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Abstract

The field of sports analytics has been growing a lot in recent years. Sports like
baseball and basketball were among the first to embrace it, but football has also
taken big steps in that direction. One of the causes is that data analysis allows for

the development of new advanced metrics which can provide a competitive advantage.

This project presents a new version of one of these advanced metrics applied to
football, the Expected Goals. The metric estimates how likely it is for a shot to end
up becoming a goal. We present two different approaches for building the predictors:
one that uses player qualitative information and another player agnostic. We then
reflect on the importance of the calibration of the probabilities yielded by the models,
as well as their possible interpretations, and present some of the applications that

can be used to evaluate team and player performance.

We also show the impact each feature has on the models to make their outputs
interpretable and to demonstrate that the addition of the player qualitative informa-

tion is important for the performance of the model.






Glossary

Event Data
Log-like data of football games. It captures information about on-ball events which

includes the location and the players involved.

Tracking Data

Positional data of football games. It captures frames consisting of the location of the
22 players and the ball. The frame rate can vary depending on the data provider but
it is usually at 25Hz.

OPTA
One of the major football event data providers. The data used in this project came

in great part from this provider.

Expected Goals (xG)

It estimates the probabilities of scoring a goal given that a shot is produced.

Expected Possession Value (EPV)
It estimates the value of the possession at a certain moment. It corresponds to the
expectation of ending up scoring a goal in that possession or being scored against in

the next one.

Open play
It embraces all those situations during a football game where the origin of the attack
has not been from a game resuming events such as a corner, free-kick, penalty or

throw-in.
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1 Introduction

This project corresponds to a Master’s Thesis (TFM) of the Master in Innovation and
Research in Informatics (MIRI) on the specialization of Data Science, at the Facultat
d’Informatica de Catalunya (FIB) of the Universitat Politécnica de Catalunya (UPC).

This is a project developed in the UPC with the collaboration of F.C. Barcelona, a
multi-sports club considered one of the biggest football clubs in the world, established

in the city of Barcelona.

In this project, we will present a new version of an already in use football met-
ric called expected goals. The rest of the introduction is structured as follows. We
will start by talking about the topic of sports analytics in general and introducing
some of the most important advances there have been. We will do the same with
football analytics in particular, and we will mention the different kinds of data

available in the market. We will finally list the motivations and goals of the project.

1.1 Contextualisation

The F.C. Barcelona’s Sports Analytics department collaboration with this project
has been key to the development of this project, especially the support provided by

the football coaches and experts.

1.1.1 Sports Analytics

The football data analytics community is relatively young, especially compared to
other sports. Baseball was the first sport to have mainstream use of data, as ex-
plained by Michael Lewis in his book Moneyball: The Art of Winning an Unfair
Game [Lewis, 2004], and its subsequent popular film. Michael narrates how in the
early 2000s, the Oakland Athletics were capable of being competitive against teams
with a much higher budget and to get into the playoffs two years in a row, by taking

advantage of analytically proven statistics which were underrated by the old-school



baseball community.

The baseball world has been surrounded by statistics almost since the sport was
invented. Figure 1 shows a box score of a match played between two American teams
in 1876. The very nature of the sport allows for this kind of statistical summaries to
be elaborated easily, since every time the game is resumed, it is done from the same
static situation — the pitcher throws the ball and the batter tries to hit it.

Figure 1: Baseball box score from a match between Boston and Athletic from 1876
[Blog, 2020|

But having access to all these stats is of very little use if you do not know how to
correctly interpret them. And that is what the front office of the Oakland A’s did to
gain an advantage against their competitors at a lower cost. They proved analytically
that metrics such as on-base percentage and slugging percentage were much better
indicators for offensive success than the metrics that were being used by most teams,
and they used them to find undervalued players in the market. Since then, most
teams in the MLB have incorporated data analytics to help to scout new talent and

making in-game decisions.

Another example of the impact of data analytics in sports is basketball. It started
a few years later than in baseball, but the progression has been significant. To the
point that nowadays [Goldsberry, 2019], almost all the teams in the NBA have a data
analytics department. One of the biggest contributions has been what is popularly

know as the three-point revolution. Data helped them realise that shooting from



NBA Shooting Percentage by Distance, 2017-18 NBA Points Per Shot Attempt by Distance, 2017-18
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(a) Percentage of shots converted to goals (b) Same as (a) multiplied by the points
by distance obtained at that distance

Figure 2: Basketball shooting data of the NBA’s 17/18 season. Data from NBA
Savant. Source: The Ringer [Kram, 2019|

mid-range wasn’t worth it, given that shooting from a little farther away could get

them 50% more points.

This phenomenon is clearly illustrated in Figure 2. Plot (a) shows how making a shot
from right next to the basket will most likely get you more points, but from 3 feet
upwards the chances are more or less similar until you get to more than 30 feet. If we
now take a look at plot (b), we will see how many points we would expect to get at
each distance, given the probability of scoring and the number of points awarded for
a goal at that distance. It is clear to see that three-point shots have a much higher

value of expected points than two-point shots from mid-range.

This realisation led to many teams changing their attacking strategies and changed
the way the game was being played from that moment onward. One of the main
promoters of this change and the basketball data analytics is Daryl Morey, the General
Manager of the Houston Rockets. Ever since he joined the team, he has tried to
build a team and develop strategies which allowed to take advantage of this discovery.
Morey now hosts one of the most popular data analytics conferences (the MIT Sloan

Sports Conference).

Figure 3 shows how the metric 3PAr — 3-Point Attempts ratio — has evolved in the
recent years of the NBA. This metric indicates which percentage of the total shots of
a team in a game have been three-pointers. The plot illustrates how many games

per season a team got a 3PAr greater than or equal to 50% for the last 40 seasons.
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Figure 3: Evolution of the number of games with more three-point shot attempts
than two-point in the NBA. Source: The Ringer [Kram, 2019]

We observe that there are games of this kind only in the last 15 years and that in
the last 5 years the number of games has increased a lot. The plot also allows us to
depict that Morey’s team has contributed with as many games to the total as the
rest of the NBA teams combined.

1.1.2 Football Analytics

Football is still far behind these two sports on the matters of sports analytics ad-
vancements, but every year more and more teams are starting to invest money and
resources to it. There have already been important developments though, such as the
creation of the metric Expected Goals (xG)[Lucey et al., 2014|. The xG of a shot
corresponds to the probability that this shot becomes a goal. So it allows us to have
a qualitative measure of danger to the opponent’s goal, and not only a quantitative

one — as would be for example the number of shots.

Hopefully, it will just be a matter of time before football catches up with sports
analytics leaders such as baseball and basketball. A further discussion on the most im-
portant football analytics developments published until now can be found in Chapter
2.



Football Data

One of the reasons why football is behind basketball and baseball on sports analytics
is because it is much harder to get access to data. Although some data providers are
starting to release public datasets [Statsbomb, 2020| [Sports, 2020b| to try to draw
more people into working on this field, it is still expensive to get access to large and

complete datasets. Currently, there are two main types of football data.

The first kind is known as event data. This type of data consists of detailed infor-
mation about events that happen around the ball during a match, such as passes,
shots or fouls. So it can be seen as a log of all the on-ball actions that happen
during a game. The information registered of each event normally involves the
location where it happened, the players involved, the instant in the game when it
happened, and sometimes other event-specific attributes. Event data provider com-

panies normally manually tag these events using the TV broadcast video of the games.

The second kind of data is what is known as positional or tracking data. The
tracking data includes the XY locations of all the players on the pitch and the ball,
during the whole game. An example of the visual representation of an instant of
tracking data can be seen in Figure 4. The positional data can be recorded using
different techniques, the most precise one being the use of GPS technology. The
drawback of this way of obtaining the data is that all players must wear a device
capable of tracking their locations, which must be compatible with a system of sensors
installed on the stadium where the match is being played. And to get the locations of
the ball, it needs a chip embedded inside. Since there are still no agreements between
teams and championships to standardise all these procedures and systems, the GPS

approach remains unfeasible.

The most popular method to obtain tracking data for the moment is optical tracking.
It consists of obtaining the positional data directly from the video feed, by making use
of computer vision technologies. It can be extracted from any kind of the available
match video types: panoramic video, tactical video and TV broadcast video. The first
kind is rarely used since it is quite uncommon to record games using static cameras
that allow capturing the whole pitch. The tactical video is normally used by football
analysts to analyse previous games, so it is fairly popular, and therefore available. In
this kind of video, the image captures a wider view space than the TV broadcast.

