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Figure 6: Time evolution of the pressure and void fraction distribution for fG0=0.5%. 
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Figure 7: Profiles of the pressure and void fraction at points of z=0, 4.5mm for fG0=0.5%. 
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Abstract. A number of multiscale space–time techniques have been developed recently
by the Team for Advanced Flow Simulation and Modeling (T�AFSM) for fluid–structure
interaction computations. As part of that, we have introduced a space–time version of
the residual-based variational multiscale method. It has been designed in the context of
the Deforming-Spatial-Domain/Stabilized Space–Time formulation, which was developed
earlier by the T�AFSM for computation of flow problems with moving boundaries and
interfaces. We describe this multiscale space–time technique, and present results from
test computations.

1 INTRODUCTION

A number of multiscale space–time techniques [1, 2, 3, 4, 5] have been developed
recently by the Team for Advanced Flow Simulation and Modeling (T�AFSM) for fluid–
structure interaction (FSI) computations. These have been mostly multiscale techniques
based on effective ways of dealing with the different spatial or temporal scales that may
be involved in the fluid and structure parts of the problem. They have been tested in con-
junction with the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formu-
lation [6, 7] and stabilized space–time FSI (SSTFSI) technique [8], both developed by the
T�AFSM. In addition, recently we have introduced a multiscale space–time technique [9]
that is based on representing the different flow scales involved in the fluid mechanics part,
so that we could have a good turbulence model for high Reynolds number flows. This
multiscale technique, which we call “DSD/SST-VMST”, is the space–time version of the
residual-based variational multiscale method [10, 11, 12, 13, 14, 15]. The technique has
also been successfully tested in 3D computations [16]. This paper is a short version of the
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journal paper [9]. We describe the DSD/SST-VMST technique, and present results from
test computations.

2 GOVERNING EQUATIONS AND SPACE–TIME FORMULATION OF
INCOMPRESSIBLE FLOWS

2.1 Governing equations

Let Ωt ⊂ IRnsd be the spatial domain with boundary Γt at time t ∈ (0, T ). The
subscript t indicates the time-dependence of the domain. The Navier–Stokes equations of
incompressible flows are written on Ωt and ∀t ∈ (0, T ) as

ρ

(

∂u

∂t
+∇∇∇ · (uu) − f

)

−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the external force, respectively. The stress
tensor σσσ is defined as σσσ(p,u) = −pI + 2µεεε(u), with εεε(u) =

(

(∇∇∇u) + (∇∇∇u)T
)

/2. Here p is
the pressure, I is the identity tensor, µ = ρν is the viscosity, ν is the kinematic viscosity,
and εεε(u) is the strain-rate tensor. The essential and natural boundary conditions Eq. (1)
are represented as u = g on (Γt)g and n · σσσ = h on (Γt)h, where (Γt)g and (Γt)h are
complementary subsets of the boundary Γt, n is the unit normal vector, and g and h are
given functions. A divergence-free velocity field u0(x) is specified as the initial condition.

2.2 Space–time variational formulation

A space–time variational formulation of incompressible flows (see for example [6, 17,
18, 7]) is written over a sequence of N space–time slabs Qn, where Qn is the slice of the
space–time domain between the time levels tn and tn+1, and Pn is the lateral boundary
of Qn. We denote the trial and test functions spaces for the velocity and pressure as
u ∈ Su, p ∈ Sp, w ∈ Vu and q ∈ Vp. In deriving the variational formulation, we start with
multiplying Eqs. (1) and (2) with the corresponding test functions, integrating them over
Qn, and setting it equal to zero:

∫

Qn

w · ρ
(

∂u

∂t
+∇∇∇ · (uu) − f

)

dQ −
∫

Qn

w · ∇∇∇ · σσσdQ +

∫

Qn

q∇∇∇ · udQ = 0. (3)

We integrate by parts all the terms except for the external force and enforce the essential
(i.e. strong Dirichlet) and natural boundary conditions over (Pn)g and (Pn)h, the comple-
mentary subsets of Pn. That gives us the following variational formulation: find u ∈ Su
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and p ∈ Sp such that ∀ w ∈ Vu and ∀ q ∈ Vp

∫

Ωn+1

w−
n+1 · ρu−

n+1dΩ −
∫

Ωn

w+
n · ρu−

n dΩ −
∫

Qn

∂w

∂t
· ρudQ −

∫

(Pn)h

(w · ρu) (n · v) dP

+

∫

(Pn)h

(w · ρu) (n · u) dP −
∫

Qn

∇∇∇w : ρuudQ −
∫

Qn

w · ρfdQ −
∫

(Pn)h

w · hdP

+

∫

Qn

εεε(w) : σσσdQ +

∫

Pn

qn · udP −
∫

Qn

∇∇∇q · udQ = 0, (4)

where the notation (·)−n and (·)+
n denotes the values at tn as approached from below and

above, and v = dx
dt

is the velocity of the spatial-domain boundary.

