𝑖𝑖 operates and delivers 
production to operation 𝑗𝑗 in speculation for 
(𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜. 

Po
st

po
ne

d 
(s

ec
on

d 
st

ag
e)

 

Postponement 
production 

Indicator 
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 = 1 ↔ operation 𝑖𝑖 operates and delivers 
production to operation 𝑗𝑗 in postponement for 
(𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜. 

Table 5: Design variables 

The relationships between the production and design variables are established in the 
following constraints, where parameter 𝑃𝑃� is any upper bound on the total production flow: 

𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒊𝒊𝒊𝒊
𝑨𝑨  𝑹𝑹𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

Equation (1) 

𝒋𝒋 ∈ 𝓝𝓝𝑨𝑨 𝒋𝒋 ∈ 𝓝𝓝𝑨𝑨 

𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒊𝒊𝒊𝒊
𝑨𝑨  𝑹𝑹𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

Equation  (2) 𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒊𝒊𝒊𝒊
𝑨𝑨  𝑹𝑹𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

𝑭𝑭𝒊𝒊𝒊𝒊𝒊𝒊𝑨𝑨  

Equation (3) 

𝒋𝒋 ∈ 𝓝𝓝𝑨𝑨 

∑𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

∑𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒋𝒋
𝑩𝑩 𝑹𝑹𝒋𝒋𝒋𝒋𝑩𝑩  

𝑭𝑭𝒋𝒋𝒋𝒋𝑩𝑩  

Equation (4)  

𝒋𝒋 ∈ 𝓝𝓝𝑩𝑩 𝒋𝒋 ∈ 𝓝𝓝𝑩𝑩 

∑𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

∑𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒋𝒋
𝑩𝑩 𝑹𝑹𝒋𝒋𝒋𝒋𝑩𝑩  

𝑭𝑭𝒋𝒋𝒋𝒋𝑩𝑩  

Equation (5) ∑𝑷𝑷𝒊𝒊𝒊𝒊𝟎𝟎  

∑𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊 ∑𝑷𝑷𝒋𝒋𝒋𝒋𝒋𝒋 

∑𝑷𝑷𝒋𝒋𝒋𝒋𝟎𝟎  

𝑯𝑯𝒋𝒋
𝑩𝑩 𝑹𝑹𝒋𝒋𝒋𝒋𝑩𝑩  

𝑭𝑭𝒋𝒋𝒋𝒋𝑩𝑩  

Equation (6) 

𝒋𝒋 ∈ 𝓝𝓝𝑩𝑩 
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𝑃𝑃𝑖𝑖𝑖𝑖0 ≤ 𝑃𝑃�  ⋅ 𝑋𝑋𝑖𝑖𝑖𝑖0  (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (9) 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑃𝑃� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜, 𝑠𝑠 ∈ Ω (10) 

𝑋𝑋𝑖𝑖𝑖𝑖0 ≤ 𝑌𝑌𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (11) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑌𝑌𝑖𝑖  (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜, 𝑠𝑠 ∈ Ω (12) 

𝑉𝑉𝑗𝑗𝑗𝑗 ≤ 𝑑𝑑𝑗𝑗𝑗𝑗𝑌𝑌𝑗𝑗  𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ Ω (13) 

1
𝑛𝑛𝑅𝑅

𝐻𝐻𝑗𝑗𝐵𝐵 +
𝑛𝑛𝑅𝑅 − 1
𝑛𝑛𝑅𝑅

𝐹𝐹𝑗𝑗𝑗𝑗𝐵𝐵 ≤ 𝑞𝑞𝑗𝑗𝐵𝐵 𝑍𝑍𝑗𝑗  𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵, 𝑠𝑠 ∈ 𝛺𝛺 (14) 

1
𝑛𝑛𝑅𝑅

𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴 +
𝑛𝑛𝑅𝑅 − 1
𝑛𝑛𝑅𝑅

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴 ≤ 𝑞𝑞𝑖𝑖𝑖𝑖𝐴𝐴  𝑍𝑍𝑗𝑗  (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜𝐴𝐴, 𝑠𝑠 ∈ 𝛺𝛺 (15) 

Equations (9)-(10) couple the speculative and postponed production variables 𝑃𝑃𝑖𝑖𝑖𝑖0  and 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 
to its production indicators 𝑋𝑋𝑖𝑖𝑖𝑖0  and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖, respectively; while equations (11)-(13) link, 
respectively, the speculative and postponement production indicators 𝑋𝑋𝑖𝑖𝑖𝑖0  and 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 and the 
sales variable 𝑉𝑉𝑖𝑖𝑖𝑖 to the associated set-up variable 𝑌𝑌𝑖𝑖. Equation (14) guarantees that if a 
base operation 𝑗𝑗 ∈ 𝒩𝒩𝐵𝐵 is a CODP, the inventory capacity 𝑞𝑞𝑗𝑗𝐵𝐵 of every base operation can 
accommodate the maximum level of the inventory through the time horizon; that is, the 
fresh speculative production batch at the last replenishment 𝐻𝐻𝑗𝑗𝐵𝐵 𝑛𝑛𝑅𝑅⁄   plus the excess of 
speculative production per replenishment 𝐹𝐹𝑗𝑗𝐵𝐵 𝑛𝑛𝑅𝑅⁄  that is accumulated during the previous 
𝑛𝑛𝑅𝑅 − 1 replenishements. Equation (15) imposes the same condition on assembly 
operations. 

