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Abstract

We present a numerical procedure for elastic and non linear analysis
(including fracture situations) of solid materials and structures using the
Discrete Element Method (DEM). It can be applied to strongly cohesive
frictional materials such as concrete and rocks. The method consists on
defining non-local constitutive equations at the contact interfaces between
discrete particles using the information provided by the stress tensor over the
neighbour particles. The method can be used with different yield surfaces
and in the paper it is applied to the analysis of fracture of concrete samples.
Good comparison with experimental results is obtained.
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1. INTRODUCTION

The Discrete Element Method (DEM) has proven to be a very useful
numerical tool for the computation of granular flows [2, 3, 4] (the here-
after termed non-cohesive DEM) with or without coupling with fluids [5, 6]
or structures [7]. These computations can include cohesive forces between
particles [8] to model moisture, glue or other added features to the stan-
dard non-cohesive DEM. Other research lines have focused on the DEM
as a method to compute the mechanics of strongly cohesive materials, like
rocks, concrete or cement [9, 10, 19]. The approach in these cases is usually
termed as ’bonded’ or ’cohesive’ DEM. Here the DEM can be understood
as a discretization method for the continuum. The bonded DEM has also
been combined with the Finite Element Method (FEM) in order to save
computation time [20].

The ability of the DEM to reproduce multi-cracking phenomena in co-
hesive materials is probably one of the main reasons why the DEM is chosen
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when fracture mechanics is an important ingredient of the solution. How-
ever, a deep analysis of the works published usually reveals a lack of accuracy
of the DEM results in the elastic regime, together with the need for calibrat-
ing the DEM parameters for each application. It is quite surprising that the
Poisson’s ratio and the shear modulus are seldom validated. It is however
commonly accepted [11] that the Poisson’s ratio has a strong dependency
on the mesh arrangement and the kt/kn ratio [12], where kn and kt are the
normal and tangential spring stiffnesses, respectively, in the spring dash-pot
model that yields the forces at the contact interface between two spheres.

The difficulty of the bonded DEM to get accurate results when trying
to capture simultaneously the Young’s modulus (E), the Poisson’s ratio (ν)
and the related shear modulus (G) derives from the fact that the bonded
DEM works as a system of trusses instead of a true continuum. Usually,
a good calibration of the micro parameters (kn and kt) leads to a decent
capture of one or two of the elastic macro parameters (E, ν and G) for a
given mesh arrangement and usually for a certain, limited, range of values
[12]. Due to these limitations, the spring dash-pot model has proven not
to be good enough to capture the elastic behavior of a continuum with the
DEM.

In a recent paper [1] we proposed a way to enrich the spring dash-pot
model in such a way that the elastic properties of a continuum can be ac-
curately captured with the DEM. The improved bonded-DEM approach is
based on the definition of a non local constitutive model at each contact
interface in which the force-displacement relationship at an interface of a
spherical particle depends on the forces at all the interfaces shared by the
particle. The good properties of the new non local bonded DEM procedure
for predicting the elastic behavior of elastic continua modelled as a collec-
tion of regular and irregular distributions of spherical particles was shown.
Indeed the non local bonded DEM procedure can be extended for modelling
breakage and separation of particles in order to reproduce the non linear
behavior of a continuum, leading to fracture and failure. In this work we
propose a new criterion for breaking the bonds between spherical particles
based on the stress tensor at the contact interface. The stress tensor is very
commonly used to trigger cracks in continuum mechanics, like in analytic
solutions or in the FEM, but has not yet been used in DEM.