This is helpful for both analysts and optical tracking algorithms since it allows them



Figure 4: Tracking data for an instance of a game plotted over a 2D football pitch.
Each coloured circle marks the location of a player, with the number
being the players’ squad number and the colour denoting the team they
belong to. In this frame, the blue team’s goalkeeper has the ball. Source:
Metrica Sports [Sports, 2020a)

to see the locations of players not so close to the ball, which may not be possible
with the TV broadcast video because it tends to be zoomed in to where the ball is.
Another drawback of the TV broadcast is that replays may sometimes cause some
small parts of the game to be missed, but the main advantage is that is the most

widely available kind of video by far.

As it happens with the dilemma of which kind of positional data to use, or which type
of video to extract optical tracking from, when deciding between using tracking or
event data, the answer comes to trade between availability and quality. Since getting
event data is normally much easier than getting positional data when positional data
is available, it is normally accompanied by the correspondent event data as well. This
combination is currently the most complete data mix you can get from a game, at
least from a tactical data analysis perspective. But event data by itself can also give
very valuable information, and it is much cheaper to get. So if you need a very big

dataset and have limited resources, it may be the only achievable option.



1.2 Motivation

Developing new advanced football metrics is key to measure team and player perfor-
mance. Basic metrics have been used in the past in football to try to explain what
happened in a match, or at least part of the performance of a team or a player. Some
of these metrics, such as percentage of time in possession of the ball, number of shots
or distance covered by the players are still being used, especially by the sports media.
Part of them can be misleading when looked at individually. Take for example the
number of shots. You could wrongly assume that a team with a much higher amount
of shots would dominate offensively an opponent with fewer shots. If most of the
shots from the first team were from afar whereas the opponents’ shots were clear goal

chances, the odds of scoring more goals would probably be with the opponent.

The development of more advanced metrics can help give more precise insights
into the data. Following up on the previous example of the number of shots, if we
took a look at the xG values of the shots taken by both teams, we would easily see

that the first team was much less likely to have scored a goal than the second one.

That is why this project aims to develop an xG model, to provide with a more
precise and accurate way to assess on the own team, opponent and player perfor-
mance analysis. In addition to that, we want to include into the model information
related to the quality of the shooting player, to have a more accurate prediction on
team performance, as well as being able to have a more tailored performance metric

to each player.

1.3 Goals

The main goals of this project that will have to be fulfilled are the following:

e Build a basic xG model
Building a first model without the shooter information will help to have a

baseline to compare the final model to.

e Build a second xG model with qualitative shooter information
This second model will be the one we will use from now on to compute the xG

of every shot.

e Calibrate the models



One of the most important steps will be to check that both models are calibrated.

If they are not, their outputs will not be interpretable as probabilities.

1.4 Master thesis outline
After this introduction, the rest of the document will be structured as follows:

e Chapter 2: Related Work dives deep into the main studies and developments
made on the field of sports analytics, as well as the existing publications on the

building of xG models.

e Chapter 3: Methodology describes the process followed starting with the

data acquisition and finishing with the evaluation of the models.

e Chapter 4: Experiments presents the results obtained from the models and

shows the applications they can have.

e Chapter 5: Conclusions checks whether the initial goals have been achieved.

It also summarises the findings uncovered during the realisation of the project.



2 Related Work

In this section, we will go through the previous work done on sports analytics. We
will centre our attention on football analytics, but we will mention research on other

sports when they were the source of inspiration for their football counterpart.

In football, as in many other sports, there are three main fields of research: sports

science, medical and tactical. We will focus on the latter.

In this project, we want to estimate the probability of a shot attempt becoming a
goal. That can also be seen as a way of valuing the player’s efforts on that action
since it will give us a sense of the difficulty of the shot and we will be able to compare
it with the final result — goal or no goal. So when looking for previous research on
tactical football analytics, we will pay extra attention to studies focused on action

evaluation.

2.1 Valuing Player Actions

The first stat we will talk about is called plus-minus (+/-). It was first introduced in
ice hockey and basketball, but it has recently been adapted to football as well. An
advanced version of the statistic was presented by [Sill, 2010] on basketball whereas
the football version was published by |[Kharrat et al., 2017|. The + /- metric consists
of measuring the contribution a player has on the team’s success. A simpler approach
is computing the difference in points/goals scored by both teams while the player was
playing. That can work on basketball given the elevated number of points per game
and allowed substitutions. The work in [Sill, 2010] takes into account who the player
played with and against. The author performs a regression on game snippets with no
substitutions to produce a rating for each player given the outcome of the snippets,

the outcome of the game and the participation of each player on which snippets.

The authors in [Kharrat et al., 2017] defend that the previous approach cannot



be applied in football given the low scoring nature of the game. They present an
alternative which uses the expected goals of the teams’ shots as a measure of offensive
production instead of just the goals, and an estimation of expected points to determine
the outcome of the game. They also apply a regression afterwards to determine the

players’ ratings.

The two publications referred to until now talk about measuring the value added by a
player in a game, but just considering the performance of the team on their presence.
[Power et al., 2017| go one step further and evaluate the players’ performance by
analysing how they perform the most repeated event in a football game: the pass.
They do so by using supervised learning approaches on tracking data to predict both
the risk and the reward of a pass. The risk responds to the difficulty of the pass, or
how likely it is to become unsuccessful, whereas the reward represents the probability
of a shot occurring within 10 seconds after the pass. The authors proceed to present
several advanced metrics based on these two concepts such as Passing Plus/Minus —
which evaluates the success of a players passes taking their risk into account — and
to define the concepts of Difficult Pass and Dangerous Pass based on the distribution

of the passes’ risk and reward correspondingly.

A new framework which allows for the evaluation of players’ actions was presented by
[Cervone et al., 2014] on basketball. Their idea was to assign a value to every moment
of the possession of a team based on the number of points they are expected to score
and called it Ezpected Possession Value (EPV). The authors created a possession
model which allowed them to estimate the probability that the player with the ball
made each one of his available decisions, as well as the resulting EPV after making
each one of them. That is key for player performance analysis, given that it allows for
the evaluation of player decision-making, and see how often they choose the option
which increases EPV the most. Following this line of thought, the authors also present
the EPV-Added metric, which quantifies the value added to the possession every time
a player acts with the ball. The metric is computed by simply adding the difference
between the EPV at the end of an action and the EPV at the start of it for every

action carried out.
|[Fernandez et al., 2019] recently published a similar approach to [Cervone et al., 2014|

but applied to football. The authors also present an expected possession value frame-

work but with the necessary adjustments to account for the differences between both

10



sports. That includes the looser notions of possession, the possibility of passing to
open spaces — as with through balls — or the lack of time limit for possessions. Their
model uses spatiotemporal tracking data to produce a prediction of the outcome
of the possession encoded as a real number in the [-1, 1] range. Values close to 1
represent a high probability of a goal by the attacking team, whereas values closer to
-1 indicate a likelihood of an immediate possession change and a posterior goal by the
opponent. As in [Cervone et al., 2014|, they predict the likelihood of every possible
decision a player can make while in possession of the ball, and then the expected
value of the possession after executing that action. They decompose the possible
actions a player can perform into keep driving the ball, passing to each one of his
teammates and shooting. Note that the model that predicts the expected value after
a shot corresponds to an expected goals model. For each possible action, they also
account for the danger the opponent can produce if they recover the possession of
the ball, weighted by the likelihood of them doing so. Just like [Cervone et al., 2014],
they use the framework to value player actions with the EPV-Added stat.

More applications derived from the framework in [Fernandez et al., 2019] are pre-
sented by [Llana et al., 2020]. They use both the predicted increase in the EPV for
potential passes and the actual increase of passes to measure the quality of offensive
and defensive off-ball actions. They present the concept of off-ball advantage to
identify moments where players of the attacking team who do not have the ball find
themselves in a location where they can receive the ball and increase significantly
the value of the possession. The authors also introduce an advanced method to
assign a responsibility area to each player of the defending team to identify the
commonly used concept in football of "passes behind the back". They use the danger
of these passes determined by their EPV-Added to assign defensive responsibility
qualitatively. Finally, they introduce a new metric called Effective Value Added which
distributes the offensive and defensive production among the different players using
the EPV-Added values of their actions.

[Link et al., 2016] take a different approach to the concept of possession value and
describe it as Dangerousity. Therefore, the player’s Action Value is determined by the
degree in which he made a situation more dangerous after he no longer possesses the
ball. The level of Dangerousity is determined using four factors: the Zone or location
of the ball, the degree of Ball Control, the level of Pressure put on the player by the
defenders and the Density of opponent players in front of the goal. Although they

11



use tracking data to compute most of these factors, the criteria used to determine
their actual values was established by football experts after analysing a large number

of match situations, instead of using automated learning methods.

