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A B S T R A C T  

We  consider   the  problem  of   deriving  accurate  end   conditions  for  cubic   spline 

interpolation  at  equally  spaced  knots.      In  particular  we  derive  a  number   of 

end  conditions  which  lead   to  derivative  approximations  of  high  accuracy. 
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1.      Introduction 

Let   s  be  a  cubic  spline  on   [a,b]  with  equally  spaced  knots 

xi =  a  +   i h ; i  =  0,l,....,k, (1.1) 

where   h  =   (b-a)/k.     Then   s  ∈ C2  [a,b]   and   in  each  of   the  intervals 

[xi-1,xi] ;    i =  1 ,2,...,k ,    s  i s    a  cubic  polynomial. 

Given   the  set  of  values  yi ;  i = 0 , l , . . . ,k ,     where 

yi  =  y(xi) ;     y  ∈  C n  [a, b]  ,  n   >   4  , 

we  consider   the  problem  of   constructing  an   interpolatory   s   such  that 

s(xi)  =  yi  ; i  =  0,1,...,k. (1.2) 

To   simplify  the  presentation  we  use   throughout   the  abbreviations 

    m i  =  s(1) (xi),     M i  =   s(2) (x i)      and        )r(
iy   =  y (r )  (xi)   ;    r   =   1,2,3,4. 

If   the  values  mi ;  i =0,1 ,........,k  are  known,   s  can  be   constructed  in 

each  of  the   intervals   [xi-1, x i ]   by  use  of  Hermite's  two  point 

interpolation  formula.      Equivalently,   if   the  values  M i ; i = 0,l,..,k 

are  known,   s  can  be  obtained  in  [xi-1,x i]  by  integrating 

                    }iM)lixx(1iM)xix{(
h
1)x()2(s −−+−−=  

twice  with  respect  to  x  and  using  the   interpolation  conditions 

s(xi-1)   =  yi-1 ,   s(xi) =  yi   for   the   determination  of   the  two   constants 

of  integration.     To   determine  either   of   the  k+ 1   parameters  mi   or  Mi 

the  consistency  relations 

   ,1k..,,.........2,1i;}1iy1iy{
h
3

1imim41im −=−−+=+++−                        (1.3) 
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or 

,1k,,.........2,1i;}1iyiy21iy{2h

6
1iMiM41iM −=++−−=+++−                (1.4) 

are  used,   these  being   direct   consequences   of   the   continuity   constraints 

on  s.      Since   either   (1.3)   or    (1.4)   provide  only  k - 1    linear   equations, 

it  follows   that   the   interpolation  conditions   (1.2)   are  not   sufficient 

to  determine  s   uniquely.       Two   additional   linearly  independent   conditions  

are  always   needed  for   this  purpose.     These  are  usually  taken  to  be   end 

conditions,   i.e.   conditions   imposed   on   s,s(1) or   s(2) near   the   two   end 

ponts   a  and  b. 

As  might  be   expected   the  choice  of   end  conditions  plays   a   critical  role 

on  the  quality  of   the  spline   approximation.   It   is  well  known  that  the 

best   order   of   uniform  convergence   that   can  be  achieved  by s  and  its 

derivatives   is 

|| s(r)  -  y  (r) ||    = 0(h4-r);            r =   0 , 1 , 2 ,  (1.5) 

where   ||      ||   denotes   the  uniform  norm  on   [a,b].       It   is  also  known  that 

this   order   is   obtained  only  if   the  end   conditions   of   s  are   such  that 

mi -     =  0(h)1(
iy n)  ; i  =  0,1,....k   , (1.6) 

with  n  >  3.      This   implies   that   the  order  of |)1(
iymi|

ki0
max −

≤≤
 determines 

the  quality  of   the  end  conditions   of   s;   see   e.g.   Kershaw  [6]   and 

Behforooz   and  Papamichael   [2],     However,   if  y  is   sufficiently   smooth 

then,   as   observed  by  Lucas   [7],   a  better  indication  of   the  accuracy  of 

s   is  provided  by  the  order  of  |i|
ki0

max λ
≤≤

   where, 

 

 .k.......,,.........1,0i;iM)6(
iy

360

4h)4(
iy

12

2h)2(
iyi =−+−=λ                       (1.7) 

The  reason  for   this   emerges from  the  results   (1.9) -   (1.11),   stated 

below. 
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Let s be an interpolatory cubic spline which agrees with y ∈ C8[a,b] 

at the equally spaced knots (1.1) and satisfies end conditions such 

that 

;nhn|i|
ki0

max α≤λ
≤≤

 0  <  n  <   6   , (1.8) 

 

where  αn    is  a  constant   independent   of  h  and   the λ i   are  defined  by 

(1,7).      Then,   the   following   results   are   direct   consequences   of   the 

results  established  in  Lucas   [7]: 

(i)     There  exist   constants   An , Bn ,Cn ,Dn  and   En  independent   of 

h  such   that 

      

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

−≤−−+−
−≤≤

−≤+−+
−≤≤

+=

≤+−+
−≤≤

+≤+−+
−≤≤

+≤−
≤≤

,1rhnE|)1iM1i(M
2h
1(3)

iy|
1ki1

max

,1rhnD|0.5h)i(x(3)y0.5h)i(x(3)s|
1ki0

max

)/6,3(3µwith

,rhnC|µh)(xi(2)yµh)i(x(2)s|
1ki0

max

,1rhnB|0.5h)i(x(1)y0.5h)i(x(1)s|
1ki0

max

,1rhnA|(1)
iyim|

3i0
max

      (1.9) 

where   r  =   min (n,3) 

 (ii)    There   exist  constants   Fn ,  Gn   and   Hn  independent  of  h  such  that 

  

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

≤−−−+−−−

≤+++−−
−≤≤

≤−+−−

,rhnH|)3kM2k4M1k5Mk(14M
12
1(2)

ky|

,rhnG|)1iMi10M1i(M
12
1(2)

iy|
1ki1

max

,rhnF|)3M24M15M0(14M
12
1(2)