The arrangement of the paper is as follows. The non-local constitutive
equations between forces and displacements at a contact interface are pre-
sented first. Also we describe how the stress tensor at the contact interface
can be computed. The method for predicting the onset of fracture at a con-
tact interface is then described. The last section of the paper presents the
application of the new non-local bonded DEM technique to the analysis of
Uniaxial Compression Strength (UCS), a Brazilian Tensile Strength (BTS)
test and a shear tests in concrete samples. Numerical results are compared
with experimental data for the same tests with good agreement.
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Figure 1: ith contact point between a central sphere (0) and an adjacent sphere (I)

2. THE STRESS TENSOR OVER DISCRETE ELEMENTS

The stress tensor, understood here as the Cauchy stress tensor, has been
widely used in the context of the DEM. It is typically used to plot the value
of the stresses in certain regions of the domain when dealing with granular
materials [14]. For example, it is common to model soils with the DEM and
to plot the stresses within the soil as a valuable engineering result.

The averaged stress tensor over the volume of a central spherical particle,
(hereafter termed particle 0) (Figure 1), can be calculated as

σ0 =
1

V0

nc∑
i=1

li ⊗ Fi (1)

In Eq.(1), index 0 denotes the central particle where stresses are com-
puted, V0 is the volume of the spherical particle, nc is the number of contacts
of the particles with its neighbours, li is the vector connecting the center
of the sphere to the ith contact point and Fi is the force vector at the ith
contact point. The contact points can account for a certain gap between
adjacent particles, as explained in [9].

Apart from granular non-cohesive materials, the DEM has been used to
model strongly cohesive materials like concrete or rocks [9] by means of the
standard bonded DEM, which can withstand tractions at a contact interface.
The packing of spheres is expected to work as an equivalent continuum and
the stress tensor at the center of each particle can be calculated with Eq.(1)
as well.
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Figure 2: Local axes at contact point between two spheres

The idea of using the stress tensor at a particle to enrich the information
used to compute the forces between bonded particles emulating a continuum
was first presented Celigueta et al. [1]. The normal force at a contact point
is computed in terms of the nodal overlap and the stresses at the contact
point as

Fz′i = kniδz′i +Aiν(σx′i + σy′i) (2)

where Fz′i is the force between the two particles in the normal direction z′

(defined by the vector that joins the particle centers as shown in Figure 2),
Ai is the contact area at the ith contact interface between the two particles
(particle 0 and particle I, see Figure 1), δz′i is the overlap between the
particles, ν is the Poisson’s ratio and kni is a normal stiffness parameter
associated to each pair of particles given by

kni =
AiE

L0i
(3)

where L0i is the distance between the centers of the particles at the stress-
free position and E is the Young’s modulus of the continuum material [1].
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In Eq.(2) σx′i and σy′i are the axial stresses at the contact point in the
two orthogonal directions to the normal one. They can be obtained by
rotating the coordinate system for the stress tensor at the ith contact point,
σi, as follows (Eq.(4))

σ′
i = RT

i σiRi (4)

where Ri is the rotation matrix between the Cartesian and the local axes of
contact i and σ′

i is the stress tensor expressed in the local coordinate system
at thet contact [1].

The stress tensor at the ith contact point is computed by averaging the
values of the stress tensors of the contacting spheres sharing the ith contact
part (sphere 0 and sphere I) via Eq.(5). This gives

σi =
σ0 + σI

2
(5)

Note that Eq.(2) is a non-local constitutive expression that relates the
normal force with the values of the stress at the particles adjacent to the
central sphere.

The tangential forces at the ith contact point are similarly computed in
a non-local form as

Fx′i = ktiδx′i +AiG

(
τz′x′,i
G

− δx′i
Li

)
step

Fy′i = ktiδy′i +AiG

(
τz′y′,i
G

−
δy′i
Li

)
step

(6)

where τz′x′,i and τz′y′,i are the tangential components of the local stress
tensor at the ith contact point, σ′

i (Eq.(4)). Sub-index step in Eqs.(6)
denotes the time step at which the different terms are approximated. For
explicit dynamic solution schemes, step refers to the previous time step. For
implicit schemes, step refers to the current time step and the term is updated
iteratively. Note that both τz′x′,i and τz′y′,i depend on the stress tensor for
each particle (computed by Eq.(1)). Therefore, their value has to be used
either from the previous time step or the previous iteration. Otherwise, the
forces would never be updated according to the relative displacements. The

sub-index step in Eq.(6) avoids the substitution of AiG
(
δx′i
Li

)
step

by ktiδx′i,

which would cancel terms and make the expression independent from the
relative displacements between the particles.