Other EPV-like approaches built using event data have been introduced by

[Gyarmati and Stanojevic, 2016], as well as [Decroos et al., 2017|, which was ex-
tended by [Decroos et al., 2019] and finally by [Bransen and Van Haaren, 2020]. In
|Gyarmati and Stanojevic, 2016|, they focus on the value-added by the players’ passes
— as in [Power et al., 2017] — by partitioning the field into squares and assigning
them values. They determine the value-added of each pass by calculating the dif-
ference between the values of the destination zone of the pass and its origin zone.
The authors of [Decroos et al., 2017| determine player action values by assigning a
percentage of the rating of an attacking phase among its actions using an exponential-
decay-based weight system starting by the end of the phase. They determine the
rating for an attacking phase as the proportion of similar phases that end in a
goal. In [Decroos et al., 2019] they present a second approach which predicts, us-
ing supervised learning methods, how likely is a certain player action in a certain
game state to produce a goal in the following 10 or fewer actions. And similar to
[Cervone et al., 2014] and |Fernandez et al., 2019|, the action value is determined
by the change in this predicted probability before and after the action. Finally,
they evaluate this change on sequences of actions between different pairs players
in [Bransen and Van Haaren, 2020] to assess the chemistry between members of the

same team.

2.2 Academic Work on Expected Goals

Expected goals became one of the most popular metrics a few years back in the
football analytics community. And so induced a lot of football fans and data enthusi-
asts to share their knowledge and researches, especially on xG, using less rigorous
publication sites such as web blogs. Although some of these blogs have published

valuable investigations, we will focus on the academic literature.

To our best knowledge, the first academic publication on expected goals was done
by [Lucey et al., 2014]. They build a single logistic regression model to predict the
likelihood of a shot based on features which they group into location, context, de-

fending and attacking. Most of the used features are extracted using a mix of event

12



and tracking data, such as the defender proximity and formation or the attacking

team movement relative to the opposition.

A similar solution to the problem is presented by [Eggels et al., 2016]. They also use
event and tracking data to define the model’s features, but they try four different
classifiers — three tree-based classifiers and logistic regression — instead of going just
with logistic regression. The authors additionally include as features the shooter’s
and goalkeeper’s quality obtained from EA Sports FIFA video-game publicly available

database.

The published work most related to the case study of this project is probably
found in [Kharrat et al., 2017]. That is so given that they are also limited to the use
of event data to build the xG model. But as mentioned before, the ultimate goal in
[Kharrat et al., 2017] is different from the ones of this project, considering that the
authors pretend to use the model as a target for a plus-minus player rating. That
is why they decided not to include the shooting player’s ability as a model feature,
provided that it would induce a feedback loop. Instead of building just one generic
model to predict the outcome of any shot, they build four specialized models to use
depending on the kind of shot: free kick, header, open play or penalty. They try on
different classifiers for each kind of shot and select the one that yields better results
for each one of them. The model features are more basic than in [Lucey et al., 2014]
and [Eggels et al., 2016] due to the lack of positional data. They are mainly derived
from the location of the shot and the goalkeeping skills obtained from the FIFA

video-game as well.

Two additional papers should be mentioned when conferring about this topic since
they present different approaches not seen in the previously mentioned work. The
first one was presented by |Rathke, 2017] and shows a simplistic solution which
consists of dividing the shots into 8 studied partitions on the field and defining their
probability as the percentage of scored shots on their zone. Finally, the research
from [Spearman, 2018| takes a step further on the paradigm of the expected goal to
evaluate off-ball chance creations as the positioning of players in scoring locations,

even if the ball is never delivered to them.
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3 Methodology

This section thoroughly describes the process followed during the development of the
project with the final goal of building two xG models able to predict the probability

of scoring a goal given a shot. It is structured as follows:

e Data Acquisition details where the data used for building the models came
from and what is its format and structure. Then explains how it will be stored

to perform data exploration and data enrichment.

e Data Preparation narrates the processes followed to get the data ready before

building the dataset, byways of formatting and enriching the data.

e Dataset explains the final considerations taken to produce the dataset that

will be used to train the models.
e Model Design formally defines the problem we want to solve.

e Model Implementation lists the classifiers and metrics used to build the

models.

e Model Results shows the results obtained from the classifiers and reflects on
them.

3.1 Data Acquisition

In the contextualisation section, we discussed the different types of data that are
currently available. Given the two different types of football data available, two
different generic kinds of models can be built. We can either use tracking data to
include features related to the position of the 22 players or use event data to take
advantage of its abundance. The models using tracking data will not have abundant
shots, given that this kind of data is harder to get. So for this project, we will choose
to work with event data. Table 1 shows the availability of event data at the moment

of the development of the project.

15



Games | Shots | Goals
Event Data | 4888 118211 | 12309

Table 1: Number of games, shots and goals available.

3.1.1 OPTA Data

OPTA Sports is one of the leading football event data provider companies in the
world. They cover over 1.000 leagues and competitions worldwide, and they provide
detailed tags. For this project we had access to the OPTA data of 6 different
competitions: Champions League (Europe), Bundesliga (Germany), Serie A (Italy),
La Liga Santander (Spain), La Liga SmartBank (Spain) and Copa del Rey (Spain).
This data corresponds to the seasons 2017/18, 2018/19 and the games of the 2019/20
played until March.

3.1.2 FIFA® video-game Data

Apart from the event data, we will need complementary qualitative information about
the players to build the second xG model. This information needs to be individualised
per player and to account for the player’s level of quality, especially for those traits

related to the shooting.

FIFA is a football video game, made by the company Electronic Arts (EA). They
have a complex system that rates each player ability, to set differences in the levels of
manageability of the players you can control in the game. They release a new version
of the game every year, so they keep the rates updated to the current performance
level of the player. Given that there is currently no provider that produces data at
the level of detail they require and for the number of teams and competitions they
present in the game, their rating system is based on the opinion of thousands of
volunteer coaches, scouts and football fans whose local knowledge helps avoid incon-
sistencies in the database and improve its accuracy|[Murphy, 2019]. All this data is

then overseen by a team in EA, who is responsible to build the player database from it.

This dataset is from a public source, as EA publishes all the player rating data
on their website [Sports, |. We have downloaded the dataset through a Kaggle project
[Leone, 2019] that scraped that website to obtain the player ratings from the games
FIFA 15 to FIFA 20. This dataset is structured in different CSV files, and on the
Data Preparation section, we will go through how we can integrate it with the OPTA
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data.

3.1.3 Preparation of the environment

The data comes structured as XML files. We will need to store this data into our
database in a structured manner to ease the processes of data exploration and data
enrichment. We have chosen to use a document-oriented database, in specific Mon-
goDB, due to the flexibility it allows on the structure of the data. There is still
no common standard to structure the event data supplied by the providers, so this

flexibility helps when integrating data with different structures.

The first step will be to store the XML structured data into our MongoDB database.
The OPTA data is accessed through different feeds, that provide different kinds of
information. For example, the feed F/0 contains data on competitions, teams and
players. We will create a new collection on our database for each of these entities
and store there the information provided by this feed. We will do the same with the
match information from the feed F01 and also with the event data from the feed F24.

The only significant change we will need to do on the structure of the data to
store it into our document-oriented database is the event data itself. On the XML,
some of the events have a list of qualifiers to enrich the information of the event.
The passes made with the head are an example. The mentioned list will contain an
element which will identify the pass as a header. We have seen fit to convert this
qualifier list into new boolean parameters in the database document which indicate
whether each qualifier appears in the event, or not. This new structure is more
intuitive and will yield faster access times as accessing a boolean field of a document

is faster than checking if a value is contained in a list field.

This new database allows us to have a data environment with easy access to explore

it and to modify it to improve and enrich the information it already contains.

3.2 Data Preparation

Once we had the raw data saved in our database, the following step was to explore it
and process it to have the data ready for building the dataset. We consulted football
experts from FC Barcelona to understand which contextual situations may improve

the chances of scoring a goal after a shot.
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3.2.1 Creation of new concepts

Football experts use dozens of concepts to analyse and describe the game. We decided
to base the algorithms that define these concepts on rules as well because it is the most
direct way to translate the experts’ knowledge into data. The experts also helped us
set those rules. Another advantage of choosing this approach is that knowing that the
foundations of the models are based on their way of thinking, will help the analysts

to better understand and interpret the results obtained.