0y|

                 (1.10) 

 

where  r =  min(n,4)  
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(iii)    There   exist  constants   kn  and   Ln  independent   of  h  such  that 

                      

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

−≤++−−−
−≤≤

=

−≤+−++−−−−
−≤≤

2nhnL|)1iMiM21iM(2h

1)4(
iy|

1ki1
max

),5,n(minr

,1rhnk|)2iM1iM141iM142iM(
h24

1)3(
iy|

2ki2
max

   (1.11) 

 
The following  conclusions  can  be  drawn  immediately  from  the above 

results.   If,   in   (1.8),   n >  2  then  the  cubic  spline  s  has  optimal  0(h4) 

convergence  uniformly  on  [a,b]. If  n  >  3   then  the  derivatives  of  s 

display  the  superconvergence  properties (1.9),and  the  linear   combinations 

of  the  M i contained  in (1 .10)   give  more  accurate  approximations to   )2(
iy

than  those  obtained  from  s(2) .Finally,   if  n  =  6  then  the   linear 

combinations  of  the M i contained in (1 .11)  give  0(h4)  approximations 

to    respectively. )4(
iyand)3(

iy

It  should  be  observed  that  some  of  the  results  (1.9) - (1.11)  hold  under 

much  weaker'requirements   than y   C8[a,b].  Full  details   concerning  these 

requirements  can  be  found  in  Lucas   [7]. (See  also  Behforooz  and 

Papamichael  [3],   where  an  alternative  interpretation  to   some  of  the 

results  corresponding  to  the   case  n =  3  is  established  under  the 

assumption  y  ∈ C 5 [a ,b ] . )  

The    purpose  of   the  present  paper  is  to derive  various  classes of end 

conditions  and  to  compare  their  quality  by  using  as  a  criterion  the 

order  of 

|iM)6(
iy

360

4h)h(
iy

12

2h)2(
iy|

ki0
max −+−

≤≤
                            (1.12) 

In  particular  we  derive  a  number   of  end  conditions   for  which   (1.12) 
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achieves   0(hn)   with  n >  5. Such  end  conditions   are  needed   for 

computing  accurate  approximations   to  by  means   of   the )4(
iyand)3(

iy

formulae  contained  in   (1.11).   Although  some  of  the  results 

concerning   the   less  accurate   end  conditions   can  be   established 

under  weaker   continuity  requirements,   in  order   to   simplify  the 

presentation  we  assume   throughout   that  y ∈  C8[a,b]. 

The  following  lemma  is  needed  for   the  derivation  of   the  results 

given  in  Section  2.     It   can  be  established  easily,   from  (1.4), 

by  Taylor   series   expansion  about   the  point  x i  ;  see  Lucas   [7, p.576]. 

Lemma   1. 1        Let 

               .k....,,.........1,0i;iM)6(
iy

360

4h)4(
iy

12

2h)2(
iyi =−+−=λ  

If  y ∈ C8 [a,b]   then 

λ i-1   +  4λ 
i  +  λ i+1  = E i ;        i = 1,2,...,k-1    , (1.13) 

where 

                    ||)8(y||6h
!8

516|iE| ≤                                                               (1.14) 

 

2.     End  Conditions

We   let   s  be  an  interpolatory  cubic   spline  which  agrees  with  y ∈ C 8  [a,b] 

at   the   equally  spaced  knots   (1 .1)    and   satisfies   end   conditions   of   the 
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 form 

          

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎭
⎬
⎫

⎩
⎨
⎧

∑
=

∑
=

∑
= −+−−−=α++−γ

⎭
⎬
⎫

⎩
⎨
⎧

∑
=

∑
=

∑
=

++=γ++α

4

0i

2

0i

2

0i
)2(
ikyic2h)1(

ikyibhikyia2h

1
kM1-kβM2kM

4

0i

2

0i
)2(

iyic
2

0i
2h)1(

iyibhiyia2h

1
2M1βM0M

       (2.1) 

 
where we assume  without loss of  generality  that a > 0. Our  purpose  is 

to    examine  the  effect  that  various  choices  of  the  parameters  α,β,γ, 

a i,b i  and  ci  have  upon  the  quality  of  the  spline  approximation. We 

do  this  by  using  as  a  criterion  the  order  of    |i|
ki0

max λ
≤≤

  where,as  before. 

 .k...,.........1,0i;iM)6(
iy

360

4h)4(
iy

12

2h)2(
iyi =−+−=λ                     (2.2) 

With  this  notation  the  equations  (2.1)  and  (1.4)  give 

                                         (2.3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

=αλ+λ+−γλ

−==+λ+λ+−λ

=γλ+λ+αλ

,kEk1-kβ2k

,1k.,,.........2,1i;iE1ii41i

,0E21β0

 

where 

       

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪⎭

⎪
⎬
⎫

−++++−++−

⎪⎩

⎪
⎨
⎧

∑
=

∑
= −+∑

=
++−−−+−−=

⎪⎭

⎪
⎬
⎫

+++++−

⎪⎩

⎪
⎨
⎧

∑
=

∑
=

∑
=

+++−
−−=

,)6(
2

(6)
1-kβy)6((

360

6

360

6)4(
2

(4)
1-kβy)4((

12

4

4
0

2
0

))2(
2

2
0

(2)
1-kβy)2((2)2(2)1(

2
1

,))6(
2

(6)
1βy)6(

0(
360

6
))4(

2
(4)
2βy)4(

0(
12

4

)
4
0

2
0

2

0
)2(

2
(2)
1βy)2(

0(2)2(2)1(

2
1

0

kykyhh
kykyh

i i ky
i kyhikyichikyibhikyia

hkE

yyhyyh

i i i
yyhiyichiyibhiyia

h
E

γαγα

γα

γαγα

γα

(2.4)
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and,   from   (1.14), 

                      1k,,.........2,1i;||)8(y||6h
!8

516|iE| −=≤                             (2.5)
 