3.3.3. Lead time 

At the postponement stage, postponed production per period departing from CODPs must 
arrive at the final operations before a maximum allowed service time 𝑙𝑙𝑆𝑆. Additionally, 
operations 𝑖𝑖 with positive lead times (𝑎𝑎𝑖𝑖𝑖𝑖 > 0 and/or 𝑏𝑏𝑖𝑖𝑖𝑖 > 0, for 𝑗𝑗 ∈ 𝒟𝒟𝑖𝑖) must be finished 
in a single time period of length 𝑙𝑙𝑃𝑃. The lead time equations guaranteeing these 
assumptions are: 

𝐿𝐿𝑗𝑗𝑗𝑗 ≥ 𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 +
𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑃𝑃

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖�1 − 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖� (𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜, 𝑠𝑠 ∈ Ω (16) 

�
𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛𝑃𝑃

�𝑃𝑃𝑖𝑖𝑖𝑖0 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖�
𝑗𝑗∈𝒟𝒟𝑖𝑖

≤ 𝑙𝑙𝑃𝑃 𝑖𝑖 ∈ 𝒩𝒩, 𝑠𝑠 ∈ Ω (17) 

0 ≤ 𝐿𝐿𝑖𝑖𝑖𝑖 ≤ 𝑙𝑙𝑆𝑆 𝑖𝑖 ∈ 𝒩𝒩𝐷𝐷 , 𝑠𝑠 ∈ Ω (18) 

where the auxiliary variable 𝐿𝐿𝑗𝑗𝑗𝑗 ≥ 0 measures the lead time from the CODPs to operation 
𝑗𝑗 ∈ 𝒩𝒩 in demand scenario 𝑠𝑠 ∈ Ω. Equation (16) connects the lead time between 
operations 𝑖𝑖 and 𝑗𝑗 whenever some production per period is processed and delivered in 
postponement, with 𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑆𝑆 + 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛𝑃𝑃
𝑃𝑃� being an upper bound of the lead time. 
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Equation (17)  computes the time that an operation takes to process the total production 
per period, postponed 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖/𝑛𝑛𝑝𝑝 plus speculative 𝑃𝑃𝑖𝑖𝑖𝑖0 𝑛𝑛𝑃𝑃⁄ . Finally, equation (18) guarantees 
that the actual lead time of the final operations will not be greater than the maximum 
allowed service time 𝑙𝑙𝑆𝑆. 

3.4. Expectation of the total profit and final model 

The goal of this model is to maximize the total expected profit of the supply chain 
deployment and operations, expressed in equation (19). The first-stage costs A-F include 
the cost of the speculative production and design decisions, while the second-stage 
costs G-L correspond to the costs associated with postponement. The expressions for the 
holding costs E-F of the inventory variables 𝐻𝐻𝐴𝐴,𝐵𝐵 and for K-L of the excess production 
variables 𝐹𝐹𝐴𝐴,𝐵𝐵 results from the policy 𝑛𝑛𝑅𝑅, which evenly distributes identical 
replenishments along a total time horizon of 𝑛𝑛𝑃𝑃 time periods. At the beginning of every 
replenishment cycle of length 𝑛𝑛𝑃𝑃 𝑛𝑛𝑅𝑅⁄  time periods, a fresh production batch 𝐻𝐻𝐴𝐴,𝐵𝐵 𝑛𝑛𝑅𝑅⁄  
enters the CODP’s inventory, leaving an amount of 𝐹𝐹𝐴𝐴,𝐵𝐵 𝑛𝑛𝑅𝑅⁄  in excess production stored 
at the end of that same replenishment cycle.   

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�𝑓𝑓𝑖𝑖𝑌𝑌𝑖𝑖
𝑖𝑖∈𝒩𝒩

�����

A: Operations 
setup cost

− �𝑧𝑧𝑖𝑖𝑍𝑍𝑖𝑖
𝑖𝑖∈𝒩𝒩

�����

B: CODP
 setup cost

− 𝑛𝑛𝑅𝑅 � 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖0
(𝑖𝑖,𝑗𝑗)∈𝒜𝒜

 
�����������

C: Fixed cost,
speculative  production.

 

(19) 

− � 𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖0
(𝑖𝑖,𝑗𝑗)∈𝒜𝒜

 
���������

D: Variable cost,
speculative  production.

− �
𝑛𝑛𝑃𝑃

2𝑛𝑛𝑅𝑅
ℎ𝑖𝑖𝑖𝑖𝐴𝐴𝐻𝐻𝑖𝑖𝑖𝑖𝐴𝐴

(𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝐴𝐴

 
�������������

E: Holding cost,
assembly inventory

− �
𝑛𝑛𝑃𝑃

2𝑛𝑛𝑅𝑅
ℎ𝑗𝑗𝐵𝐵𝐻𝐻𝑗𝑗𝐵𝐵

𝑗𝑗∈𝒩𝒩𝐵𝐵

 
�����������

F: Holding cost,
base inventory

 

+�𝜋𝜋𝑠𝑠

⎝

⎜
⎜
⎜
⎛
� 𝑝𝑝𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒩𝒩𝐷𝐷

 
�������

G: Sales
incomes

− � 𝑜𝑜𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖
𝑖𝑖∈𝒩𝒩𝐷𝐷

�������

H: Stock-out 
cost

− 𝑛𝑛𝑃𝑃 � 𝑒𝑒𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝒜𝒜

 
�����������

I: Fixed  cost,
postponed  production

− � 𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝒜𝒜

 
���������

J: Variable  cost, 
postponed  production

𝑠𝑠∈Ω

− � �
𝑛𝑛𝑃𝑃

2
ℎ𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑔𝑔𝑖𝑖𝑖𝑖𝐴𝐴�𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴

(𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝐴𝐴

 
�����������������

K: 
Holding+Discarding cost

assembly excess prod.

− � �
𝑛𝑛𝑃𝑃

2
ℎ𝑗𝑗𝐵𝐵 + 𝑔𝑔𝑗𝑗𝐵𝐵�𝐹𝐹𝑗𝑗𝑗𝑗𝐵𝐵

𝑗𝑗∈𝒩𝒩𝐵𝐵

 
���������������

L: 
Holding+Discarding cost

base excess prod.