Figure 5 presents the flow followed for the creation of each new concept on the
database. The diagram shows that it is an iterative flow, considering that some
complex concepts will be hard to define with rules at the first attempt. Note that the
underlined steps of the process indicate that those tasks are performed alongside a
football expert. We will start by a generic definition of the flow, and in section 3.2.2

we will see the specific procedure implemented to create the concept of an attack.

Definition No
Refinement
WV
Concept P ) ; Execution on ; Validation Execution for full
[ Definition Implsmentation Data Sample {with video)

Figure 5: Iterative flow of creation of new concepts. The underlined tasks are
performed along with a football analyst

The process starts with the first definition of the rules needed to identify the con-
cept in the data. Having two profiles with two different mindsets helps a lot when
translating the game concepts into rule-based algorithms. The football analyst brings
all the knowledge about the game and experience in all its aspects, whereas the
data analyst knows what can and can’t be extracted from the data and in which
ways. The first step normally starts with an initial definition by the football expert
of how they understand the concept and identify it when watching a game. Then
the data expert makes a first suggestion of how that could be translated to iden-

tify the concept in the data, and the discussion proceeds until a compromise is reached.
Once the initial definition of the concept is agreed upon, it is time for the sec-

ond step: the implementation of the algorithm capable of adding this new concept

to the database. The complexity of the implementation tends to be very related to
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the complexity of the concept definition. So for the first version, we try to look for
simpler approaches and make some adjustments later on if necessary. This will help

a lot with the interpretability of the decisions made by the algorithm.

The next step after the development of the implementation will be to test it out on a
sample of data. Trying the new code directly on all the matches in the database may
sometimes take a lot of time, or even provoke changes to the database difficult to
revert in case of an error in the implementation. So we will first try it on a subset
of games. If the new concept occurs often in a game, using one or two games will
probably be enough to cover all cases, whereas a less common concept will probably

need more.

When validating that the concepts identified by the algorithm are correct, the help of
the football analyst is needed again. The main tool the analysts and coaches use to
transmit their ideas and arguments is the video. So being able to link all the concepts
to video will be important since they will be the ones receiving our insights, as well as
the ones who will help us with the sport-related doubts we may have. The validation
will, therefore, be performed by checking that the fraction of the game’s video that
the algorithm has identified as the concept, actually corresponds to the concept,
according to the expert. In the example of the concept of an attack, we will have to
validate that both the start and the end of the attack are correctly identified and that
there were not any opponent attacks in the middle. This validation procedure will
allow us to identify false positives, and figure out which parts of the definition of the
concept need to be refined. If we consider that our definition is not generic enough
and may miss some cases — true negatives —, the football analyst will manually
identify the concepts in the games of the data sample and check them against the

ones automatically identified to see if there are missing examples.

If misidentifications are detected during the validation, the initial definition of the
concept is modified to include the necessary changes and consider the special cases
that were not considered. This step is also done with the collaboration of both
experts, to ensure that the new strategy is feasible and conceptually correct. The
changes are then applied to the implementation, and this process along with the
execution using the data sample and validation is repeated until all the examples of
the concept are correctly identified. The final step is to execute the new algorithm

for the games in the database.
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3.2.2 Contextualising the shots

The process of describing the context of the shots using data begins by creating very
basic concepts that will, later on, allow us to create more complex ones built upon
them. The concept of an attack or possession can serve as an example. A simple

schematic of the procedure can be observed in Figure 6.

Game Resuming
Events

*
Attacks }:|—D{ Attack Types ]
Possession P Ball Losses

[ Recovery Balls Changes

Game Stopping
Events

Figure 6: Flow for the attack creation. The events underlined are tagged by OPTA.

The most basic concept we will need to build the attack concept is the game resuming
event. This concept will group all the possible events that resume the game after
being stopped, such as goal kicks, throw-ins, or kick-offs among others. To do that
we will create a new instance of the concept on the pass or shot which came right
after the game was paused. Luckily, the passes and the events that pause the game

are provided by OPTA, so we won’t need to create them.

Another event tagged by OPTA is the ball recovery, which we will use together
with the game resuming event to create the concept of a possession change. This one
will be as simple as creating a possession change instance every time either a game
resume or a ball recovery happens. In cases such as fouls, where the team with the
possession before the foul keeps the possession afterwards, we will create two changes
— one to the team who committed the foul and the second one to the team who will
serve the free-kick — because it will indicate that the first attack has finished and a

new one will start afterwards.

Now that we have the concept of possession change we can define the ball losses since
we can identify every time a player lost the ball to an opponent — the opponent
recovered it — and when the player threw the ball off the pitch. The ball losses along
with the game resuming events will be enough to create the attack concept. The
game resuming events will always determine the start of a new attack, and the ball
losses the end of it. In case of a ball loss to an opponent, it will mark both the end

of an attack and the start of a new one.
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The process of the attack creation was not as straightforward as it may seem, because
of the special cases the football analysts set. For example, they considered that a
new attack could not start unless the team in possession had the ball fully controlled.
So when considering whether the previous attack had to end and start a new one, we
had to check first if the new team kept the ball for a certain amount of time or were

able to perform a successful pass or shot event.

The last part of the flow in Figure 6 shows that we use the attacks along with
other concepts to finally construct the attack types. These will be used to define
part of the context of the shots like for instance determining whether they belong
to a play after a corner kick, free-kick, throw-in, penalty, or just regular play. This
was not an easy task either, provided that the football experts consider that after
each one of these previously mentioned events, there can be a transition to regular
play inside the same attack. So establishing the changes between attack types was

necessary to correctly define the attack type a shot belonged to.

The final contextual information we added to the shots is the one related to the
previous pass that leads to the shot. OPTA adds certain information to passes like
tagging them as crosses or through balls. After a careful review with the football
analysts, we realised that some specific passes they considered as crosses were not
being marked as such, so we had to develop the cross concept to identify the missed
cases by OPTA.

All the contextual information of the shots was condensed into a single variable,
for we considered that all the categories were exclusive from each other, or at least
we wanted the model to consider them as such. The final list of categories is the

following;:

e Corner: Shot coming from a corner kick. As explained before, it can be either
a shot directly from the cross or from the derived play, but limited to until the

attack type changes back to regular play.
e Direct free-kick: Shot from a direct free-kick.

e Indirect free-kick: Shot coming from an indirect free-kick. As in corners, it

can be any shot until the attack type changes.
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e Outside penalty box: Any shot in regular play shot from outside the penalty

box.

e Without previous pass: Shot during regular play where the shooter started
the attack by recovering the ball.

e After rebound: Shot that happened right after a previous shot.

e Second play: Shot after an opponent touched the ball on a pass from a

teammate.

e Cross: Shot in regular play after a cross. Typically a cross is a pass from one
of the lanes on the last third of the field, to somewhere in the centre of the

penalty box.

e Through ball: Shot in regular place after a through ball. A through ball is a

vertical pass that overcomes the last line of opponent defenders.

e Back pass: Shot in regular place after a pass coming from near the end line

and going to a more backward and centred location.

e Pass from penalty box: Shot in regular play after a pass coming from inside

the penalty box.

e Pass to penalty box: Shot in regular play after a pass coming from outside

the penalty box.

e Drives to penalty box: Shot during regular play where the shooter is the
one who gets into the penalty box by driving the ball.

3.2.3 Integration with the FIFA® dataset

The next information needed by the dataset after the context is the player individual
information. As mentioned before, we will use public data from the FIFA video-game.
The goal of the integration is matching each one of the players who made a shot
in our database with data from OPTA with the corresponding player in the FIFA
database. OPTA and FIFA use different identifiers on their database, so we will need

to match them using player information available on both databases.

The most common way to identify players in real life is of course by their name.

Players rarely use their full name on their professional career, but most likely just
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their first name or last name, or sometimes a nickname that may or may not be related
to their real name. So both databases have several columns related to the player’s
name, but none that exactly matches the players in both databases. Our goal will be
to compute the string similarity between these name columns from both datasets to
determine whether they are referring to the same player or not. We found that the
measure that worked best for matching names was a string sequence similarity ratio
first presented in [Ratcliff and Metzener, 1988]. Its main idea is to find the longest
contiguous matching subsequence and then do the same thing recursively with the
pieces of the sequences to the left and right of the first one. The similarity of the
evaluated is then normalized by their length, so the metric becomes a ratio. That was
key for our problem, given that it did not penalize as many names of different lengths
— for example when one of the databases used the full name and the other just the last
name. Other metrics such as the Levenshtein distance [Levenshtein, 1966] were also
tested, which refers to the minimum number of character edits required to change one
sequence into the other. We had to invert it though provided that being a distance
it is a measure of dissimilarity instead of similarity. But it did not provide results
as good as the previously mentioned ratio. So from now on, when we speak about

string or name similarity, we will be referring to the string sequence similarity ratio.