2.3 Scale separation

In the variational multiscale techniques [10, 11, 12, 13] the “coarse-scale” and “fine-
scale” are separated as follows:

Su = Su ⊕ S ′
u, Sp = Sp ⊕ S ′

p, Vu = Vu ⊕ V ′
u, Vp = Vp ⊕ V ′

p. (5)

The coarse-scale part of Eq. (4) is written as follows:
∫

Ωn+1

w−
n+1 · ρu−

n+1dΩ −
∫

Ωn

w+
n · ρu−

n dΩ −
∫

Qn

∂w

∂t
· ρudQ −

∫

(Pn)h

(w · ρu) (n · v) dP

+

∫

(Pn)h

(w · ρu) (n · u) dP −
∫

Qn

∇∇∇w : ρuudQ −
∫

Qn

w · ρfdQ −
∫

(Pn)h

w · hdP

+

∫

Qn

εεε(w) : σσσdQ +

∫

Pn

qn · udP −
∫

Qn

∇∇∇q · udQ = 0. (6)

From [10, 11, 12, 13], the fine-scale solutions are represented by the strong-form resid-
uals of the coarse-scale:

u′ = −τM

ρ
rM (u, p) , (7)

p′ = −ρνCrC (u) , (8)

where

rM (u, p) = ρ

(

∂u

∂t
+ u · ∇∇∇u − f

)

+∇∇∇p − 2∇∇∇ · µεεε(u), (9)

rC (u) = ∇∇∇ · u, (10)

and τM and νC are stabilization parameters measured in units of time and kinematic
viscosity, respectively.

Remark 1 More on the fine-scale approximation in conjunction with the Green’s operator
can be found in [10, 11, 12, 13].
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2.4 DSD/SST formulation

In the DSD/SST method [6, 17, 18, 7, 8], the space–time finite element interpolation
functions are continuous within a space–time slab, but discontinuous from one space–time
slab to another. The finite-dimensional trial and test functions spaces for the velocity and
pressure are denoted as uh ∈ (Sh

u

)

n
, ph ∈ (Sh

p

)

n
, wh ∈ (Vh

u

)

n
and qh ∈ (Vh

p

)

n
.

2.4.1 Fine-scale discretization

The fine-scale solutions are evaluated over each element from Eqs. (7) and (8) with
uh ∈ (Sh

u

)

n
and ph ∈ (Sh

p

)

n
:

u′ = −τM

ρ
rM

(

uh, ph
)

, (11)

p′ = −ρνCrC

(

uh
)

. (12)

Remark 2 When the polynomial order of the shape functions is less than two, the last
term in Eq. (9) vanishes.

There are various ways of defining τM and νC. For τM we use the definition

τM = τSUPG, (13)

where τSUPG comes from [7], specifically the definition as given by Eqs. (107)–(109) in [7],
which can also be found as the definition given by Eqs. (7)–(9) in [8]. For νC, we the
consider νLSIC definition given in [8]:

νC = νLSIC = τSUPG ‖uh − vh‖2
, (14)

where vh is the mesh velocity, and the definition from [14]:

νC =

(

τM

nsd
∑

i=1

Gii

)−1

, (15)

where

Gij =

nsd
∑

k=1

∂ξk

∂xi

∂ξk

∂xj

, (16)

and ξξξ is the vector of element coordinates. In our computations we evaluate the stabi-
lization parameters at ξξξ = 0.

Remark 3 The τSUGN12 component of the τSUPG definition given by Eqs. (107)–(109) in [7]
is the space–time version of the original definition in [19]. These definitions sense, in ad-
dition to the element geometry, the order of the interpolation functions. Some τ definitions
do that and some do not. The definitions in Sections 3.3.1 and 3.3.2 of [20], for example,
are among those that do not.
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Remark 4 Remark 3 is applicable also when the interpolation functions are NURBS
functions. This includes classical p-refinement and also k-refinement, except when used
in conjunction with periodic B-splines.