Also,   by  Taylor   series  expansions   about  the  points  x 2 and  xk-2 , we 

find   that 

                       

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

+−
−−∑

=
=

+−∑
=

=

),6h(0)j(
2ky2jh

!j
jBj)1(

7

0jkE

),6h(0)j(
2y2jh

!j
jB7

0j0E

             (2.6) 

 
where 

             (2.7) 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

+−++−−−−+=

+−+−−++−=−−=

−−++−−−−+=

−++−−++−−−−=

−−++++−−+=

+++−−−++−−−−=

−−−−−+=

−−−−−=

14β4812α142c01344c17b0448b4128a3a1a0128a7B

2γγ2β362α130c0480c16b0192b464a3a1a064a6B

10β0140α120c0160c15b080b432a3a1a032a5B

2γγ10β46α112c048c14b032b416a3a1a016a4B

6ββ12α16c012c13b012b48a3a1a08a3B

2γγ2β2α22c12c02c12b04b44a3a1a04a2B

,2b1b0b42a3a1a02a1B

,4a3a2a1a0a0B

To  simplify  the  presentation  we  assume  that   in  ( 1 -1 )   k >  5.     Then  a 

sufficient  condition  for the  unique  existence  of   s   is  that  the  parameters 

α,ß,and γ  satisfy  either 

or                  

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

+α−γ+γ+>

+α−γγ+<

γ≠

≠γ=α

,)(
3
219 αβ5

or
,)(

5
2-11 α3 β

andα(ii)

4 αβand)i(

                          (2.8) 
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where 

                    
⎪⎩

⎪
⎨
⎧

α>α−γ

α<γ
=+α−γ

.

,,0
)(

This  follows  easily  from  the  results   of  Behforooz  and  Papamichael 

[2,   p.358-59],   by  observing  that   the  linear   system   (2.3)   can  he  written 

in  the  tridiagonal  form 

                                     (2.9) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−γ−=λγ−α+−λγ−

−==+λ+λ+−λ

γ−=λγ+λγ−α

,1kEkEk)(1k)4β(

,1k...,,.........2,1i;iE1ii41i

,1E0E1)4-β(0)(

and that the matrix in (2.9) is the matrix of the linear system which 

determines the parameters M i of s. The results of [2] also show that 

if   (2.8)   holds  and 

E i  =   0(hm)  ; i =  0,k ,                                                     (2.10) 

then 

),nh(0|i|
ki0

max =λ
≤≤

                                                           (2.11) 

 

where  n  =  min   (m,6).   This   shows   that   the  quality  of   end   conditions   of 

the  form   (2.1)   is  determined  by   the   order  of  E i ;      i   =  0,k. 

The  remainder  of   the  paper   is   concerned  with  examining  various  classes 

of  end  conditions  of   the  form   (2.1).       In  each  case  we  consider  only  end 

conditions   for  which  s  attains   the  optimal  order  0(h4)   of  uniform 

convergence   on  [a,b].  This  requires   that  E i =  0(h m)  ; i = 0,k,   with 

m > 2, and  implies  that   the  parameters  α, β, a i,b i and  c i must  be 

chosen  so  that  in   (2.7) , 

B i   =  0  ; i  =  0,  1,  2,  3.                                                   (2.12) 
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To  avoid  unnecessary  repetition,   we  point   out  now  that   all   the  results 

of   subsequent   sections  are  established  under   the   assumption   that   the 

parameters   α, β and  γ   satisfy   the   condition   (2.8).   This   condition 

certainly  holds   for  all   the   specific  values   of  α, β  and  γ  that  occur 

in   some   of   the  results,   considered   in   the   following   sections. 

3.      End  conditions   involving  values   of   y  only

We   take  b i   =   c i   =  0;       i  =  0,1,2   and  γ  =  0   in   (2.1)   and   consider   end 

conditions   of   the   form 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−∑
=

=α+

∑
=

=+α

.ikyia
4

0i2h

1
kM1-kβM

,iyia
4

0i2h

1
1βM0M

                                     (3.1) 

It   should  be   observed   that   there   is  no   loss   of   generality   in  assuming 

that  γ  =  0      The   reason   for   this   is   that   the   terms 2kMand2M −γγ   can 

always  be   eliminated  by  means   of   the  relations   (1.4). 

It   can  be   shown  easily  from   (2.7)    that   the   requirement   (2.12)   is 

satisfied   for   any  values   of   the  parameters   α , ß   and   a 4  provided   that 

the   other   four  parameters   in   (3.1)    satisfy   the   relations 

                                                (3.2) 
⎪⎭

⎪
⎬
⎫

−α−=++α−

−α−=++α−

.4a43a,4a6β42a

,44a-β251a,4aβ20a

When   (3.2)   hold   then 

                             (3.3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

+α−=−α=

+α−=−α=

==

β),4(1407B),42a-β4(606B

β),4(205B),46a-β5(44B

,3,2,1,0i;0iB
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  and,   by  using  (1.4),  the  end  conditions  (3.1)  can  be  written  as   

                                  (3.4) 
⎪
⎭

⎪
⎬

⎫

=∇−α−∇−α+∇

=Δ−α−Δ−α−Δ

0kM2)46a-β5(kM3)4a6(kM44a

,00M2)46a-β5(0M3)4a6(0M4
4a

 In  particulars  if  a4  =  0,i.e.   if  in  (3.1) 

                               (3.5) 
⎪⎭

⎪
⎬
⎫

=α−=+α=

−α−=+α=

,04a,3aβ,42a

,β251aβ,20a

then  (3.4)   gives  the  class of  end  conditions 

                                                         (3.6) 
⎪
⎭

⎪
⎬

⎫

=∇−α−∇α

=Δ−α+Δα

,0kMβ)5(kM3

,00M2β)5(0M3

which  is   considered   fully  in  Behforooz   and  Papamichael   [2].      The 

special   case  α  =   0,   β =  1   of   (3.6)   i.e.   the  conditions 

Δ 2M0   =  ∇2M k  =   0   ,                                                (3.7) 

have   also   been   considered   by  De   Boor   [4]   and  [5,  p.55]   Kershaw   [6]   and 

Lucas   [7]. 