Due to the huge amount of players in both databases, computing the similarity
between each possible pair will be very time costly. Furthermore, it will yield to
wrong matches, given that with so many players some of them will have the same

name. Therefore we will have to try a smarter approach.

Our first attempt was to group them by team and season before computing the
similarities. The FIFA dataset contains the attributes of each player for every season
they have played in one of the available competitions, so the only thing we were
missing was the team which the player played for that year. We scraped that infor-
mation from the original website [Sports, |, and matched the teams with the ones
from the OPTA database using similarity between their names — grouping them
by competition first. Only after computing the player name similarities between
the players of the same team and season, we realised that players sometimes change
teams mid-season, which was contemplated by OPTA but not FIFA. That caused for

all these players to be mismatched.

The approach we finally decided to use was to group the players by their date
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of birth. This information was also available on both databases, so that helped a
lot the process, plus it improved significantly the computation time of the similarity
between the players’ names. Hence for every player born on a certain date in one of
the databases, we calculated the similarity between the names of every player born
on the same date in the other database. To determine the best matches inside that

subgroup, we used an iterative process of selection as seen in Figure 7.

Yas

!

Compute the similarity Add the most similar
between all pairs in L pair in L to the result

Figure 7: Process followed to determine player matches between databases on a
subgroup of players.

Remaove from L the
pairs containing the
players in the selected
pair

This method worked better than a specific optimization algorithm to solve an assign-
ment problem such as the Hungarian Method, considering that most times the lists
of names to compare contained different amounts of items. This difference is mostly
caused by the fact that the FIFA database contains many more players that the shot
subset of the OPTA database. Such a difference would have sometimes caused the
optimization algorithm to add noise to the problem. After executing our algorithm,
more than 90% of the shooters in our database were correctly paired to their equal in
the FIFA dataset.

After a manual analysis of the remaining unpaired players, we discovered that some
of them were not correctly paired because their dates of birth were unequal on both
datasets. Most times the differences in the dates were of just one single digit, so we
assumed those were errors produced when either OPTA or FIFA collected their data.
To solve this, and bearing in mind that the number of remaining players to pair had
reduced considerably, we executed again the process in Figure 7, but this time on all

the remaining ones and not just those who shared their date of birth.

As mentioned before, making this iterative process on large lists of players induced
some matching errors. So this final execution required a more detailed revision of
the results, as well as a few manual corrections. The remaining unpaired players

on the OPTA dataset mainly consisted on either very young players who typically
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played in U21 teams but had played a few matches in the first team or players
from the third tier of Spanish football who played in the Copa del Rey competition.
These players were not contained in the FIFA database, so it was not possible to
access their ratings. We could have tried to interpolate them using maybe values
from players who played in similar competitions and similar roles, but given that

they were linked to very few shots in the dataset, we decided to just discard those shots.

The final variables we decided to keep from the FIFA dataset for each player are the

following ones:

e Overall: Mean of all the player ratings.

e Shooting: Weighted mean of all the player ratings related to the shooting
ability.

e Finishing: Rating from 0 to 100 of how accurate is the player shooting from

inside the penalty area using the foot.

e Long shots: Rating from 0 to 100 of how accurate is the player shooting from

outside the penalty area using the foot.

e Heading: Rating from 0 to 100 of how accurate is the player shooting using
the head.

e Weak foot: Rating from 1 to 5 of how good is the player, in general, using his

weak foot.

3.3 Dataset

The last step before starting to build the models will be to set up the dataset. We aim
to group a set of informative features and as independent as possible. To summarise,
the variables collected until now refer to the location of the shot, the context of the

play and the player’s abilities.

Instead of just using the location of the shot as XY coordinates, we will extract new
features that will be much richer. The most basic one will be the Euclidean distance
to the centre of the goal. A second one will be the angle between the line formed
by the shot location and the centre of the goal and the goal line. We assume that

the closer you are to the goal, the easier it is to score, but being in front of the goal
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will also increase your chances. Following this assumption, we will also add the angle
between the lines formed by the shot location and each one of the goalposts. Finally,
since we assume that it is equally likely to score from one lane or the other, we will
convert the Y location variable so that it is 1 on the middle of the field and 0 on
each sideline. We know that there are correlations between some of the produced
and original positional features, but we will keep all of them because some families of

classifiers benefit the additional information of non-linear relations.

The surrounding situation of a shot changes a lot depending on its preceding actions.
For instance, a headshot coming from a corner will generally be more difficult to
make given the higher density of people in the area than a header from a cross during
open play. Tracking data would make this kind of information accessible, but having
only event data it is much harder to account for it. Previous literature on this kind
of models with event data [Kharrat et al., 2017] considered necessary using different
classifiers for all these different situations. But that reduces the amount of available
data for each classifier. That is why we will just focus on the shots produced during
regular play — which is the most common type — and not consider the rest for the
moment, at least until enough data is collected for each type to produce reliable
classifiers. Regarding the rest of the regular play contextual categories, we will use

one-hot encoding to store them.

The player ratings contain information about the players’ abilities on specific kinds
of shots. So we will keep the overall and shooting features as they are, but we will
create a new one combining the other four. This new variable — we will call it player
ability — will have the player’s finishing rating on foot shots from inside the penalty
area, the player’s long shots rating for those from outside and the heading rating for
headshots. If the foot shots are performed with the player’s weak foot, the selected
rating will be weighted by the player’s weak foot rating — being a 5 the 100% of the
original rating and a 1 only its 20%. We do this transformation because we suppose
that the player’s ratings on other kinds of shots are irrelevant for a specific kind of

shot. Table 2 summarises all the variables included in the dataset.

Arguably, players recognize they should not shoot from very distant locations given
that their chances of scoring will be practically 0. That is why we have very few shots
on the first 2/3 of the field as well as close to the sidelines. But the models will need

to get somehow this knowledge the players have to avoid assuming that no one has
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Location-based Contextual Player-related
X position From outside box Foot shot
Y position centred | Without previous pass | Head shot
Goal distance After rebound Left foot shot
Goal angle Second play Right foot shot
Goal posts angle Cross Overall
Through ball Shooting
Back pass Player ability
Pass from inside box
Pass from outside box
Drives to box

Table 2: Variables used in the dataset divided into categories.

tried it before only because no one has ever thought of it. There are different ways to
deal with this problem. The first one we tried was to remove from the dataset those
goals scored from very distant locations, considering them to be outliers which were
affecting the learning process of the models. But given that there was still a lot of
missing data on those areas, some models still estimated high probabilities on shots
from certain locations. We finally decided to randomly generate a few failed shots on
those areas without data instead. The contextual variable for the shots was set to
be the outside of the penalty area — since it is the one which would correspond —
and we randomly produced the player ratings using the distribution of each variable.
This approach helped to lower the probabilities produced by the models on distant
regions, but we had to control the number of fake shots added so as not to increase

significantly more the already imbalance of the dataset.

The last step will be to standardize the data to ensure that the models do not
focus on certain variables just because of their range of values. We will do so by
transforming each feature’s values so that their mean is 0 and their standard deviation
is 1. The final size of the dataset will be of 87161 shots, of which 8083 are goals.

3.4 Model Design

Before explaining the procedures followed to build the models, we will first need to
formally describe the problem we are facing. We intend to learn a classifier able to
model a Bernoulli random variable X — goal or not goal — given different types of

information about the situation. This is best described by the following expression,
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Expected Goalsy = E[X|S, Cy, P, Ay = Shot]

where S; corresponds to the location of the player in possession of the ball at time
t, C to the contextual information also at time ¢, P to the information regarding the
player’s quality and A; the chosen action to be performed by the player at time ¢.
Given the Bernoulli nature of the variable X, the expected value expressed in the
formula, when properly calibrated, may be interpreted as the probability of X being
equal to one — or scoring a goal. It should be noted that this probability will only

correspond if the player’s action is a shot, as specified in the formula.

The fact that the expected value can be interpreted as a probability will be very
useful because it will allow us to just sum the expected values of different shots to
obtain the number of goals a team or a player was expected to score during a match
or a whole season. And we will not be limited to know just the probabilities of shots
becoming goals, but also any on-ball action provided that the player should have
decided to shoot. For training the classifier though, we will only use shots since they
will be the only actions to have explicitly tagged whether a goal was scored after a
shot.