⎠

⎟
⎟
⎟
⎞

 

In summary, the extended form of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) that has been developed so far is the 
mixed integer linear programming problem represented by:  

(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)

⎩
⎪⎪
⎨

⎪⎪
⎧

max 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (19)
s.t.:

𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (1)− (8)
𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (9)− (15)
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (16)− (18)

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Table 4− Table 5
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Model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) was implemented using the mathematical programming language AMPL 
(AMPL, 2016) with the optimizer CPLEX 12.8 (CPLEX, 2018), running on a Dell 
POWEREDGE R630 (2 x Xeon E5-2697 v4 (2,3 GHz,18C/36T,45 MB cache) server 
using 256GB RAM). All the computational runs referred to in this study from this point 
forward were obtained with a relative MILP gap of 1% while using 8 threads for the root 
node processing and up to 32 threads for a parallel branch and cut. All execution times 
are wall clock time. 

3.5. Scalability 

The dimension of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) in terms of the structure of the SC is: 

• # of binary variables: 2 ⋅ |𝒩𝒩| + |𝒜𝒜| + |Ω| ⋅ |𝒜𝒜|   

• # of cont. variables: |𝒜𝒜| + |𝒩𝒩𝐵𝐵| + |𝒜𝒜𝐴𝐴| +  

|Ω| ⋅ (|𝒩𝒩| + 2|𝒩𝒩𝐵𝐵| + 2|𝒩𝒩𝐷𝐷| + |𝒜𝒜| + 2|𝒜𝒜𝐴𝐴|)  

• # of constraints: |𝒩𝒩𝐵𝐵| − |𝒩𝒩𝑂𝑂| + 2|𝒜𝒜| + |𝒜𝒜𝐴𝐴| +  

|Ω| ⋅ (|𝒩𝒩| + 3|𝒩𝒩𝐵𝐵| + 3|𝒩𝒩𝐷𝐷| + 3|𝒜𝒜| + 3|𝒜𝒜𝐴𝐴|)  

We tested a set of randomly generated instances of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) in order to analyse the 
scalability of the problem, namely: how the size of the SC affects the complexity of the 
optimization problem in terms of its execution time. These instances represent an SCND 
problem with 3 layers (suppliers, manufacturers and retailers), 𝑘𝑘 = 3,6,12,18, and there 
are 24 base operations per layer. In addition, there are forward arcs between every 
operation in layers 1 and 2 and layers 2 and 3. Every instance has |Ω| = 100 scenarios, 
𝑛𝑛𝑃𝑃 = 180 time periods of length 𝑙𝑙𝑃𝑃 = 24 ℎ, 𝑛𝑛𝑅𝑅 = 24 replenishments, and the maximum 
service time is 𝑙𝑙𝑆𝑆 = 24 ℎ. Table 6 displays the size and execution times of every instance 
in the 3-layer SC problem. The size of the (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) and the execution time remain nearly 
linear w.r.t. the numbers of operations per layer 𝑘𝑘 for every instance, except for the last 
one, where the execution time explodes to nearly 30 hours. Nevertheless, taking into 
account that we are solving a mid- to long-term planning problem with a time horizon 
that comprise the whole life-cycle of a product (seasons to years), this model’s 
applicability does not seem to be compromised by the execution time – which is below 
2.5 hours for instances with no more than 18 operations per layer and reaches even 30 
hours for larger instances.  

𝒌𝒌 |𝓝𝓝| |𝓐𝓐| # binary 
variables 

# continuous  
variables # of constraints Execution  

time 
𝟑𝟑  9  18  1,836  5,127  12,360  76 𝑠𝑠 
𝟔𝟔  18  72  7,308  13,890  39,228  532 𝑠𝑠 
𝟏𝟏𝟏𝟏  36  288  29,160  42,324  136,488  2,806 𝑠𝑠 
𝟏𝟏𝟏𝟏  54  648  65,556  85,302  291,780  8,414 𝑠𝑠 
𝟐𝟐𝟐𝟐  72  1,152  116,496  142,824  505,104  108,762 𝑠𝑠 

Table 6: Sizes and execution times of 3-layer SC instances. 
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4. Case study: Introducing additive manufacturing technology into the toy 

industry 

Let us consider the SCND problem of a toy company that supplies collections of figurines 
from several soccer teams. Figure 3 (a) represents the current manufacturing process that 
assembles two modules for each figurine: a common body and some differentiated parts 
(head and extremities).  

(a) Current setup 

 

(b) Alternative investing in A (c) Alternative investing in B 

  

Figure 3: Current and alternative setups: toy industry 

The fabrication of the modules is outsourced while the assembly, serigraphy and 
distribution operations are performed using the company’s own resources. Model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) 
is used in this study to assess the convenience of additive manufacturing introduced into 
the current SC configuration by means of two different kinds of 3D Printers: printer A is 
a single colour 3D printer FDM-FFF (Fused Deposition Modelling – Fused Filament 
Fabrication AM printer); printer B is a multi-colour 3D printer MJP-CJP (Multi Jet 
Printing – Colour Jet Printing AM printer), see ASTM (2005), Balletti et al. (2017) and 
Lee et al. (2017). Figure 3 displays the portfolio of available technologies: the current 
injection setup (Figure 3 (a)); and the two available alternatives based on additive 
printing. Alternative A uses FDM-FFF printers to substitute the injection and assembly 
operations (Figure 3 (b)), while alternative B uses MJP-CJP printers to replace the 
injection, assembly and serigraphy operations (Figure 3 (c)). An additional investment 
decision concerns the number of printers to deploy in cases where any AM technologies 
are being used. In this case study, we consider a 3-figurine collection. 

The supply chain graph associated with the test case is shown in Figure 4. Operations  𝐼𝐼𝑝𝑝𝐷𝐷, 
𝐴𝐴𝑝𝑝, 𝑆𝑆𝑝𝑝 and 𝐷𝐷𝑝𝑝, 𝑝𝑝 = 1, … ,3 correspond to a set of operations that are different for every 
item 𝑝𝑝. This is in contrast to operations 𝐼𝐼𝐶𝐶 ,𝑃𝑃×𝑛𝑛

𝐴𝐴  and 𝑃𝑃×𝑛𝑛
𝐵𝐵 , which are common to all items. 