For   any  values   of   α,  β   and   a 4   the   end   conditions   (3.4)   are   such   that 

E i   =  0(h2);      i   =   0,k  .   However,   it   follows   from   (3.3)   and   (3.4)   that 

when a 4  =   (5α-β)/6,   i.e.   when  in   (3.1),  

         (3.8) 
⎪⎭

⎪
⎬
⎫

−α=+α−=

α=+α−=+α=

β)/6,5(4aβ)/6,425(3a

,92aβ)/6,850(1a  β)/6,517(0a

then 

                       (3.9) 
⎪⎭

⎪
⎬
⎫

+α−=−α=

+α===

β),4(1407B,β)27(206B

β),4(205B,4,.........1,0i;0iB
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  and   the   end   conditions   (3.1)   can  be   written   as 

                                                          (3.10) 
⎪
⎭

⎪
⎬

⎫

=∇−α+∇−α

=Δ−α+Δ−α

.0kM3β)4(6kM4β)5(

,00M3β)4(60M4β)5(

This   class   of   end   conditions   is  considered   in  Behforooz   [1]. 

For  any  values  of  α  and  β  the  end  conditions   (3.10)   are  such  that 

E i   =  0(h3)  ;      i = 0,k .However,   if  α  =   1   and  ß  =  4,   i.e.   when  in   (3.1) 

α=1,   β = 4,   a0 = 37/6,   a1=-82/6,    a2 = 9,   a3=-10/6,    a4 = l/6,        (3.11) 

then 

Bi  =  0  ; i =   0 ,1 , . . . , 5  , B B6   =  -20  , B7  =  0.                 (3.12) 

Thus,   from   (3,10)   and   (3.12)   the  end  conditions 

Δ4 M0    =   ∇4Mk    =    0  ,                                                              (3.13) 

are   such   that  Ei  =  0(h4) ;   i = 0,k.      Furthermore,    (3.13)   are   the  most 

"accurate"  end conditions of  the  class   (3.1),   in  the  sense  that  they  are 

the  only  such  end  conditions   for  which  E i =  0(h4)  ;      i= 0,k. 

The   end   conditions   (3.13)   are  considered  by  Lucas   [7]  who  also  considers 

the  conditions 

Δ3M0    =    ∇3Mk  =   0  ,                                                                       (3.14) 

i.e.   the  special   case   α  =   1, β  =  5,   of   (3.10).  It   is   interesting   to 

observe   that   (3.14)   are  also the  special  case  α = 1, ß  =  5  of   the  class 

(3.6),   and  that   they  are  the only  conditions  of this  class  for  which 

E i  =  0(h3) ;  i = 0,k . 



                                                            -12- 

4.     End   conditions    involving   values  of  y(1)   only 

 

In   this  section  we  consider  end  conditions  of  the  form 
 

            

 

⎪
⎭

⎪
⎬

⎫

+ − + − = α + + − γ 

+ + = γ + + α 

, ) 1 ( 
k y 0 b ~ ) 1 ( 

1 k y 1 b ~ ) 1 ( 
2 k y 2 b ~ 

k m ~ 
1 - k m β ~ 

2 k m ~ 

, ) 1 ( 
2 y 2 b ~ ) 1 ( 

1 y 1 b ~ ) 1 ( 
0 y 0 b ~ 

2 m ~ 
1 m β ~ 

0 m ~ 

                       (4.1) 

where  α~  > 0  and,   as  before  m i   =  s (1) (xi). 

By  using  the  cubic  spline  identities 

  ,1k,,.........1,0i);iy1iy(
h
1

1iM
6
h

iM
3
h

im −=−+++−−=  

and 

        ,k,........,2,1i);1iyyi(
h
1

iM
3
h

1iM
6
h

im =−−++−=  

the  conditions   (4.1)  can  be  written  in  the  form  (2.1)  with 

   

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

==

=−=

==γ+=γ−αα−=

γ=γγ+=α=α

.2,1,0i;0ic

,2,1,0i;ib~3ib

,04a3a),~β~(32a),~-β~~(1a,~30a

,2/)~2-β~(,2/)~-β~2α~(β,~

    (4.2) 

It  follows  easily  from  (2.7) and (4.2)  that  the  requirement   (2.12)   is 

satisfied  provided  that  in   (4.1)  

.~
2b~andβ~1b~,~

0b~ γ==α=                                    (4.3) 

Furthermore,   it  turns  out  that  for  the  parameters  defined  by   (4.2)   and 

(4.3),  B4  =  0  also.  More  specifically   (4.2),  (4.3)   and   (2.7)   show  that 
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 for    any   values   of   γ~ andβ~,~α    the   end  conditions 

                                        (4.4) 
⎪
⎭

⎪
⎬

⎫

α++−γ=α++−γ

γ++α=γ++α

,)1(
ky~(1)

1-kyβ~)1(
2ky~

km~
1-kmβ~2km~

,)1(
2y~(1)

1yβ~)1(
0y~

2m~
1mβ~0m~

are    such    that 

                         (4.5) 
⎪⎭

⎪
⎬

⎫

γ−+α=+α−=++α=

==

~10β~32~1587B),β~~2(126B),γ~β~~(25B

,4..,,.........1,0i;0iB

Therefore,   for   any  values  of  γα ~andβ~,~   the  end  conditions   (4.4)   are 

such  that  E i  =  0(h3)  ;      i = 0,k,   and  if  γ++α ~β~~   =  0  then  E i   =  0(h4) ; 

i  =  0,k. 