3.5 Model Implementation

From the previous definition, we can conclude that we need a binary classifier. Each
entry on our shot dataset will contain information about the shot as well as a variable
indicating whether it was a goal or not. That will be the target variable of the
classifier. Furthermore, we need our classifier to yield a probability of belonging to

the "goal" class.

It is difficult to know beforehand which kind of classifier will produce the best
results for our particular problem, so we will choose three, each from a different family
of classifiers, and pick the best one. The first choice will be the Logistic Regression,
given that it is one of the most commonly used and it works well with linear depen-
dencies. The second one will be XGBoost, a tree boosting system first presented in
[Chen and Guestrin, 2016]. This kind of model scales very well to large datasets and
has given good results on related research [Kharrat et al., 2017]. The third classifier
we are going to use is an artificial neural network. The configuration that yielded

the best results after testing a few different ones consists of two dense hidden layers
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with ReLU as the activation function, and the output layer with a single neuron with
a sigmoid as the activation function. The sigmoid function will enable the ANN to

produce a value between 0 and 1 as the output, which we will interpret as a probability.

Apart from selecting the kind of classifier which works best, we also want to build
three different models, each one using different shot information, to observe the
differences in performance. This will allow us to have separate interpretations, and
to see which kinds of information helps best to predict whether a shot will be a goal

or not. The first model will just contain data on the location of the shot — S in

the previous formula —, the second will include the context, as well as the location
— S5; and C% in the formula —, and the final model will comprise all the available
information.

Before learning each classifier for each model, we will partition the corresponding
dataset into a training and test set, to see how well the classifier behaves on unseen
data. When performing this partition we will apply stratification, to make sure that
both sets contain the same proportion of goals. That will be key given that our target
variable is imbalanced towards non-goals, and a non-stratified sampling could bias the
classifier. We will also employ stratified partitions on the 10-fold cross-validation which

we will perform for each combination of the classifier’s hyper-parameters to tune them.

We will use the logarithmic loss (log loss) metric to evaluate the trained classifiers.
We have chosen this metric because the output of our classifiers will be probabilities,
and the log loss takes into account the confidence of the prediction when penalizing

wrong predictions.

3.6 Model Results

After training all the classifiers mentioned in the previous section, the results in Table
3 were obtained. As stated, three different classifiers were tried on three different sets
of variables of the same dataset. The evaluation metric used and shown on the table

is the log loss.
The identifiers of the model column refer to the formula presented in the Model

Design section (3.4), depicting which variables were used to build the model. Regard-

ing the rest of the columns, we want to check for each classifier type the training
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Logistic Regression XGBoost Neural Network
Model Train Test Train Test Train Test
St 0.2540 0.2608 0.2459 0.2577 0.2525 0.2601
St, Cy 0.2489 0.2564 0.2407 0.2538 0.2478 0.2571
St, Cy, P || 0.2485 0.2558 0.2392 0.2536 0.2448 0.2554

Table 3: Summary of the results obtained for all the models and classifiers.

error they yielded for each set of variables and the test error. The training error
will be useful to check whether the classifier overfitted or not. A significant dif-
ference between the training and test error would indicate so. The test error will

be used to determine which is the best classifier for each set of variables of the dataset.

After taking a look at the table we can see that the training error values are always
lower than their corresponding test error, but they are similar enough to assert that
the model is not overfitting. The classifier with the lowest test errors is the XGBoost

for all the variable sets.

All the classifiers tend to improve their classification power when more variables are
added to the dataset. In all cases, the biggest improvement comes after adding the
contextual information of the shots to the already existing location. Both the Logistic
Regression and the Neural Network still produce a good jump in performance when
adding the player information, whereas the XGBoost just improves a little. But given
that it was already performing very well with the previous variables, it still yields the

best results.

Although the improvement in performance is not as big as when adding the contextual
information, there is an improvement, and having individual player information as
model features will have other benefits. For instance, we will be able to compare the

expected performance of several players given their shot qualities.

3.6.1 Calibration

The output of the classifiers we just trained are values between 0 and 1 and that is
why we can interpret them as probabilities. But first, we have to make sure that
they correspond to reliable probabilities. In other words, if the predicted xG of a
shot is 0.1, we expect that 1 out of 10 times that shot will become a goal. But since

each shot is only taken once, we won’t be able to check that directly. Another way
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of doing this verification would be to group shots with similar xG values into bins,
and control that their mean xG is similar to the percentage of goals within that bin.
That is the idea behind the calibration plot presented in Figure 8. In this case, we

chose 10 bins, which is a commonly used number.

Calibration curve for the XGBoost model
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Figure 8: Calibration curve of the XGBoost model with all the features.

Provided that the X-axis corresponds to the mean predicted value and the Y-axis
to the fraction of goals, a perfectly calibrated model would follow the dashed line
where the values on both axes are always equal. In the case of the output of our
best classifier, the curve generally follows closely the dashed line, until more or less
the 0.5 predicted value where it starts to deviate a little. That also coincides with a
significant diminishing in the sample size of the bins, indicated by the magnitude of
the dots. The deviation is caused by the fact that we are using very few values to
compute the mean value of those bins. The more values the bin has, the more will
its mean approximate to the real calibration value. So it is a limitation of the plot.
But we observe that despite this slight diversion, the tendency of the curve seems to
follow the dashed line.
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To see if an improvement can be achieved on the calibration of probabilities, we
will try two of the most used post-processing calibration methods. The first one is
called Isotonic regression and was first presented in [Zadrozny and Elkan, 2002|. It is
a non-parametric method which learns a constant function by minimizing the square
loss between its output and the actual target. The second one is the Platt scaling,
introduced by [Platt et al., 1999]. This is a parametric approach given that it uses a
logistic regression model to predict the target probabilities given the non-probabilistic
predictions of the classifier to calibrate. Both post-processing methods require a
validation set, which should be disjoint from the data used for fitting the classifier.
We will use the same 10 folds previously used for the cross-validation, but this time
the training set will be used to fit the classifier and the validation set to fit the
calibration regressor. Given that we will now have 10 different couples of classifier
and regressor, we will use the average of the predicted probabilities of the 10 couples

as the final predicted probability.

We use the Expected Calibration Error (ECE) in Table 4 to present the results
given by each of the tested calibration methods. This metric was presented in
|Guo et al., 2017| and measures the difference in expectation between confidence and
accuracy — they call it calibration gap. As in the calibration curve, it uses bins with
equal ranges of predicted values and adds the calibration gap of each bin, weighted

by the number of samples in the bin.

ECE

No post-calibration | 0.00417
Isotonic regression | 0.00446
Platt scaling 0.01592

Table 4: ECE calibration metric value for each calibration method.

Considering that perfect calibration would correspond to an ECE value of 0, we
observe that all the results obtained are very good. But it looks like none of the
calibration methods tested improves the calibration of the probabilities. We assume
that it is so because the classifier was already good in this respect and thus, it is
hard to get a significant improvement out of post-calibration. The same tests were
performed on the XGBoost classifiers fitted to fewer variables of the dataset — the
ones presented in Table 3 — and similar results were obtained. Therefore we will

stick to using the obtained classifiers without any post-processing steps.
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3.7 Model Interpretation

As important as producing good predictions with reliable probabilities is, it will be
hard to communicate them effectively unless they are interpretable. In the end, the
results of our models will be used by players, coaches and analysts as one more source
of information, and their usability will be limited if they are just a probability coming
from a black-box. A very clear example would be when using the model on shots
from players on their formative years. Knowing which features made their shots have
lower probabilities of scoring will help them learn in which situations it is preferable

to take a shot and in which it is not.

Generally, requiring interpretability limits the range of models you can use. Com-
plex classifiers are often more accurate for most problems, but they tend to act
as black-bores and their results are more difficult to interpret. And that usually
brings to a trade-off between accuracy and interpretability. We use SHAP, presented
by [Lundberg and Lee, 2012|, which assigns each feature an importance value for a
particular prediction. An advantage of this approach is that it is a unified framework
which works on any kind of predictor. It works by building a model called explanation

model which attributes credit to each feature using several optimized methods.