Remark 5 In meshes made of NURBS, for quadrilateral (or hexahedral) elements that
degenerate to triangles (or tetrahedra), we calculate τSUGN12, τSUGN1 when applicable, and
“hRGN” embedded in the τSUGN3 definition in a special way. Instead of letting the sum of the
magnitudes involved in the expression degenerate, we first add together the basis functions
associated with the coalescing control points, and then apply the expression using the
modified basis functions. In other words, we do not degenerate the expression, but instead
apply the expression to the degenerated basis functions. This special way is applicable also
in the context of finite element meshes.

2.4.2 Coarse-scale discretization

Spatially discretized version of Eq. (6) is written as follows: find uh ∈ (Sh
u

)

n
and

ph ∈ (Sh
p

)

n
such that ∀ wh ∈ (Vh

u

)

n
and ∀ qh ∈ (Vh

p

)

n
:

∫

Ωn+1

(wh)−n+1 · ρ
(

(uh)−n+1 + (u′)−n+1

)

dΩ −
∫

Ωn

(wh)+
n · ρ (

(uh)−n + (u′)−n
)

dΩ

−
∫

Qn

∂wh

∂t
· ρ(uh + u′)dQ +

∫

(Pn)h

(

wh · ρ (

uh + u′)) (

nh · (uh + u′ − vh)
)

dP

−
∫

Qn

∇∇∇wh : ρ(uh + u′)(uh + u′)dQ −
∫

Qn

wh · ρfhdQ −
∫

(Pn)h

wh · hhdP

+

∫

Qn

εεε(wh) :
(

σσσ(ph,uh) + σσσ′) dQ +

∫

Pn

qhnh · (uh + u′)dP

−
∫

Qn

∇∇∇qh · (uh + u′)dQ = 0. (17)

Here σσσ′ ≡ σσσ − σσσh is introduced temporarily. We set the fine-scale solution to zero at the
spatial and temporal boundaries, use the assumption εεε(wh) : 2µ∇∇∇u′ = 0 (see [12, 21]),
and obtain the following form:

∫

Ωn+1

(wh)−n+1 · ρ(uh)−n+1dΩ −
∫

Ωn

(wh)+
n · ρ(uh)−n dΩ −

∫

Qn

∂wh

∂t
· ρ(uh + u′)dQ

+

∫

(Pn)h

(

wh · ρuh
) (

nh · (uh − vh)
)

dP −
∫

Qn

∇∇∇wh : ρ(uh + u′)(uh + u′)dQ

−
∫

Qn

wh · ρfhdQ −
∫

(Pn)h

wh · hhdP +

∫

Qn

εεε(wh) : σσσ(ph + p′,uh)dQ

+

∫

Pn

qhnh · uhdP −
∫

Qn

∇∇∇qh · (uh + u′)dQ = 0. (18)
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2.4.3 Comparison with the original DSD/SST formulation

We can further rearrange the terms in the formulation given by Eq. (18) to com-
pare it with the original DSD/SST formulation (with the advection term retained in the
conservation-law form) and obtain the following:

∫

Qn

wh · ρ
(

∂uh

∂t
+∇∇∇ · (uhuh) − fh

)

dQ +

∫

Qn

εεε(wh) : σσσ(ph,uh)dQ −
∫

(Pn)h

wh · hhdP

+

∫

Qn

qh · ∇∇∇uhdQ +

∫

Ωn

(wh)+
n · ρ (

(uh)+
n − (uh)−n

)

dΩ

−
(nel)n
∑

e=1

∫

Qe
n

[

ρ

(

∂wh

∂t
+ uh · ∇∇∇wh

)

+∇∇∇qh

]

· u′dQ −
(nel)n
∑

e=1

∫

Qe
n

∇∇∇ · whp′dQ

−
(nel)n
∑

e=1

∫

Qe
n

ρu′ · (∇∇∇wh
)

uhdQ −
(nel)n
∑

e=1

∫

Qe
n

ρu′ · (∇∇∇wh
)

u′dQ = 0. (19)

Here each Qn is decomposed into elements Qe
n, where e = 1, 2, . . . , (nel)n. The subscript

n used with nel is for the general case where the number of space–time elements may
change from one space–time slab to another.

Remark 6 The last two terms correspond to the Reynolds stress and cross-stress, respec-
tively. We call this formulation DSD/SST-VMST (i.e. the version with the variational
multiscale turbulence model).