The  most  "accurate"   end   conditions   of  the  class   (4.4)   are  those  which 

correspond   to  the  values ,1~and-2β~~ ,1 =γ==α   For  these  values 

(4,5)   gives 

Bi  =  0  ; i  =  0,1, . . . ,6  , BB7   =  84  ,       (4.6) 

and  thus  the  end  conditions 

⎪
⎭

⎪
⎬

⎫

∇=∇

Δ=Δ

,)1(
ky2

km2

,)1(
0y2

0m2

                                                 (4.7) 

and  such  that  Ei=0(h5) ;    i =  0 ,k. 

The   special   case    0~-1,β~,1~ =γ==α  of (4.4),  (i.e).  the  end  condtion  

                                                     (4.8) 
⎪
⎭

⎪
⎬

⎫

∇=∇

Δ=Δ

,)1(
kykm

,)1(
0y0m
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are  considered  in  Lucas  [7].     For  these  end  conditions   (4.5)  gives 

Bi = 0;       i = 0 , 1. . . . .5 ,  B B6 = -12 , B7 =   126 , (4.9) 

and  thus Ei   = 0(h4) ;        i = 0,k . 

The  most  frequently  used  end  conditions  of  the  class   (4.4)  are  those 

which  correspond  to α~   =   1,   β~   =  γ~   =  0,   i.e.   the  conditions 

.)1(
kykm,)1(

0y0m ==  (4.10) 

For  these  end  conditions   (4.5)   gives 

Bi = 0;     i = 0,1, . . . ,  4  ,        B5  =  2 ,   B6  =  -24 ,B7  =  158 ,                (4.11) 

and  thus  Ei   =  0(h3)  ; i = 0,k. 

 
5.     End   conditions  involving  values   of  y(2)only

We  take  a1  = 0 ;     i = 0,1,...,4  ,    and    bi = 0 ,    i = 0,1,2,    in    (2.1)  and 

consider  end  conditions   of   the   form 

                                   (5.1) 
⎪
⎭

⎪
⎬

⎫

+−+−=α++−γ

++=γ++α

,)2(
ky0c)2(

2ky1c)2(
2ky2ckM1-kβM2kM

,)2(
2y2c)2(

0y1c)2(
0y0c2M1βM0M

Then the requirement (2.12) is satisfied for any values of α, β, γ 

and c2 provided that the other two parameters in (5.1) satisfy the 

relations 

c0  =  α = γ  +  c 2  , c 1  =  β +  2γ  -  2c2   .                       (5.2) 
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When   (5.2)  hold  then,   from   (2.7), 

                 (5.3) 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

+γ+α=γ+−α−=

+γ+α=+γ+α−=

==

,2c12601260-β565327B2420c-422β281186B

)212c12-β(105B),2c1211-β(24B

,3,2,1,0i;0iB

 

and  the  end  conditions   (5.1)   can  be  written  as 

                       (5.4)
⎪
⎭

⎪
⎬

⎫

∇γ−+α++−γ=α++−γ

Δγ−+γ++α=γ++α

.)2(
ky2)2c()2(

ky(2)
1-kβy)2(

2kykM1-kβM2kM

,)2(
0y2)2c()2(

2y(2)
1βy)2(

0y2M1βM0M

 

For any values of α, β, γ and C2 the end conditions (5.4) are such 

that Ei = 0(h2) ; i = 0,k. However, if c2 = - (α+β =11γ)/l2, i.e. 

if  in   (5.1), 

c0  =  ( 1 lα - β- γ ) / 1 2 ,    c1  =  (2α+ l4β + 2γ ) / l2 ,    c2  =  - (α +β - 1 lγ)/12  ,    (5.5) 

then,   from   (5.3)  , 

                                  (5.6)
⎪⎭

⎪
⎬
⎫

γ−α=γ++α−=

γ−α===

.105-β494277B,37β7836B

),(105B,4,.......1,0i;0iB

 
Therefore,  for  any  values  of  α,  β  and  γ  the  end  conditions 

     

 

⎪ 
⎭ 

⎪ 
⎬ 

⎫ 

∇ γ + + α − α + + − γ = α + + − γ 

Δ γ + + α − γ + + α = γ + + α 

, 12 / ) 2 ( 
k y 2 ) β ( ) 2 ( 

k y (2) 
1 - k βy ) 2 ( 

1 k y k M 1 - k βM 2 k M 

, 12 / ) 2 ( 
0 y 2 ) β ( ) 2 ( 

2 y (2) 
1 βy ) 2 ( 

0 y 2 M 1 βM 0 M 

       (5.7) 

are  such  that  Ei  =  0(h3)  ;      i =0,k.     In  particular  if  α  =  γ  then, 

from  (5.6) , 

Bi = 0;     i = 0,1,...,5  ,        B6  =  - 46α+ 7β , B7  =  7 (46α-7β)  ,       (5.8) 
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 and  therefore,  for  any  values  of  α  and  β,   the  end  conditions 

                         (5.9) 
⎪
⎭

⎪
⎬

⎫

∇+α−α++−α=α++−α

∇+α−α++α=α++α

,12/)2(
ky2β)2()2(

ky(2)
2-kβy)2(

2kykM1-kβM2kM

,12/)2(
0y2β)2()2(

2y(2)
1βy)2(

0y2M1βM0M

are   such   that   Ei   =   O(h4)  ;    i   =   0  ,  k 

The   special   case   α  = 0,  β  =  1  of  (5.9) ,   i.e .   the   end   conditions  

                                                                                     (5.10) 
⎪
⎭

⎪
⎬

⎫

−−+−−=−

−+−=

,)2(
ky)2(

1k14)2(
2ky1kM12

,)2(
2y)2(

1y14)2(
0y1M12

is  considered  in  Lucas  [7].  Lucas  also  considers  the  case  α =  1,   β   =  10 

of   (5.9),   i.e.   the  conditions 

                                                     (5.11) 
⎪
⎭

⎪
⎬

⎫

−=+−+−

=++

)2(
1ky12kM1kM102kM

,)2(
1y122M1M100M

The  conditions   (5.11)  are  of  special  interest  because  they  require 

knowledge  of  y(2)  only  at  the  two  points  x1   and  x k-1

As   it   is  clear  from   (5.8),   the  most  accurate   end   conditions  of   the  class 