In this section, we will focus on the importance the model gives to each feature
used, as the SHAP framework also allows to measure it. An analysis of particular
predictions using the framework will also be performed in Chapter 4. Both Figure 9
and Figure 10 summarise the impact each feature had on the output of the XGBoost
with all the variables in the dataset. Figure 9 lists the features sorted by their
importance. A distribution is shown for each feature, elongated on the X-axis of the
plot. Each dot of the distribution represents a group of similar individuals — shots —
analysed by the framework. The position in the X-axis quantifies the impact of those
individuals on the model output — distinguishing between positive and negative.
The colour indicates the value of the feature for those individuals. Figure 10 is a
simplified version of the previous one, but it is more helpful to visually compare

differences in average impact among the different features.
Both figures clearly state that the feature with the highest impact on the out-

put by far is the goal distance. This makes a lot of sense provided that the more

distant you are from the goal, the harder it is to aim there and the goalkeeper has
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Figure 9: Feature importance on the final XGBoost model. Features are sorted
from more important to less important.

more time to react to the shot. Plus, the ball will lose speed if it has to travel a
long way. In fact, in Figure 9 we observe that when the goal distance has a very low
value, it has a great positive impact, whereas high values have a moderate negative
impact. A similar thing happens with the centred Y location, which is the second
most important. This variable had very low values when the origin of the shot was
centred in front of the goal, and higher values when it was closer to the sidelines. The
model considers that being centred in the field will yield better chances of scoring
than being to either one of the sides. The goal posts angle feature comes to a similar
conclusion. The closer and more centred you are to the goal, the higher this angle

will be, and the higher will be the positive angle on the outcome.

Then comes a group of features with a similar average impact which includes con-
textual variables as well as some regarding player quality. The model considers that
the two most important contextual features are cross and through ball, the first
one having a negative impact and the second one a positive one. Crosses are very
common in football, but it is difficult to get a comfortable shot out of them. They
require good coordination between the passer and the shooter, as well as a good

ability from the passer to put it in the range of the shooter but inaccessible for
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Figure 10: Simplified version of the feature importance on the final XGBoost model.
Features are sorted from more important to less important.

the defenders. Besides, most crosses lead to a headshot, which is harder to make
than foot shots according to the impact of those features in our model. On the
other hand, through balls are passes that overcome the last line of defenders and nor-

mally lead to a one on one against the goalkeeper, which is a very favourable situation.

The player quality feature with the highest impact on the model output is the
player ability. This variable was a mix of different player shot ratings which varied
depending on some characteristics of the shot. As expected, higher values of player
ability lead to a positive impact on the output whereas lower ratings lead to a negative
impact. This feature falls on the 7th place of the ranking of feature importance,
which indicates that being a talented player will help you score more goals, but other

positional and contextual factors are more determinant.

The rest of the features have a lower impact on the model. Some of them even
seem to have almost 0 average impact on the output. But removing them from the
dataset slightly worsened the results of the classifier, so we decided to keep all of
them.
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4 Experiments

In this chapter, we will explore what can be done with the expected goals metric
using the outputs of the 3 XGBoost classifiers we fitted. Since we have validated
the models and made sure that the probabilities they yield are calibrated, we will
assume that the predictions will be valid for both already seen and unseen data by
the classifiers. Just as a reminder, the models we trained focused only on shots in

regular play, and therefore the experiments will be limited to this kind of shots as well.

We will start by visually seeing how the location of the shots affects the proba-
bility predicted by the final XGBoost model. To do it, we will divide the pitch in
small bins and compute the mean xG value of the shots that were produced inside
the bin. We will then apply a KDE to smooth the areas instead of having just small

squares. The result is presented in Figure 11.

We observe that the highest values are concentrated right in front of the goal, very
close to it. That matches up with the conclusion we drew when checking the feature
impact on the model, which was that the distance to goal was very important, espe-
cially with short distances. Then, rings are formed of diminishing probabilities the
more you get away from the goal. We can see that the outer ring also has a very
circular shape, which sustains the importance of the distance to the goal. But if we
take a closer look, we can see that the highest values are condensed in very central

locations, which also backs the importance given by the model to the Y location.

Note that some bins near the wings have slightly higher probability values than
their surroundings. As explained previously, that is because it is very uncommon
to see shots from there, and if by chance some of them were scored it can make the
classifier think that it is a good location to shoot from. We solved that problem
by adding failed shots from the wings to help the classifier learn that players don’t
usually shoot from there because it is very hard to score a goal. But adding too many

shots would imbalance, even more, our dataset. The quantity we finally added was
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Figure 11: Distribution of the xG value along the field using the location of the
shots in our dataset.

enough to keep the probabilities of these shots low, and although they are still a little

bit higher than their surroundings, they are still values very close to 0.

If we now compare this plot to the one shown in Figure 12, we see a lot of similarities.
That one illustrates where the goals were scored from, accumulated as a histogram
where darker blue indicates the areas with a higher concentration of goals. Both maps
have a similar shape, but the second one shows its peak slightly farther from the goal
since it is less common to take shots from that close. But Figure 11 indicates that
the few shots taken from there end up almost always in goal. The similarity between
both figures reiterates the importance of the location of the shot when evaluating its

outcome.

Figure 13 takes this analysis one step further. Both plots shown are similar to the
one illustrated in Figure 11, but this time the player rating of the shots was modified
before predicting the probabilities with the final model. In plot (a), instead of using

the real ratings from the actual players who produced the shots in the dataset, we

38



Goal locations

i 0

300

250

200

r 150

r 100

r 50

Figure 12: Histogram of the goals in the dataset by their location.

substituted them for the rating of the best player in each rating category. In other
words, the values correspond to how the best player in the dataset is expected to
perform on all shots. Plot (b) illustrates the same idea but with the average player

in the dataset, given that this time we used the average rating for each category.

We observe that the shape of both maps resembles each other. That shows that
the importance of the shot location is very present regardless of the quality of the
player. But we also observe some differences in the distribution of the xG values. The
outer ring appears to be slightly bigger for the best player, which indicates that he is
expected to perform slightly better from long-range shots. This conclusion is also
applicable to the rest of the outer rings, but the effect diminishes the closer you get
to the location of the goal. This suggests that the importance of the player quality
decreases for shots very close to the goal. It makes sense as those shots are expected

to be easier to score, and average players should be able to do so.
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Figure 13: Comparison between the xG distribution of shots performed by the best
rated player (a) versus an average player (b).

4.1 Single shot analysis

The next experiment we want to focus on corresponds to the continuation of the
feature impact analysis we started in section 3.7. This time, instead of interpreting
the outputs of the model as a whole, we will focus on single outputs. That will
be crucial for players and coaches to understand what could be improved from the

chances they have had.

Figure 14 shows the impact of the features on the prediction of 5 different shots
Lionel Messi has tried within the last few seasons. Each shot is drawn in the first
plot and it is paired to its corresponding impact plot by the number of the shot and
the location of the impact plot from top to bottom. The shots 1, 2 and 5, which are

marked in red, ended up becoming goals.

Regarding the impact plots, the features in red represent the ones which contribute
to increasing the resulting probability, whereas the features in blue are the ones that
decrease it. The length of the bar corresponding to a variable represents the level
of impact of that variable onto the outcome. The longer the bar, the higher the
impact. Note that the values right next to the feature names do not seem to make
much sense. That is because they are not the original values of the variables, but the
standardized version of the values which was fed to the classifier. So we will not pay

much attention to them.
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The first shot is the one with the highest resulting probability (0.58). It is evi-
dent given that most of the variables contribute to increasing the probability and
barely any decreases it. This value could seem like a low probability, but it is not
if we take into account the fact that the average xG value for all shots is about 0.1.
That means that on average, you would need 10 shots to score a goal. Getting a
probability almost 6 times higher than the average is not that common. We observe
that the most important features in this particular shot are quite similar to the ones
determined for the whole model. The fact that Messi has very good ratings and that
the shot is very centred, both the Y location and the player ability features have the
second and third highest impact.

The second and third shots are located in similar locations but on opposite sides of
the field and have a predicted probability of 0.24 and 0.19 respectively. Although the
second shot is slightly more distant to the goal, it is also somewhat more centred.
This last observation is key since it is the Y location feature which makes the differ-
ence by significantly impacting more the probability on the third shot and making

it decrease. Messi ended up scoring a goal with the second shot, but not with the third.

The last two shots are both from outside the penalty box, and so they have lower
probabilities — 0.11 the fourth and 0.03 the fifth. This time, the feature which pushed
the most the previous shot’s probabilities towards being higher — the distance — has
turned against them due to being far away. The fourth shot though, bearing in mind
that it is quite centred in the goal location, still has several features impacting to
increase the probability, such as the Y location and goal posts angle. It is not the
case of the fifth shot, considering that it is more distant and less centred. The few
variables that still impact towards increasing the probability are those regarding the
player quality. In this case, Messi scored with the tougher one and missed the "easy"

one.