In addition, we use 𝑃𝑃×𝑛𝑛
𝐴𝐴  and 𝑃𝑃×𝑛𝑛

𝐵𝐵  to describe parallel operations comprising, respectively, 
𝑛𝑛 AM printers of type A and B. In this case study, we consider an investment of up to 31 
AM machines of each type (up to 1 + 2 + 4 + 8 + 16 machines of types A and B among 
𝑃𝑃×1
𝐴𝐴 , 𝑃𝑃×2

𝐴𝐴 , 𝑃𝑃×4
𝐴𝐴 , 𝑃𝑃×8

𝐴𝐴  and 𝑃𝑃×16
𝐴𝐴 , and 𝑃𝑃×1

𝐵𝐵 , 𝑃𝑃×2
𝐵𝐵 , 𝑃𝑃×4

𝐵𝐵 ,𝑃𝑃×8
𝐵𝐵  and 𝑃𝑃×16

𝐵𝐵 ). 

Injection 
common 
module 

Injection 
diff. 

module 

Assembly 
modules to 
figurines 

Serigraphy 
figurines 

Delivering 
figurines 

Outsourced Factory 

3D Print 
FDM-FFF  

Serigraphy 
figurines 

Delivering 
figurines 

Factory 

3D Print 
MJP-CJP 

Delivering 
figurines 

Factory 
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Operations 

Current setup Alternative A 

𝑰𝑰𝑪𝑪 Injection operation of common module 
𝑷𝑷×𝒏𝒏
𝑨𝑨  AM operation with 𝑛𝑛 printers type A 

𝑰𝑰𝒑𝒑𝑫𝑫 Injection operation of module 𝑝𝑝 = 1,2,3 

𝑨𝑨𝒑𝒑 Assembly operation of item 𝑝𝑝 = 1,2,3 Alternative B 

𝑺𝑺𝒑𝒑 Serigraphy operation of item 𝑝𝑝 = 1,2,3 
𝑷𝑷×𝒏𝒏
𝑩𝑩  AM operation with 𝑛𝑛 printers type B 

𝑫𝑫𝒑𝒑 Delivery operation of item 𝑝𝑝 = 1,2,3 

Figure 4: Graph of toy industry 
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Production costs and lead times 

𝓐𝓐 𝒄𝒄𝒊𝒊𝒊𝒊 
(€/𝒖𝒖) 

𝒂𝒂𝒊𝒊𝒊𝒊 
(𝒉𝒉/𝒖𝒖) 

𝒃𝒃𝒊𝒊𝒊𝒊 
(𝒉𝒉) 

𝒆𝒆𝒊𝒊𝒊𝒊 
(€) 

𝐼𝐼𝐶𝐶 → 𝐴𝐴𝑝𝑝 0.1 0 120 5 
𝐼𝐼𝑝𝑝𝐷𝐷 → 𝐴𝐴𝑝𝑝 0.1 0 120 5 
𝐴𝐴𝑝𝑝 → 𝑆𝑆𝑝𝑝 0.2 0.05 2 10 
𝑆𝑆𝑝𝑝 → 𝐷𝐷𝑝𝑝 0.05 0.02 4 20 
𝑃𝑃×1
𝐴𝐴 → 𝑆𝑆𝑝𝑝 0.5 0.3 0 0 

𝑃𝑃×2
𝐴𝐴 → 𝑆𝑆𝑝𝑝 0.5 0.15 0 0 

𝑃𝑃×4
𝐴𝐴 → 𝑆𝑆𝑝𝑝 0.5 0.075 0 0 

𝑃𝑃×8
𝐴𝐴 → 𝑆𝑆𝑝𝑝 0.5 0.0375 0 0 

𝑃𝑃×16
𝐴𝐴 → 𝑆𝑆𝑝𝑝 0.5 0.01875 0 0 
𝑃𝑃×1
𝐵𝐵 → 𝐷𝐷𝑝𝑝 0.7 0.5 0 0 

𝑃𝑃×2
𝐵𝐵 → 𝐷𝐷𝑝𝑝 0.7 0.25 0 0 

𝑃𝑃×4
𝐵𝐵 → 𝐷𝐷𝑝𝑝 0.7 0.125 0 0 

𝑃𝑃×8
𝐵𝐵 → 𝐷𝐷𝑝𝑝 0.7 0.0625 0 0 

𝑃𝑃×16
𝐵𝐵 → 𝐷𝐷𝑝𝑝 0.7 0.04375 0 0 

 

 

Setup costs 

𝓝𝓝 𝒛𝒛𝒊𝒊 
(€) 

𝒇𝒇𝒊𝒊 
(€) 

𝐼𝐼𝐶𝐶  5,000 1,000 
𝐼𝐼𝑝𝑝𝐷𝐷 5,000 1,000 
𝐴𝐴𝑝𝑝 7,000 2,000 
𝑆𝑆𝑝𝑝 10,000 1,000 
𝐷𝐷𝑝𝑝 15,000 1,000 
𝑃𝑃×1
𝐴𝐴  100 4,000 

𝑃𝑃×2
𝐴𝐴  100 8,000 

𝑃𝑃×4
𝐴𝐴  100 16,000 

𝑃𝑃×8
𝐴𝐴  100 32,000 

𝑃𝑃×16
𝐴𝐴  100 64,000 
𝑃𝑃×1
𝐵𝐵  100 60,000 

𝑃𝑃×2
𝐵𝐵  100 120,000 

𝑃𝑃×4
𝐵𝐵  100 240,000 

𝑃𝑃×8
𝐵𝐵  100 480,000 

𝑃𝑃×16
𝐵𝐵  100 960,000  CODP inventory  parameters, base 

operations 
𝓝𝓝𝑩𝑩 𝒒𝒒𝒊𝒊𝑩𝑩 

(𝒖𝒖) 
𝒉𝒉𝒊𝒊𝑩𝑩 

(€/𝒖𝒖 ⋅ 𝒕𝒕) 
𝒈𝒈𝒊𝒊𝑩𝑩 

(€/𝒖𝒖) 
𝐼𝐼𝐶𝐶  60,000 0.0005 0.1 
𝐼𝐼𝑝𝑝𝐷𝐷 60,000 0.0005 0.1 
𝑆𝑆𝑝𝑝 60,000 0.005 1 
𝐷𝐷𝑝𝑝 40,000 0.007 1.4 
𝑃𝑃×𝑛𝑛
𝐴𝐴  90,000 0.00005 0.01 