(5.1)   are  those  which  correspond  to  the  values  α  =  7,   β   =  46  in   (5.9), 

i.e.   the  conditions 

⎪
⎭

⎪
⎬

⎫

+−+−=+−+−

++=+=

.)2(
ky2)2(

2ky56)2(
2ky2kM71kM462kM7

,)2(
2y2)2(

1y56)2(
0y22M71M460M7

                                 (5.12) 

For  these  end  conditions  B i = 0 ;      i  =  0,1,.. . ,    7  and  the  Ei ;   i  =  0,k,  achieve 

the  best  possible  order  0(h6).  The  conditions   (5.12)   are  also 

considered  in  Lucas     [7]. 
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The  most  frequently  used  end  conditions  of  the  class   (5.4)  are   those 

which  correspond  to  α =  1,  β = γ =  c 2  =  0,     i.e.  the  conditions 

)2(
kykM,)2(

0y0M ==                                     (5.13)                 

For   (5.13), 

Bi  =0 ;   i= 0,l,2,3,     B4  =  -2,     B5  =  20,     B 6  = - 1 1 8 , B7  =  532  ,        (5.14) 

and  thus  E i  = 0(h2)  ; i   = 0,k 

6.     Other  end  conditions

Of   the  end  conditions  considered   in  Sections   3,   4  and  5  the  most 

accurate  are   (4.7)   and   (5.12).     These  conditions  give  Ei  =0(hn) ;     i = 0,k , 

with  n  =  5  and  n  =  6  respectively.     However,   (4.7)   and  (5.12)  require 

knowledge  of  y(1)  and  y(2) respectively,   at   the  six  knots 

xi ;      i =0,1,2,k-2,k-l,k,   and   it   is  unlikely  that  this  additional 

information  would  be  available  in  an  interpolation  problem.     End  conditions 

of  the  class   (3.1)  do  not  require  any  additional  information,  but  the 

most  accurate  of   these,   i.e.   the  conditions   (3.13),   give 

Ei  =  0(h4)  ;   i = 0,k.    In  this   sect ion  we  show  that  it  is  possible  to 

construct  end  conditions  which  require  derivative  information only  at 

the  two  end  points  x 0  and  x k   and  which,   like   (4.7)   and   (5.12),   give 

E i  = 0(h n);      i=0,k,  with  n  >  5. This  is  done  by  forming  linear 

combinations  of  end  conditions  derived  in  earlier  sections. 

Let ECO, EC1 and EC2 denote end conditions which belong respectively 

in the three classes defined by (3.1), (4.1) and (5.1). Assume that 

the   E i;   i = 0,k,    corresponding  to  ECO,  EC1 and  EC2  are  given  by   (2.6) 
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with  Bj  =  )r(
jB ;     r = 0,1,2,   respectively.   Let  EC  denote   the   linear 

combination  of   EC0, EC1  and  EC2,   in  the  proportion  d 0  parts   of  EC0 

to  d 1  parts  of  EC1  to  d 2  parts  of  EC2,   i.e.   symbolically 

EC ≡ d 0 (EC0)  + d1 (ECl) + d2 (EC2).. (6.1) 

Then  clearly  the  Ei  ;    i  = 0,k  ,  for   the  end  condition  EC  are  given 

by   (2.6)   with 

;)2(
jB2d)1(

jB1d)0(
jB0djB ++==  j  = 0 ,  1,...7,  (6.2) 

This   observation  leads   to  a  simple  technique   for   constructing  accurate 

end  conditions   of   the  form   (2.1).      We   illustrate   the   technique  by 

deriving   three   such  end   conditions  which  are  of   greater  practical  value 

than   (4.7)   and   (5.12),   in  the   sense   that   they  require   derivative 

information  only  at   the   two  points  x 0   and  x k. 

Let 

EC  =  ECO  +  d i  (ECl) ,  (6.3) 

where ECO are conditions of the class (3.1) with parameters (3.8) and 

EC1 are the conditions (4.10). Then, from (3.9) (4.11) and (6.2), the 

B.   corresponding  to   the   conditions  EC   are  given  by 

                (6.4) 
⎪⎭

⎪
⎬
⎫

=+α−=−α=

++α−===

.1158dβ)4(1407B,124d-β)27(206B

,12dβ)4(205B,4,......,1,0i;0iB

Therefore,   if   the  parameters  α,   β  of  ECO  and  d1   of   (6.3)   are   chosen 

so  that 

β/α  =  41/10 and d 1/ α  =  -1  ,                                              (6.5) 

then 

Bi,   =  0  ; i = 0 , l , . . . , 6 ,  B B7  =  -144α  ,                              (6.6) 
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and  the  conditions  EC  defined  by  (6.3)  are  such  that  E i  =0(h5);     i = 0,k. 

In  particular,  when  α  =  20/72  then  (6.5)  and  (6.3)  give  the  end  conditions 

      

⎪
⎪
⎭

⎪⎪
⎬

⎫

−−+−−−+−−=−

++−+−=

})1(
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1
1kM

},)1(
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1
1M

            (6.7) 

 

for  which 

B i  =  0 ;       i = 0,1,...,6 , B7  =  - 40 , (6.8) 

In  a  similar  manner  it  can  be  shown  that  the  end  conditions 

  

⎪
⎪
⎭

⎪⎪
⎬

⎫

−−+−−−+−−=+−

−−−+−=+

},)2(
ky2h604ky293ky3202ky18661ky2888ky1313{2h

1
kM1441kM876

},)2(
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1
1M8760M144

 (6.9) 

are  such  that   E i  =0(h5);     i = 0 , k .     More  specifically,  the  B i   corresponding 

to   (6.9)  are 

B i  =  0 ;        i = 0 , l , . . . , 6   , B 7  =  -23520 . (6.10) 