4.2 Player performance analysis

As mentioned in section 3.4, the sum of the probabilities of a group of shots can be
interpreted as the number of goals that are expected to be produced from those shots.
So if we sum the probabilities of the shots performed by a player during a season, we
will have the number of goals the player was expected to have scored. When compared

to the actual number of goals, this value can be used as a metric for player performance.
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Table 5 lists the ten top scorers from regular play during the first 27 fixtures of
the 2019-20 season of the Spanish La Liga — just until the break caused by the
pandemic of the COVID-19. For each player, we show their overall rating determined
by the FIFA videogame, the number of shots in regular play, the sum of probabilities
of those shots yielded by the models with and without the player information and
finally the amount of them which became goals. The overall rating will serve as a
measure of the quality of the player and the number of shots will indicate the number

of opportunities a player has had to score goals.

Player Overall | Shots | zGgs, ¢, | 2Gs,,c.,p | Goals
Lionel Messi 94 75 10.27 12.08 12
Gerard Moreno 81 59 8.55 8.86 11
Karim Benzema 87 84 11.22 11.65 10
Luis Suérez 89 46 6.08 7.02 9
Chimy Avila 75 62 6.32 6.23 9
Ante Budimir 72 32 5.53 5.53 9
Joselu 74 43 7.36 7.19 8
Loren Morén 80 34 5.78 5.87 8
Maxi Gémez 80 26 3.44 3.59 8
Angel Rodriguez 79 33 3.29 3.27 8

Table 5: Open play shot stats for the top ten goalscorers of the first 27 fixtures of
the 2019-20 season of the Spanish La Liga.

The expected goals values from both models can be interpreted as follows. The
output of the model that does not use the player ratings is the expected number of
goals an average player would score given the same opportunities. On the other hand,
the values yielded by the model which includes the player ratings correspond to the
expected number of goals a player with a similar quality would score with the same

opportunities.

So when analysing the Table 5, we can point out that the players that have scored
more goals than they were expected are over-performing, whereas those with fewer
goals than expected goals are under-performing. Among the players shown, only
one — Karim Benzema — seems to be under-performing. That is because it is easier
to be part of the top ten scorers if you are an over-performer than if you are an

under-performer. In the case of Lionel Messi, we see that he is over-performing in
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comparison to an average player, but he is doing exactly as expected for a player with
his qualities. Karim Benzema is the third in the list, but he is also the one who took
more shots and the one with the highest accumulated G, c,. Curiously enough,

Messi is the one who was expected to score more goals accounting for the player quality.

When looking at the rest of the table, we see some players with relatively few
shots and low accumulated xG. They are generally either player from teams with
fewer offensive power and therefore, with less goal-scoring opportunities or players
who have played fewer minutes due to injuries, or because they normally start from
the bench. Despite these adversities, they managed to score a remarkable amount
of goals. To detect these over-performing players we can use metrics such as the
difference between the number of goals and the accumulated xG, or the average xG
value per shot — accumulated xG divided by the number of shots. The first one will
be a measure of performance, whereas the second will indicate whether the player

tends to have very clear opportunities or difficult shots.

In the case of the xGg, ¢, p, those players who have performed better than their
estimated qualities in a regular manner during a season, should be expected to get a
better rating for the following year. That will cause his expectations for the next year
to grow accordingly, and he will be expected to perform at the level of the previous

season. A similar adoption would also be expected for the under-performing players.

4.3 Team performance analysis

We performed a similar analysis with teams. Table 6 shows the accumulated xG of
the teams of the Spanish La Liga for the same period as Table 5. They are sorted by
the number of goals they managed to score in open play, and additional information
is included such as the number of shots they took and the position on the table they
found themselves at the end of that period.

The accumulated xG of a team can also be seen as the danger that the team
produces from shots. That is because the accumulated value will account for both the
frequency of shots — the more shots you take, the more values you will sum together
— as well as the quality of the shots — the clearer the opportunities, the higher will
be the values you will sum. So the teams which will be considered as offensively

powerful will be those with a good combination of good and frequent opportunities.
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Team Position | Shots | zGg, ¢, | ©Gs,,c,,p | Goals
Barcelona 1 262 35.92 39.51 47
Real Madrid 2 350 37.55 38.57 37
Real Sociedad 4 248 27.98 28.24 33
Villarreal 8 309 32.15 33.05 32
Real Betis 12 264 23.94 24.65 27
Sevilla 3 262 29.50 29.95 26
Atlético de Madrid 6 246 30.55 31.41 25
Levante 13 254 24.49 24.91 25
Valencia CF 7 182 20.90 21.50 25
Getafe 5 208 19.15 18.94 23
Osasuna 11 260 23.92 23.32 22
Granada CF 9 205 18.48 18.02 21
Alavés 14 153 18.29 18.05 19
Athletic Club 10 211 16.70 16.91 18
Mallorca 18 177 16.55 15.99 17
Real Valladolid 15 205 18.46 18.73 16
Eibar 16 206 16.82 16.98 16
Leganés 19 223 20.02 19.49 15
Celta de Vigo 17 203 20.13 20.88 14
Espanyol 20 232 21.58 21.03 12

Table 6: Team shot stats from the first 27 fixtures of the 2019-20 season of the
Spanish La Liga. The teams are sorted by the number of goals they scored.

We observe that the number of goals scored and accumulated xG correlates with
the position in the table, but there are clear exceptions. Take as an example the
two teams from the city of Seville: Real Betis and Sevilla. Both teams have roughly
the same number of goals and shots, but Sevilla has a much higher accumulated xG.
Having the same number of shots but higher accumulated xG indicates that their
shots have on average a higher chance of becoming goals than Real Betis’. But we
also see that there is a big gap between both teams in their position in the table.
Both Sevilla and Betis are offensively powerful teams, and we find them one right
next to the other in the table because we are just focusing on the offensive side of
the teams. The main difference between these two teams is that Sevilla is also a very

solid team in defence, whereas Betis not so much.

The accumulated expected goals can also be used to evaluate defensive performance,

though. If instead of adding the expected goals of the shots the team made we add
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the shots the team received, we will have a sense of the danger allowed by the team
and performed by its rivals. If we checked those metrics we would see that Betis and

Sevilla differ in that sense.

As it happened with Messi and Benzema, Real Madrid has a higher expectation
of goals if they were performed by average players, whereas Barcelona wins when
accounting for the quality of the players. And so we see that Barcelona performed
much better than both the expectation of average players and players with their
qualities, but Real Madrid performed as expected with average players, but given the
qualities of their players they were supposed to do a little better.

Finally, in the lower part of the table, we see that the last teams in the classifi-
cation are not the ones with the worst offensive production. But they are the ones
with the worst difference between goals and expected goals. So we can use this metric

with teams as well to measure performance.
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5 Conclusions and future work

In this project we have presented two different models that allow us to predict the
probability that a shot becomes a goal, leading to different interpretations of the
probabilities. The first model was trained without using any specific information of
the player taking the shot, so considering that the shots the model was trained with
were taken a wide variety of players, we can assume that the probability corresponds
to being shot by an average player. The second model did contain information about
the shooting quality of the player, so the probability will correspond to being shot by
a player with their qualities.

We have explained the importance of the calibration of these probabilities, and
have also proven that they were indeed calibrated. We have also shown how the
probabilities can be combined, and presented various metrics derived from them

which help to measure both team and player performance.

We have also mentioned how relevant it was for the results and the models to
be interpretable. We have shown a framework which enables us to know both the
importance of the model features as well as the decisions made to yield the probabili-

ties of sample shots.

During the development of the project, we have realised how important domain
knowledge is. It probably applies to most domains, but given the complexity of
football, it would have been very hard to determine which factors can affect pro-
ducing goals if it were not for the help of the experts. Their aid has also been very
useful when facing inconsistencies in the data. But they have also benefited from
their collaboration with this project. They claim that the process of designing the
algorithms to create the different football concepts has helped them to build a more
objective conception of the knowledge they already had, instead of relying so much
on their instincts. The results and interpretability of the models had a similar effect

on them, as it allowed them to objectively quantify the importance of the different
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factors that surround scoring goals through shots.

5.1 Future work

The limitations of this project at the moment of the development — both temporal
and data-wise — can be improved straightforwardly. First of all, if more seasons
of the same kind of event data become available, they could be used to retrain the
models to see if more data improve their predictive power. More types of classifiers
and more configurations for the ANN that were not considered in this project due to
time limitations can also be tested. If apart from more event data, tracking data also
becomes available, it would be nice to see how much do the models improve with
positional-based features, as well as how important they are for the models. Finally,
with more data, we could also produce a custom system to attribute quality ratings

to players.
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