𝑃𝑃×𝑛𝑛
𝐵𝐵  90,000 0.00005 0.01 

 
 Bill of materials 

𝓐𝓐𝑨𝑨 𝒓𝒓𝒊𝒊𝒊𝒊 
𝐼𝐼𝐶𝐶 → 𝐴𝐴𝑝𝑝 1 
𝐼𝐼𝑝𝑝𝐷𝐷 → 𝐴𝐴𝑝𝑝 1 

 

 CODP inventory 
parameters, assembly 

operations 

𝓐𝓐𝑨𝑨 𝒒𝒒𝒊𝒊𝒊𝒊𝑨𝑨  
(𝒖𝒖) 

𝒉𝒉𝒋𝒋𝑨𝑨 
(€/𝒖𝒖 ⋅ 𝒕𝒕) 

𝒈𝒈𝒋𝒋𝑨𝑨 
(€/𝒖𝒖) 

𝐼𝐼𝐶𝐶 → 𝐴𝐴𝑝𝑝 60,000 0.002 0.4 
𝐼𝐼𝑝𝑝𝐷𝐷 → 𝐴𝐴𝑝𝑝 60,000 0.002 0.4 

 
 
 

Sales & Stock-out 

𝓝𝓝𝑫𝑫 𝒑𝒑𝒊𝒊 
(€/𝒖𝒖) 

𝒐𝒐𝒊𝒊 
(€/𝒖𝒖) 

𝐷𝐷𝑝𝑝 5 1 

Table 7: Toy industry dataset. 

Table 7 summarizes the supply chain parameters of the operations and arcs of the supply 
chain graph. Note that the parameters of operations 𝑃𝑃×2

𝐴𝐴 , 𝑃𝑃×4
𝐴𝐴 , 𝑃𝑃×8

𝐴𝐴  and 𝑃𝑃×16
𝐴𝐴  are based on 

the parameters of 𝑃𝑃×1
𝐴𝐴 , with the fixed setup cost being 𝑓𝑓(×𝑛𝑛)

𝐴𝐴 = 𝑛𝑛 ⋅ 𝑓𝑓𝑃𝑃×1
𝐴𝐴 , and the unit lead 

time 𝑎𝑎𝑃𝑃×𝑛𝑛
𝐴𝐴 = 𝑎𝑎𝑃𝑃×1

𝐴𝐴 /𝑛𝑛. We study a time horizon of six months discretized into 𝑛𝑛𝑃𝑃 = 180 
time periods of 𝑙𝑙𝑃𝑃 = 24 hours, with a maximum service time of 𝑙𝑙𝑆𝑆 = 12 ℎ and 𝑛𝑛𝑅𝑅 = 24 
replenishments. We assume that the joint demand of all figurines follows a multivariate 
Gaussian distribution with mean 𝜇𝜇, standard deviation 𝜎𝜎, and correlation matrix 𝜌𝜌 

𝜇𝜇 = �
90,000
54,000
27,000

� 𝜎𝜎 = �
63,000
37,800
18,900

� 𝜌𝜌 = �
1 0.3 −0.1

0.3 1 0.1
−0.1 0.1 1

�. 

We have randomly generated 100 scenarios of 𝑑𝑑𝑠𝑠 ∼ 𝒢𝒢(𝜇𝜇,𝜎𝜎,𝜌𝜌), each containing the 

number of customer orders for each final operation, i.e., 𝑑𝑑𝑠𝑠 = �𝑑𝑑𝑗𝑗𝑗𝑗�, 𝑗𝑗 ∈ 𝒩𝒩𝐷𝐷 and the 

same probability of 𝜋𝜋𝑠𝑠 = 0.01. 
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4.1. Case study solution 

The instance of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) associated with this case study of 100 scenarios contains: 
4,288 binary variables (88 for the first stage and 42 for every scenario at the second stage); 
12,368 continuous variables (68 for the first stage and 123 for every scenario in the second 
stage); and 23,696 linear constraints (96 for the first stage and 236 for every scenario in 
the second stage). The execution wall-clock time for the case study was 29 seconds. The 
optimal solution gains an expected total benefit of 443,064 € and executes the processes 
illustrated in Figure 5. The operations (nodes) in Figure 5 with dimmed dashed lines are 
discarded, while the operations with thin solid lines are executed. Among the latter, the 
operations with thick solid lines are CODPs. Regarding production flows (arcs), the solid 
arrows show the speculative production flows that provide the inventories for the four 
CODPs, while the dashed arrows denote postponement production flows from the CODPs 
to the markets. The salient features of this solution are: 

• Regarding the selection of the best technologies, the optimal solution is a hybrid 
policy for figurines 1 and 2 combining the current supply chain setup (injection, 
assembly and serigraphy) with a AM facility using 16 printers of type A to fulfil 
the demand. However, the optimal policy for figurine 3 is to use exclusively AM 
printers of type A. Moreover, AM printers of type B are fully discarded. 

• Regarding the choice between speculation/postponement strategies, the model 
(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) also finds that the optimal degree of postponement for every process is a 
non-trivial combination of speculative and postponed production, specifically by 
optimally positioning four different CODPs: the delivery operations 𝐷𝐷1 and 𝐷𝐷2 
for, respectively, figurines 1 and 2; the serigraphy operation 𝑆𝑆1 for figurine 1; and 
the facility with 16 AM printers, 𝑃𝑃×16

𝐴𝐴 . 