This  result  is  obtained  by  taking  ECO  to  be  conditions  of  the  form   (3.1) 

with  parameters   (3.2),  EC2  to  be  the  conditions   (5.13)  and  determining 

the  parameters  α,  β  and  a 4  of  ECO  and  the  constant  of  proportionality 

d 2  so  that 

EC  =  ECO  +  d 2 (EC2) 

gives  B i  = 0;     i = 0 , l , . . . , 6 .      Finally,   by  taking  EC01   and  EC02  to  be 

respectively  the  conditions  (6.7)  and   (6.9)  and  determining  the  constant 

d  so  that 

EC º   EC01   +  d(EC02) 
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 gives  B7=0,  we  find   that  the  end  conditions 

       

⎪
⎪
⎪
⎪

⎭
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⎪
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⎬

⎫
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 (6.11)      

are   such   that   E i   =   0(h6)  ;    i =  0 , k . 

7.     Numerical  Results

In  this  section  we  present  numerical  results  obtained  by  taking 

y(x)  =  exp(x)  ;     x i   =  0.05i ;      i  =  0,1,...,20 , 

and  computing  the  parameters  M i ;      i =0,1,...,20,   of  the  cubic  splines 

with  end  conditions   (3.13),   (4.10),   (5.13),   (6.7),   (6.9)  and   (6.11). 

We  denote  these  six  splines  respectively  by  SI ,SII , S III,SIV,SV, 

and SVI. 

As  was  remarked  earlier   (3.13)   are  the  most  accurate  end  condtions  of 

the  class   (3.1),  whilst    (4.10)  and   (5.13)   are  respectively  those  most 

frequently  used  from  the  classes   (4.1)   and   (5.1).  The  three  new 

"accurate"  end  conditions   (6.7),    (6.9)   and   (6.11),   like   (4.10)  and 

(5.13),  require  derivative  information  only  at  the  two  endpoints 

and  for  this  reason  are  of  greater  practical  interest  than   (4.7) 

and   (5.12). 
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The  results   in  Tables   1  -  5  are  computed  values  of

       ,iM)6(
iy

360

4h)4(
iy

12

2h)2(
iy|i| −+−=λ  

  |,)4(
iy)4(

iy~|and|)3(
iy)3(

iy~||,)2(
iy)2(

iy~||,)1(
iyim| −−−−

corresponding  to  sI, sII, . . . ,    sVI,  where  yi
(r);   r  =  2,3,4  denote  the 

approximations  to  yi
(r) obtained  by  using   the  formulae  contained  in   (1.10) 

and   (1.11).    The  results  illustrate  clearly  that  the  use  of  accurate  end 

conditions,   like   (6,7),    (6.9)   and   (6.11),   leads  to  significant  improvement 

in  the  accuracy  of  the  approximations  )r(
iy~   ;  r =  2,3,4,  especially  near  the 

two  ends  of  the  interval  of   interpolation. 

An  important  observation  concerns  the  results  corresponding  to  the  end 

conditions   (3.13)   and   (4.10).   Although  for  these  conditions  the   theory 

gives  li =  O(h4)   and  li =  0(h3)   respectively,   the  numerical  results  of 

sI   are  slightly  less  accurate  than  those  of  sII.  The  reason  for  this 

is  that   the   theoretical  results  of   the  present  paper  concern  orders   of 

convergence  only.    In  fact  a  more  detailed  analysis   similar   to  that 

used  in  Behforooz and  Papamichael  [2]  gives,   for  (3.13)  and  (4.10), 

  and         

 

⎪ ⎭ 

⎪ 
⎬ 
⎫ 

= + + + ≤ λ 

= + ≤ λ 

. k , 0 i ; ) 6 h ( 0 ) 1 exp( 3 h ) 2 h 031 . h 0405 . 0203 (. | i | max 

, k , 0 i ); 6 h ( 0 ) 1 exp( 4 h 5834 . | i | max 

(7.1) 

respectively. With  h  =  0.05  and  the  0(h6)   terms   ignored   (7.1)   gives 

 max   |λ i|  <   0.0225x(0.05)3exp(l), 

and 

 max     |λ i|  <  0.0291x(0,05)3exp(l). 
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TABLE   1

Values of   | λi |  

 SI SII
S

III S IV SV S VI

x
0 .267x10 -5 .240x10-5 .208x10-3 .997xl0-8 .173xl0-7 .873xl0 -10

x1 .716xl0 -6 .644xl0 -6 .558x10-4 .268x10-8 .465x10-8 .175xl0 -10

x2 .192xl0-6 .173xl0-6 .150xl0 -4 .702x10 -9 .123xl0 -8 .196xl0-10

x 4 .138x10-7 .124xl0-7 .107x10 -5 .357xl0-10 .735x10-10 .162xl0-10

x 6 .978x1-9 . 879x1-9 .771x10-7 .732xl-11 .460x10-11 .110X10-10

x8 .662x10-10 .574x10-10 .562x10-8 .536xl0-11 .519X10 -11 . 565x10-11

X
10 .183x10-11 .261xl0-10 .150x10 -8 .183xI0-10 .183xl0-10 .183x10-10

x 12 .156x1-9 .176xl0-9 .151xl0-7 .335xl0-11 .379xl0-11 . 274x10-11

x 14 .219x10-8 .243x10-8 .210xl0-6 .188xl0-10 .252x10-10 .102xI0-10

x16 .306x10-7 .337x10-7 .292xI0-5 .153xl0-9 .241xl0-9 .331xl0-10

x18 .427x10-6 .469x10-6 .407x10-4 .172xI0-8 .295x10-8 .517xl0-10

x19 .159xl0-5 .175xl0-5 .152xl0-3 .627xl0-8 .109xl0-7 .4l8x10-10

x20 . 595x10-5 .634x10-5 .566x10-3 .235x10-7 .406xl0-7 .214x10-9
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TABLE  2

Values of    )1(
iyim| −

 