We highlight that both the normal and tangential forces make use of the
averaged stress tensor σi at each contact point. This increases the stencil
of neighboring spheres considered for computing the forces at each contact
point.

Details of the computation of the stress tensor at each particle from
the normal and tangential forces, the computation of the contact areas, the
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necessary adjustment of the porosity of the packing and the correction of
the volume and mass of the particles can be found in [1].

In [1], several other adjustments are proposed aiming at avoiding cali-
bration of the contact parameters. However, those suggestions fall out of
the scope of this work, the purpose of which is to extend the applicability
of non-local bonded DEM the post-elastic regime.

3. USING THE STRESS TENSOR TO COMPUTE THE CRACK
INITIATION

Yield surfaces in continuum mechanics are designed to model the be-
havior of a specific group of materials. For example, the Rankine yield sur-
face [23] is intended for concrete or other materials whose failure is mainly
tension-driven, as these materials present a much higher strength in com-
pression than in tension. As a different example, the Von Mises yield surface
is typically used for metals, giving importance to the deviatoric stresses as
initiators of the non linearity.

Even if these yield surfaces are used to trigger a brittle fracture, this does
not mean that the macroscopic response of the sample subject to stresses
presents a brittle behavior. Actually, the post-elastic behaviour depends on
the shape of the sample and the load type. Thus, for the same material
properties, we can see a totally brittle response in a bending test, and a
smoother non-linear graph in a UCS test.

The traditional way to detect the initiation of post-elastic behavior in a
continuum is the verification of a certain yield condition expressed in terms
of the stress tensor written as f(σij) ≥ 0 [24].

The novel idea presented in this paper is to use the stress tensor at a
bond (computed by Eq.(5)) and a yield surface to trigger a crack at the
contact interface between two spheres in the bonded DEM.

The way to assess if a stress tensor verifies or not the yield conditions
changes with each specific constitutive model. Some examples are given
in Sections 5 and 6 of this work using Rankine and Mohr-Coulomb yield
surfaces. Indeed, many other examples can be found in the literature of
plasticity, damage and fracture mechanics.

The proposed crack initiation criterion is independent from the specific
orientation of the bond, as the stress tensor represents all the orientations
in a single matrix.

With this methodology, the concept of using the stress tensor for the
elastic regime presented in [1] is extended to the post-elastic branch, as a
criterion for breaking the bond.

The next section shows the behavior of concrete samples discretized by
means of the bonded DEM subject to loads, whose bond breakage is ruled
by the Rankine and Mohr-Coulomb yield surfaces [25].
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Figure 3: UCS test scheme [22]

The chosen yield surfaces have been introduced in DEMpack code de-
veloped by the authors [17] and tested with several samples under different
loads. The code has been implemented within the open source Kratos Mul-
tiphysics framework [16]. The data preparation and visualization of results
in this paper was carried out with the GiD pre- and post-processor software
[18].

4. DESCRIPTION OF THE EXPERIMENTAL TESTS

Three different experimental tests on several concrete samples were car-
ried out at the laboratory at the Universitat Politècnica de Catalunya (UPC)
[26]. All samples were subject to an increasing load until failure. The limit
stress at which the samples analyzed for each test broke was measured and
averaged. The material tested was identified as a 50 MPa concrete, with a
measured Young’s modulus (E) of 40 GPa (coefficient of variation of 2.5%).
The Poisson’s ratio was not measured. The same tests were modeled with
the non-local bonded DEM using the Rankine and Mohr-Coulomb yield
surfaces and the DEM results were compared with the experimental values.
Young’s modulus of E = 40 GPa and a Poisson’s ratio value of ν = 0.2 were
used in all the non-local DEM computations. The three tests are described
next.

4.1. Test 1. Uniaxial Compressive Strength (UCS)

A concrete cylindrical specimen of 100 mm in diameter and 200 mm long
was loaded in uniaxial compression along its symmetry axis (Figure 3).