Figure 5 shows that the optimal speculative production policy for furnishing the four 
CODP inventories includes three speculative processes based on injection (SP2, 3 and 4) 
and two based on AM (SP1 and 5): 

• The CODP inventory for 𝑆𝑆1 is provided simultaneously by the speculative 
production of AM process SP1 and the injection process SP2 (11,790 𝑢𝑢. and 
46,400 𝑢𝑢., respectively).  

• The CODP inventories for 𝐷𝐷1 and 𝐷𝐷2 are replenished completely by injection 
processes SP3 and SP4 (40,000 units each). 

• Finally, SP5 denotes that the CODP inventory for the AM facility 𝑃𝑃×16
𝐴𝐴  stores raw 

material that can produce 81,450 units for feeding the serigraphy operations 𝑆𝑆1,2,3 
in postponement, once the demand is known. 

• The optimal production policy in postponement includes six postponed processes 
that push production from the four CODPs to the markets for the three figurines, 
after demand is known:  
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Speculative Processes (SP)  

and total production 
Postponed Processes (PP) 

and total expected production  
SP1: 𝑃𝑃×16

𝐴𝐴 − 𝑺𝑺𝟏𝟏 11,790 𝑢𝑢.  PP1:  𝑷𝑷×𝟏𝟏𝟏𝟏
𝑨𝑨 − 𝑆𝑆1 − 𝐷𝐷1 2,982 𝑢𝑢. 

SP2: 𝐼𝐼
𝐶𝐶

𝐼𝐼1𝐷𝐷
� − 𝐴𝐴1 − 𝑺𝑺𝟏𝟏 46,400 𝑢𝑢. PP2: 𝑺𝑺𝟏𝟏 − 𝐷𝐷1 35,121 𝑢𝑢.  

SP3: 𝐼𝐼
𝐶𝐶

𝐼𝐼1𝐷𝐷
� − 𝐴𝐴1 − 𝑆𝑆1 − 𝑫𝑫𝟏𝟏 40,000 𝑢𝑢.  PP3: 𝑫𝑫𝟏𝟏 34,647 𝑢𝑢. 

SP4: 𝐼𝐼
𝐶𝐶

𝐼𝐼2𝐷𝐷
� − 𝐴𝐴2 − 𝑆𝑆2 − 𝑫𝑫𝟐𝟐 40,000 𝑢𝑢. PP4: 𝑷𝑷×𝟏𝟏𝟏𝟏

𝑨𝑨 − 𝑆𝑆2 − 𝐷𝐷2 15,758 𝑢𝑢. 

SP5: 𝑷𝑷×𝟏𝟏𝟏𝟏
𝑨𝑨  81,450 𝑢𝑢. PP5: 𝑫𝑫𝟐𝟐 33,510 𝑢𝑢. 

  PP6: 𝑷𝑷×𝟏𝟏𝟏𝟏
𝑨𝑨 − 𝑆𝑆3 − 𝐷𝐷3 26,485 𝑢𝑢. 

Figure 5: Optimal solution for toy industry. 

• Demand for figurine 1 is supplied from production flows starting at the CODP  
inventories for 𝑃𝑃×16

𝐴𝐴 , 𝑆𝑆1, 𝐷𝐷1 by means of three different processes: PP1, PP2 and 
PP3.  

• Demand for figurine 2 is supplied from the postponed production starting at the  
CODP inventory of the AM facility 𝑃𝑃×16

𝐴𝐴  and from the finished figurines released 
from the CODP inventory at the delivering facility 𝐷𝐷2 by means of processes PP4 
and PP5. 

• Finally, the complete demand for figurine 3 is fulfilled with the postponed 
production of PP6, which begins at AM facility 𝑃𝑃×16

𝐴𝐴 . 

Note also that some arcs, such as 𝑆𝑆1 → 𝐷𝐷1, 𝑃𝑃×16
𝐴𝐴 → 𝑆𝑆1 and 𝑆𝑆2 → 𝐷𝐷2, handle production 

both in speculation and postponement. 

Figure 6 provides us with deeper managerial insight into the optimal operation of the SC 
by helping us analyse the relationship between the demand level and the optimal 
postponed production strategy. The horizontal axis of the graph for each figurine 
corresponds to the scenarios, sorted by increasing value of the demand. For every 
scenario, the black line represents the demand, and the vertical bars in different shades of 
grey correspond to the production quantities for the postponed processes PP1 to PP6, as 
indicated in the figure. 

𝑫𝑫𝟐𝟐 
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𝐵𝐵  𝑃𝑃×8
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𝐴𝐴  𝑃𝑃×8
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𝑃𝑃×16
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The three graphs in Figure 6 identify the optimal supply policy rules for the three 
products, depending on the demand level: 

• For Figurine 1, PP1 remains always active and will provide up to 40,000 𝑢𝑢.; if 
demand exceeds 40,000 𝑢𝑢., production begins in the serigraphy operation through 
PP2; if demand is above 91,190 𝑢𝑢., AM printing also begins through PP3. Any 
demand level greater than 105,318 𝑢𝑢. is beyond the capacity of the SC and is lost, 
generating an expected stock-out of 15,946 units (17% of the expected demand). 

• For figurine 2, PP5 is always active and releases the finished figurines stored at 
delivering facility 𝐷𝐷2; while PP4 must begin whenever the demand  exceeds 
40,000 𝑢𝑢. in order to provide additional figurines by means of AM printing. 
Orders cannot be serviced if the demand is greater than 77,161 units, generating 
an expected stock-out of 3,986 units (7% of the expected demand). 

• For figurine 3, process PP6 will supply solely the demand by means of production 
at the AM facility, up to 37,161 𝑢𝑢. Orders above that threshold are lost, generating 
an expected stock-out of 1,668 units (6% of the expected demand). 