 S
I

S
II

S
III

S
IV

S
V

S
VI

x0 .387xl0-8 — .304x10-5 .346x10-7 .345x10-7 .347x10-7

x1 .468xl0-7 .458x10-7 .769x10-6 .365x10-7 .366x10-7 .365x10-7

x2 .356xl0-7 .359x10-7 .254x10-6 .384x10-7 .383x10-7 .384x10-7

x4 .422xl0-7 .422x10-7 .579x10-7 .424x10-7 .424xl0-7 .424x10-7

x6 .468xl0-7 .468x10-7 .480x10-7 .469x10-7 .469x10-7 .469x10-7

x8 .518xl0-7 .518xl0-7 .519xl0-7 .518xl0-7 .5I8xl0-7 .518xl0-7

x10 .572xl0-7 .572xl0-7 .572xl0-7 .572xl0-7 .572x10-7 .572x10-7

x12 .633x10-7 .632x10-7 .630x10-7 .632x10-7 .632xl0-7 .632x10-7

x14 .699xl0-7 .699x10-7 ,669xl0-7 .699x10-7 . 699x10-7 .699x10-7

x16 .777xl0-7 .768x10-7 .351xl0-7 .773xl0-7 .772xl0-7 .773x10-7

x18 .915xl0-7 .786x10-7 .501xl0-6 .854x10-7 .853xl0-7 .854x10-7

x19 .667xl0-7 .115xl0 -6 .228xl0-5 .898x10-7 .899x10-7 .898x10-7

x20 .180xl0-6 — .808x10-5 .940x10-7 .938x10-7 .944x10-7
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TABLE  3 

Values  of    .|)2(
iy)2(

iy~| −

 sI sII sIII sIV sV sVI

x0 .402x10-5 .367x10-5 .271xl0-3 .543x10-6 .553x10-6 .530x10-6

xl .376x10-6 .340x10-6 .279x10-4 .196xl0-7 206xl0-7 .182xl0-7

x2 .768x10-7 .671x10-7 .750xl0-5 .188xl0-7 .186xl0-7 .192xl0-7

x4 .143x10-7 .150xl0-7 .558x10-6 .212xl0-7 .212xl0-7 .212xl0-7

x6 .229x10-7 .230x10-7 .620x10-7 .234x10-7 .234x10-7 .234x10-7

x8 .259x10-7 .259xl0-7 .287x10-7 .259xl0-7 .259x10-7 .259x10-7

x10 .286x10-7 .286x10-7 .294x10-7 .286xl0-7 .286x10-7 .286x10-7

x12 .315xl0-7 .317xl0-7 .392xl0-7 .316xl0-7 .316xl0-7 .316xl0-7

x14 .339x10-7 .362xl0-7 .140xl0-6 .350x10-7 .350x1 0-7 .350x10-7

x16 .233x10-7 .555xl0-7 .150xl0-5 .387xl0-7 .388xl0-7 .387x10-7

x18 .171xl0-6 .277xl0-6 .204x10-4 .436x10-7 .442x10-7 .427x10-7

x19 .842x10-6 .831xl0-6 .758x10-4 .418x10-7 .395x10-7 .449x10-7

x20 .906x10-5 .722xl0-5 .737x10-3 .127xl0-5 .125xl0-5 .130x10-5
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TABLE  4

Values  of    .|)3(
iy)3(

iy~| −
 

 sI sII sIII sIV sV sVI

x2 .101X10-4 .909x10-5 .777x10-3 .152xl0-6 .180xl0-6 .115xl0-6

x4 .843x10-6 .771xl0-6 .557xl0-4 .130xl0-6 .132xl0-6 .127xl0-6

x6 ,192xl0-6 .187xl0-6 .387x10-5 .14lxl0-6 .14lxl0-6 .141xl0-6

x8 .159xl0-6 .159xl0-6 .128xl0-6 .155x l0-6 .155xl0-6 .155xl0 -6

x10 .172xl0-6 .172xl0-6 .207x10-6 .172xl0-6 .172x10-6 .172xl0-6

x12 .181xl0-6 .199xl0-6 .970x10-6 .190xl0-6 .190xl0-6 .190xl0-6

x14 .954xl0-7 .336x10-6 . l l lxl0-4 .210x10-6 .211xl0-6 .210xl0-6

x16 .136xl0-5 .198xl0-5 .152xl0-3 .239x10-6 .243xl0-6 .232x10-6

x18 .219xl0-4 .246x10-4 .21lxl0-2 .343xI0-6 .407x10-6 .257x10-6
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TABLE  5

  Values of  . |)4(
iy)4(

iy~| −

       sI sII sIII sIV sV sVI

x1 .172xl0-2 .155xl0-2 .134 .642xl0-5 .111xl0-4 . 476x10-7

    x2 .461xl0-3 .414xl0-3 .359x10-1 .170xl0-5 .296x10-5 .343x10-7

x4 .330x10-4 .297x10-4 .258x10-2 .984xl0-7 .189xl0-6 .260x10-7

x6 .236x10-5 .212x10-5 .185x10-3 .984xl0-8 .332x10-8 .188xl0-7

x8 .161xl0-6 .140xl0-6 .135xl0-4 .104xl0-7 .995x10-8 .110X10-7

x10 .154xl0-7 .430x10-7 .357x10-5 .242xl0-7 .242x10-7 .241x10-7

x12 .369x10-6 .428x10-6 .362xl0-4 .130xl0-7 .141x10-7 .116xl0-7

x14 .527x10-5 .582x10-5 .503x10-3 .359x10-7 .510xl0-7 .152xl0-7

x16 .735x10-4 .809x10-4 .701xl0-2 . 339x10-6 .550x10-6 .508x10-7

x18 .103xl0-2 .113xl0-2 .976xl0-1 .410xl0-5 .704x10-5 .891xl0-7

x19 .383x10-2 .420xl0-2 .364 .151xl0-4 ,261xl0-4 .117xl0-6
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