Figure 4 shows a number of broken specimens after the tests.
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Figure 4: Specimens after the UCS test

Figure 5: BTS test scheme [21]

The average limit stress reached by the sample was 55 MPa.
For the numerical computation with the non-local bonded DEM, a ran-

dom packing of 12,000 spheres was used to model the cylinder. Two plates
compressed the sample at a relative velocity of 0.05 m/s and the force on
the upper plate was measured, divided by the cross section of the sample
and plotted as stress vs. strain of the sample. The loading velocity used in
the computation does not correspond to the loading velocity of the experi-
ments. It was chosen as fast as possible, making sure that no elastic waves
were generated. The coefficient of restitution was set to 0.0 in all runs for
all tests.

4.2. Test 2. Brazilian Tensile Strength (BTS) test

A cylindrical specimen of 100 mm in diameter and 200 mm long was
loaded in a biaxial stress state, generated by a diametral compression that
generates a perpendicular, diametral traction (Figure 5).

Figure 6 shows a number of broken specimens after the tests.

8



Figure 6: Specimens after the BTS test

The average limit stress reached by the sample was 4 MPa.
For the numerical computation with the DEM, a random packing of

9,000 spheres was used to model the cylinder. Two plates compressed the
sample and the force on the upper plate was used to evaluate the stress
at the center of the sample (Eq.(7)) as it was done for the experimental
tests. The stress was plotted vs. the elapsed time. The relative velocity of
the plates was 0.1 m/s. Again, this does not necessarily correspond to the
experimental loading velocity.

σ =
f

πRL
(7)

In Eq.(7), f is the measured force, R is the radius of the sample and L is
the length of the sample (thickness of the slice).

4.3. Test 3. Shear Strength test

Cylindrical specimens of 150 mm of diameter and 80 mm of height were
used. The samples had two parallel flat ends and two inversed tubular
coaxial borings set at diameter 45 mm and 4 mm wide. The depth of the
borings was 10 mm, leaving an effective shear section height of 60 mm (see
Figure 7 for clarification). The inner cylinder was pushed downwards by a
piston while the outer cylinder was supported by a holed plate.

Figure 8 shows a number of broken specimens after the tests.
It can be observed that several types of craks were created, some around

the inner cylinder of circumferencial type, some in the outer part of radial
type.

For the numerical computation with the DEM, a random packing of
161,000 spheres was used to model the cylinder. The upper plate, pushing
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Figure 7: Shear strength test scheme

Figure 8: Specimens after the Shear test
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Figure 9: Rankine yield surface in the space of principal stresses

the inner part of the sample, moved downwards at a constant velocity of
0.1 m/s. The force on the upper plate was measured and plotted vs. the
elapsed time.

5. DEM RESULTS WITH THE RANKINE YIELD SURFACE

5.1. Yield surface definition

The Rankine yield surface is defined as

σ1 = σR (8)

where σ1 is the maximum principal stress and σR is a limit value, which
can be obtained experimentally as the pure tension limit stress. We assume
σ1 ≥ σ2 ≥ σ3, where σ2 and σ3 are the second and third principal stresses,
respectively. Tractions are taken as positive. The behaviour of the material
is considered elastic as long as σ1 ≤ σR. If σ1 ≥ σR at any bond, the bond
breaks. Figure 9 depicts the Rankine yield surface in the space of principal
stresses.

5.2. Calibration of parameters

For the Rankine Yield surface, two important parameters need to be
calibrated: the maximum value for a principal stress, σR, and Coulomb’s
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frictions parameter, µ. The procedure followed to calibrate those values was
the following:

1. Step 1. Run Test 1 (UCS) iteratively changing the value of σR, but
keeping fixed the value of µ (first computations can be run with µ =
0.2). Coulomb’s friction has little effect on the limit stress that the
sample can withstand.

2. Step 2. Run Test 2 (BTS) to check that the value of σR yields good
results and adjust the value slightly to match the experimental value.