4.2. Sensitivity analyses 

In this section, we study the optimal solution’s sensitivity to changes in the costs 
associated with the CODP inventories: stock-out costs 𝑜𝑜𝑖𝑖, holding inventory costs ℎ𝐴𝐴,𝐵𝐵, 
and discarding inventory costs 𝑔𝑔𝐴𝐴,𝐵𝐵. To this end, we have compared the balance between 
the total production of the injection and printing processes for a series of runs where the 
initial values of the parameters 𝑜𝑜𝑖𝑖, ℎ𝐴𝐴,𝐵𝐵 and 𝑔𝑔𝐴𝐴,𝐵𝐵 in Table 7 have been multiplied by a 
factor of 2, 4, 6 and 8. According to Figure 7  it appears that the increase in stock-out cost 
has no significant effect on the SC’s optimal design and operation. Indeed, Figure 7 a) 
shows that the total production of the injection process remains constant at 130,157 units 
while total printed production increases slightly from 52,470 to 58,230 units. What is 
more, the optimal solution maintains the same supply chain design as in Figure 5 for all 
multiplying factors, with the exception of the AM facility, which increases the number of 
AM machines from 16 to 25. In contrast, Figure 7 b) and c) show that the increase in 
holding and discarding inventory costs induces a clear reduction in total production by 
substituting injection production with AM printing, a technology that may help reduce 
inventory levels by increasing production in postponement. The results in Figure 7 a) 
show that the solution is almost insensitive to the stock-out costs 𝑜𝑜𝑖𝑖; that is, the stock-out 
level is not significantly reduced when stock-out cost increases. To better understand this, 
we have limited the stock-out level with additional constraints in model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) by 
imposing an upper-bound to the allowed stock-out, up to a certain fraction 𝛼𝛼 of the 
demand of each scenario. The solution with 𝛼𝛼 = 40% results in a negative total profit 
(losses) of −57,052 € due to the cost of deploying 14 AM printers of type A plus 10 AM 
printers of type B, which are needed to reduce the stock-out level. Similarly, in order for 
the stock-out to not be greater than a fraction 𝛼𝛼 = 50% of the demand, it is necessary to 
increase the number of AM printing facilities from the original 16 AM printers of type A 
to 20, plus 4 additional AM printers of type B. With the associated increase in production 
costs, the total profit is 245,686 €, which is 45% less than that of the original solution. 
Therefore, in order to reduce the stock-out, additional AM devices must be deployed. The 
reduction in stock-out occurs at the expense of the considerable losses arising from the 
high setup and production costs of the AM printers. 
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Postponement processes of figurine 1 

PP1: triggered  if 𝑑𝑑1 > 91,190 𝑢𝑢. 

 

PP2: triggered if 𝑑𝑑1 > 40,000 𝑢𝑢.

 

PP3: always active  

 

 

Postponement processes of figurine 2 

PP4: triggered if 𝑑𝑑2 > 40,000 𝑢𝑢. 

 

PP5: always active

 

 

Postponement processes of figurine 3 

PP6: always active 

 

Figure 6: second stage processes by scenario. 
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𝑨𝑨  

𝑫𝑫𝟐𝟐 

𝐷𝐷3 𝑆𝑆3 𝑷𝑷𝑨𝑨 

a) b) c) 

105,318 𝑢𝑢. 

77,161 𝑢𝑢. 

37,161 𝑢𝑢. 

Stock-out: 17% 

Stock-out: 7% 

Stock-out: 6% 

91,190 𝑢𝑢. 

40,000 𝑢𝑢. 

40,000 𝑢𝑢. 
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Figure 7: Production processes in terms of inventory costs 

 

4.3. The Value of the Stochastic Solution 

In order to evaluate the advantage of explicitly considering stochasticity in our model, we 
find the value of the stochastic solution VSS. First we find the expected value 𝐸𝐸𝐸𝐸, which 
is the objective function at the optimal solution of the (𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆) problem under a single 
scenario defined with the expected values of all the stochastic parameters. The actual 
profit of the 𝐸𝐸𝐸𝐸 solution is the so-called expectation of the expected value 𝐸𝐸𝐸𝐸𝐸𝐸. It 
corresponds to the expected profit of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) when the values of the first stage 
variables are set to the values of the optimal solution for problem 𝐸𝐸𝐸𝐸 and the second stage 
variables are optimized. In our case  𝐸𝐸𝐸𝐸𝐸𝐸 = 383,355 €. Finally, the so-called value of 
the stochastic solution 𝑉𝑉𝑉𝑉𝑉𝑉 is defined as the difference between the solution of the 
stochastic (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) problem (known as the recourse problem 𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅 = 443,064 €) and 
the value of 𝐸𝐸𝐸𝐸𝐸𝐸. This turns out to be 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑅𝑅𝑅𝑅 − 𝐸𝐸𝐸𝐸𝐸𝐸 = 59,709 €, which is 13% of 
the value for the original solution. As is well known, this figure represents the increase in 
the total profit using the stochastic programming formulation with respect to the 
deterministic formulation. Figure 8 illustrates the optimal design and the supply chain 
flows for speculation and postponement in the 𝐸𝐸𝐸𝐸𝐸𝐸 solution. In comparing Figure 5 with 
Figure 8, we can see that the solution of the respective stochastic and deterministic 
formulations, 𝑅𝑅𝑅𝑅 and 𝐸𝐸𝐸𝐸𝐸𝐸, are completely different. In the deterministic solution, the 
associated supply chain discards the AM printing facilities and deploys a single CODP 
by figurine: the delivery operation of figurine 1, and the serigraphy operations of figurines 
2 and 3. Indeed, the solution of the 𝐸𝐸𝐸𝐸𝐸𝐸 shows that much more stock-out is generated 
than in the 𝑅𝑅𝑅𝑅 solution: as the 𝐸𝐸𝐸𝐸 takes into account the expected demand, the 𝐸𝐸𝐸𝐸 optimal 
design does not foresee 𝐸𝐸𝐸𝐸𝐸𝐸 scenarios with higher demand, as even some of the most 
extreme scenarios are infeasible. This made it necessary to relax some capacity 
constraints in order to solve the 𝐸𝐸𝐸𝐸𝐸𝐸 problem.  
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Speculative Processes (SP)  

and total production 
Postponed Processes (PP) 

and total expected production  
SP1:  𝐼𝐼

𝐶𝐶

𝐼𝐼1𝐷𝐷
� − 𝐴𝐴1 − 𝑆𝑆1 − 𝑫𝑫𝟏𝟏 90,000 𝑢𝑢.  PP1: 𝑫𝑫𝟏𝟏 65,886 𝑢𝑢. 