Remark 7 If we exclude the last two terms, the formulation is the same as the original
DSD/SST formulation (with the advection term retained in the conservation-law form)
under the conditions that τPSPG = τSUPG and νC = νLSIC. The 6th and 7th terms are the
SUPG/PSPG and LSIC (least-squares on incompressibility constraint) stabilization terms,
respectively. We name this DSD/SST-SUPS (i.e. the version with the SUPG/PSPG
stabilization).

Remark 8 One of the main differences between the ALE and DSD/SST forms of the
variational multiscale method is that the DSD/SST formulation retains the fine-scale time
derivative term ∂u′

∂t

∣

∣

ξξξ. Dropping this term is called the “quasi-static” assumption (see [15]

for the terminology). This is the same as the WTSE option in the DSD/SST formulation
(see Remark 2 of [8]). We believe that this makes a significant difference, especially when
the polynomial orders in space or time are higher (see Section 6 in [9]).

3 TEST COMPUTATIONS WITH FLOW PAST AN AIRFOIL

The airfoil is NACA 64-618 and the geometry is approximated with quadratic B-splines.
The computational domain is (−5, 10)×(−5, 5). The leading edge is located at (0, 0).
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The angle of attack is 0◦. The length and velocity scales are the chord length and inflow
velocity, respectively. The Reynolds number is 6.0×106. We compute the problem with
the DSD/SST-DP-SUPS and DSD/SST-DP-VMST techniques, using the νLSIC definition
given by Eq. (14) and neglecting the 2∇∇∇·µεεε(u) term in Eq. (9). With both techniques, we
use two different meshes, one made of quadratic B-splines and one made of linear finite
elements. First we manually generate a “frame” control mesh made of quadratic B-splines,
which has 8 patches and is shown in Figure 1. Then, by a knot-insertion process that

Figure 1: Frame control mesh made of quadratic B-splines. The mesh has 8 patches.

involves little manual intervention, we generate a refined control mesh made of quadratic
B-splines, which has 1,681 control points and 1,400 elements. To generate the mesh made
of linear finite elements, we start with a quadrilateral mesh generated by interpolating
the NURBS geometry at each knot intersection. We subdivide each quadrilateral element
into two triangles. The resulting mesh has 1,450 nodes and 2,780 elements. Both meshes
are shown in Figure 2. The boundary conditions consist of a uniform velocity at the inflow
boundary, zero stress at the outflow boundary, no-slip conditions on the airfoil, and slip
conditions at the top and bottom boundaries. The time-step size is 0.01. The number
of nonlinear iterations per time step is 3, with 30, 60 and 270 GMRES iterations for the
first, second and third nonlinear iterations, respectively. Figures 3–6 show the pressure
coefficient and velocity magnitude for the four test computations. Table 1 shows the
drag and lift coefficients for the four test computations, together with the measured values
from Figure 2a in [22].

4 CONCLUDING REMARKS

A number of multiscale space–time techniques have been developed recently by the
T�AFSM for FSI computations, mostly multiscale techniques based on effective ways of
dealing with the different spatial or temporal scales that may be involved in the fluid
and structure parts of the problem. In addition, recently we have introduced a multiscale
space–time technique that is based on representing the different flow scales involved in the
fluid mechanics part, thus giving us a good turbulence model for high Reynolds number
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Figure 2: Left: Refined control mesh made of quadratic B-splines (1,681 control points and 1,400 ele-
ments). Right: Mesh made of linear finite elements (1,450 nodes and 2,780 elements).

CD CL

SU
P

S Linear Finite Elements 0.0012 0.34

Quadratic B-Splines 0.0044 0.41

V
M

ST Linear Finite Elements 0.0010 0.45

Quadratic B-Splines 0.0032 0.52

Experimental Data From [22] 0.0050 0.45

Table 1: Drag and lift coefficients, CD and CL, for the computations and the measured values from [22].

flows. This multiscale technique is the space–time version of the variational multiscale
method. We described the technique and presented results from test computations. These
computations, and also the 3D computations [16] carried out using the technique, show
that the technique is working well even with meshes that would normally be suitable for
Reynolds-averaged Navier–Stokes (RANS) type computations. This justifies our expecta-
tion that the technique can also be used with meshes that would normally be suitable for a
detached-eddy simulation (DES) type computation [23]. The same observation was made
in [24] for the residual-based variational multiscale method using ALE and NURBS [15].
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Figure 3: Computed with the DSD/SST-DP-SUPS technique and the mesh made of linear finite elements.
Pressure coefficient (left) and velocity magnitude (right).
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