3. Step 3. Run Test 3 (Shear) iteratively changing the value of µ, but
keeping fixed the value of σR obtained after Steps 1 and 2. Once the
best possible value for µ is found, go to Step 1 and start the process
again.

It was found that following these steps twice was enough to find a set of
parameters which were useful to work with a given material.

5.3. Computational results

For all the computations, the input value of the Young’s modulus was
40 MPa, and the Poisson’s ratio was taken as 0.20.

After the calibration process, the limit tensile stress for the non-local
DEM computations was chosen as σR = 6 MPa and the friction coefficient
was chosen as µ = 0.1, both between spheres and between spheres and walls.
These material parameters were used for the DEM analysis of the three tests
described in Section 4.

The packing of spheres used for Test 1 (UCS) contained 12K spheres and
their size is detailed in the graph in Figure 10. The results of the stress-
strain graph for Test 1 (UCS) are shown in Figure 11. In all cases, the
horizontal lines mark the upper and lower values of the limit stress obtained
experimentally. The Young’s modulus which can be observed in the graph
is 38 Mpa, close to the input parameter (40 MPa). Note that no calibration
was needed to obtain this similarity in the elastic property, as proven in [1].
Good agreement with the limit stress computed with the DEM is obtained.
The broken sample is shown in Figure 12.

The packing of spheres used for Test 2 (BTS test) contained 9K spheres
and their size is detailed in the graph in Figure 13. The results of the
stress-time graph for Test 2 are shown in Figure 14. Good agreement with
the experimental results is again obtained. The broken sample is shown in
Figure 15.

The packing of spheres used for Test 3 (Shear test) contained 161K
spheres and their size is detailed in the graph in Figure 16. The notches
present in this geometry required spheres much smaller than in the other
tests. The results of the force-time graph for the Test 3 are shown in Figure
17. The limit force obtained differs in 10% with the lower value of the
experimental result. The broken sample is shown in Figure 18.
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Figure 10: Test 1 (UCS) sphere size distribution (in meters)

Figure 11: Test 1 (UCS) with Rankine yield surface. Stress-strain curve. The horizontal
lines indicate the band of experimental results
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Figure 12: Test 1 (UCS) with Rankine yield surface. Middle plane of a broken sample at
the failure load

Figure 13: Test 2 (BTS) sphere size distribution (in meters)
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Figure 14: Test 2 (BTS) with Rankine yield surface. Stress-time curve. The horizontal
lines indicate the band of experimental results

Figure 15: Test 2 (BTS) with Rankine yield surface. Broken sample after the computation.
Lateral displacements are plotted to visualize the cracks
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Figure 16: Test 3 (Shear test) sphere size distribution (in meters)

Figure 17: Test 3 (Shear strength) with Rankine yield surface. Force-time curve. The
horizontal lines indicate the band of experimental results
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Figure 18: Test 3 (Shear strength) with Rankine yield surface. Broken sample after the
computation

6. MOHR-COULOMB yield surface

6.1. Yield surface definition

The Mohr-Coulomb yield surface is defined as

σ1 − σ3
2

= −σ1 + σ3
2

sin(φ) + c cos(φ) (9)

where σ1 is the maximum principal stress, σ3 is the minimum principal
stress, c is the Mohr-Coulomb ’cohesion’ stress parameter and φ is the Mohr-
Coulomb internal friction parameter.

6.2. Calibration of parameters

For the Rankine Yield surface, three important parameters need to be
calibrated: Mohr-Coulomb strength parameters, c and φ , and Coulomb’s
frictions parameter, µ. The procedure followed to calibrate those values was
the following:

1. Step 1. Run Test 1 (UCS) iteratively changing the value of c and φ,
but keeping fixed the value of µ (first computations can be run with
µ = 0.2). Coulomb’s friction has little effect on the limit stress that
the sample can withstand.

2. Step 2. Run Test 2 (BTS) to check that the value of c and φ yields
good results and adjust the value slightly to match the experimental
value. Both parameters must adjusted by the user according to the
sensitivity observed.