SP2: 𝐼𝐼
𝐶𝐶

𝐼𝐼2𝐷𝐷
� − 𝐴𝐴2 − 𝑺𝑺𝟐𝟐 53,982 𝑢𝑢. PP2: 𝑺𝑺𝟐𝟐 − 𝐷𝐷2 40,805 𝑢𝑢.  

SP3: 𝐼𝐼
𝐶𝐶

𝐼𝐼3𝐷𝐷
� − 𝐴𝐴3 − 𝑺𝑺𝟑𝟑 27,000 𝑢𝑢. PP3: 𝑺𝑺𝟑𝟑 − 𝐷𝐷3 22,143 𝑢𝑢. 

Figure 8: Supply chain design associated with the 𝐸𝐸𝐸𝐸𝐸𝐸 solution. 

5. Conclusions 

This work proposes a new TSSP model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) for supply network design problems. In 
addition to it including the most relevant characteristics of the SCND models published 
so far, it can choose the optimal speculation/postponement strategy. Indeed, the main 
novelty of model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) is its capability to find not only the optimal operations/facilities 
for deployment and the production flow but also the optimal number and positioning of 
the CODPs for the selected operations and the associated inventory levels. Our work 
provides a new approach to treating the classical speculation/postponement 
categorization of SCND problems. In this classical approach: (i) there is a single CODP 
for every manufacturing process; (ii) its positioning is pre-set; and (iii) every operation 
in the process is run either in speculation or in postponement. In contrast, model (𝑂𝑂𝑂𝑂𝐶𝐶𝑆𝑆): 
(i) can find the optimal positioning of the CODP and therefore solve one of the current 
major challenges to SCND postponement models, according to several authors; (ii) 
generalizes the classical SC concept of CODP and allows for several CODPs within the 
optimal SCND; and (iii) it permits both speculative and postponed production in the same 
operation. All the contributions of the model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) to the SCND postponement model 
are illustrated and discussed in a detailed analysis of the optimal solution to a real problem 
in the toy industry, for which the model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) was used to analyse the implemented 
alternative of additive manufacturing technologies. The case study for the toy industry is 
an example of how the model (OSCS) can contribute to real life applications to production 
systems and logistics. This is particularly true when the aim is to analyse the design of a 
responsive SC that takes advantage of new flexible manufacturing technologies, such as 
AM printing. In this case, we show that additive manufacturing is a valid technology for 
complementing and improving the efficiency of classical injection processes, but not for 
completely substituting it. Besides the case study presented in this research, the model 
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(OSCS) has proved to be useful analysing the introduction of AM printing in other 
industries, such as for spare car parts or retail crafts companies.  

5.1. Managerial insights 

The analyses of the case study using the model (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) unveils the degree of complexity 
that can be achieved with the optimal SCND using postponement, and they allow decision 
makers to gain several useful insights: 

• When deciding to substitute an old technology with a new one (in this case, AM 
printing injection), the choice is not as simple as completely removing the old 
technology in favour of the new one or completely rejecting the new technology. 
Instead, as our case study shows, the optimal solution generally involves a 
complex combination of several technologies that is specific to every product. 
Therefore, managers must be aware that simple decisions can lead to inefficient 
SC designs. 

• The same can be observed in the dichotomy between speculation/postponement. 
Our numerical results show that optimal policies for SC design may imply a 
sophisticated positioning of several CODPs throughout the same manufacturing 
process, and that this positioning is specific to every single product. Therefore, 
practitioners must avoid simple decisions involving complete speculation of 
postponement strategies, because such extreme strategies will lead to suboptimal 
designs that are rife with managerial inefficiencies. 

• Depending on the deployment and operations costs, it could be preferable to incur 
relatively high stock-outs (as high as 17% of the total expected demand for some 
products in our test case) than to invest in increasing production capacities – 
although this may not be obvious from directly comparing the income/cost that is 
involved. 

• Our computational sensitivity analysis clearly shows that high holding and 
discarding inventory costs promote the penetration of fast response technologies 
(such as AM printing) at the expense of less responsive manufacturing processes 
(such as injection). This increases the importance of postponement over 
speculative production. 

• Finally, stochastic formulation is a must for SCND problems: our VSS analysis 
proved that the expected total profit of the stochastic formulation does increase 
by 13% over the deterministic formulation. Even worse, the solution to the 
deterministic formulation is biased towards sub-optimal speculative-dominant 
strategies, rejecting new technologies such as AM printing even though that 
technology is actually central to the optimal postponement strategies in SC design. 

5.2. Further developments 

We identify three major fields for future improvements to our work. Regarding the 
characteristics of the SCND model, there are some features that could be included in the 
current model, such as perishability, some risk-aversion measures, and closed-loop 
chains. Concerning the modelling of the stochasticity, the next natural step would be to 
extend the two-stage stochastic programming problem to a multistage stochastic 
programming problem with as many stages as time periods 𝑛𝑛𝑃𝑃 in the formulation. Finally, 
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with regard to optimization and the abovementioned issues associated with the model’s 
scalability, decomposition techniques could be applied for dealing with large-scale 
instances, see Li and Grossmann, (2018) and Alonso-Ayuso et al. (2003). 
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