3. Step 3. Run Test 3 (Shear) iteratively changing the value of µ, but
keeping fixed the value of c and φ obtained after Steps 1 and 2. Once
the best possible value for µ is found, go to Step 1 and start the process
again.

It was found that following these steps twice was enough to find a set of
parameters which were useful to work with a given material.
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Figure 19: Test 1 (UCS) with Mohr-Coulomb yield surface. Stress-strain curve. The
horizontal lines indicate the band of experimental results

6.3. Computational results

The same packings of spheres used for the Rankine yield surface were
used for the Mohr-Coulomb yield surface.

The values of c and φ for all the numerical computations were calibrated
to 14.5 MPa and 60 degrees, respectively. A friction coefficient of µ = 0.1
was chosen as for the computations using the Rankine yield surface (Section
5.3). Here the calibration of the two material parameters c and φ was more
difficult than the calibration of σR.

The results of the stress-strain graph for Test 1 (UCS), Test 2(BTS) and
Test 3 (Shear Test) are depicted in Figures 19, 21 and 23, respectively. The
broken samples for each case are shown in Figures 20, 22 and 24.

Good agreement between the experimental values and the non-local
bonded DEM results for the limit stress (UCS and BTS tests) and the limit
force (Shear strength test) were obtained in all cases.

7. CONCLUSIONS

The non-local bonded DEM presented in this work can be effectively
used to model the elastic range and the non-linear material behavior, at
least until the solid starts collapsing, for a family of materials similar to
the tested ones (concrete samples). The behavior of the material after the
collapse of the sample, is left for subsequent publications. The presented
approach is capable of accurately predicting the onset and initial evolution
of cracks. After that, the DEM is capable of computing the displacements
and rotations of any part of the solid which might get detached due to the
evolution of the cracks.

The numerical examples presented in the paper have shown that the
non-linear and failure behavior of concrete samples in standard laboratory

18



Figure 20: Test 1 (UCS) with Mohr-Coulomb yield surface. External view of the broken
sample after the computation

Figure 21: Test 2 (BTS) with Mohr-Coulomb yield surface. Stress-time curve. The
horizontal lines indicate the band of experimental results

19



Figure 22: Test 2 (BTS) with Mohr-Coulomb yield surface. Broken sample after the
computation

Figure 23: Test 3 (Shear strength) with Mohr-Coulomb yield surface. Force-time curve.
The horizontal lines indicate the band of experimental results
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Figure 24: Test 3 (Shear) with Mohr-Coulomb yield surface. Broken sample after the
computation

tests, can be accurately predicted with the non-local bonded DEM using the
the Rankine or the Mohr-Coulomb yield surfaces. The capabilities of the
non-local bonded DEM, however, extend beyond the yield functions chosen
in this work. Any yield surface modelling material failure that can be fed
with the stress tensor can be used for non-linear analysis of solids with the
non-local bonded DEM. This makes the non-local bonded DEM a powerful
numerical tool for non linear analysis of a broad range of materials and
structures.

The average number of bonds of each sphere (coordination number) or
the size of the particles used in the computations might affect significantly
the behaviour of the solid once the crack is initiated or well developed,
however, this will be studied in further publications.
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de Catalunya, Barcelona

[13] Luding S (2008) Introduction to discrete element methods: basic of
contact force models and how to perform the micro-macro transition
to continuum theory. European Journal of Environmental and Civil
Engineering 12(7-8):785–826

22



[14] Rojek J, Karlis GF, Malinowski LJ, Beer G (2013) Setting up virgin
stress conditions in discrete element models. Computers and Geotech-
nics 48:228–248

[15] Okabe A, Boots B, Sugihara K, Chiu SN (2009) Spatial tessellations:
concepts and applications of Voronoi diagrams, Vol. 501, John Wiley
& Sons
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[18] Ribó R, Pasenau M, Escolano E, Ronda JS, González LF (1998) GiD
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