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ABSTRACT

We consider the problem of deriving accurate end conditions for cubic spline
interpolation at equally spaced knots. In particular we derive a number of

end conditions which lead to derivative approximations of high accuracy.






1. Introduction

Let s be a cubic spline on [a,b] with equally spaced knots
xi=a + ih; i = 0,l1,....k, (1.1)

where h = (b-a)k. Then s € C*[ab] and in each of the intervals

[xi1,xi]; 1= 1,2,...,k, s is a cubic polynomial.

Given the set of values y;; i=0,1,...,k, where

vi=yx); y e C"[a,b] ,n > 4,

we consider the problem of constructing an interpolatory s such that

s(Xi) = Vi ; 1 =01,k (1.2)

To simplify the presentation we use throughout the abbreviations

mi=sVa), Mi= 2x) and YD = y© ) 5 or = 1234

If the values m;; 1=0,1 ,........ Jk are known, s can be constructed in
each of the intervals [Xxji,Xxi] by use of Hermite's two point
interpolation formula. Equivalently, if the values M ;;1=0,l,.. .k

are known, s can be obtained in [xi;,x ;] by integrating

s (x) = %{(xi “OM_ +(x—x, M}

twice with respect to x and using the interpolation conditions
s(Xi.1) = Vi1, sS(xi)=yi for the determination of the two constants
of integration. To determine either of the k+ 1 parameters m; or M;j

the consistency relations

3 .
mi—1+4mi+mi+l =H{yi+1_yi—l}’ 1=12, . . k-1, (1.3)



or
M 4M M ——6 2 c1=1,2 k-1 1.4
i—1 + i+ i+1 — h2 {yl_l - yl +y1+1} 1 =1,Z,......... , K —1, ( . )

are used, these being direct consequences of the continuity constraints
on s. Since either (1.3) or (1.4) provide only k-1 linear equations,
it follows that the interpolation conditions (1.2) are not sufficient
to determine s uniquely. Two additional linearly independent conditions
are always needed for this purpose. These are usually taken to be end
conditions, i.e. conditions imposed on s,s(l)or s®near the two end

ponts a and b.

As might be expected the choice of end conditions plays a critical role
on the quality of the spline approximation. It is well known that the
best order of uniform convergence that can be achieved by s and its

derivatives 1is
s -y @ =o0h*; r= 0,1,2, (1.5)

where || || denotes the uniform norm on [a,b]. It is also known that

this order is obtained only if the end conditions of s are such that

mi- y = om® ; i=0,1,.% , (1.6)
with n > 3. This implies that the order of Orgax< y | mi — yi(l) | determines
<i<

the quality of the end conditions of s; see e.g. Kershaw [6] and

Behforooz and Papamichael [2], However, if y is sufficiently smooth

then, as observed by Lucas [7], a better indication of the accuracy of

s 1is provided by the order of max | L. | where,
0<i1<k 1
2 4
_ (2 _hT 4y o hT o 6)
}Li =y, B y; o+ 360 ys Mi’ 1i=0,1,........ ... , k. (1.7)

The reason for this emerges from the results (1.9) - (1.11), stated

below.



Let s be an interpolatory cubic spline which agrees with y e C¥[a,b]

at the equally spaced knots (1.1) and satisfies end conditions such

that

(1.8)

where a, is a constant independent of h and the A; are defined by

(1,7).

Then, the following results are direct consequences of the

results established in Lucas [7]:

¢y

(i1)

There exist constants A,, B,.,C, ,D, and E, independent of

h such that

)] < r+1
quxymy -y [ < Anh ’

(1) e . r+l
OSnilg)l((—l | s (xi + 0.5h) y (xi +05h) | < B, h ,

(2) _.@ < r
Ognilgii(_lls (x, +uph) -y (xi +ph) | <Cphh-,

with p = (3 + /3)6,

3) 3) r-1
Osnilg)l((_1|s (Xi+0.5h) -y (Xi+0.5h) | < Dnh h ,

6) Loy

lyi? = My~ My < Enhyp s

a
I<i<k -1

where r = min (n,3)

(1.9)

There exist constants F,, G, and H, independent of h such that

2 _ 1 _ _ r
1Yo 12(14M0 SM| +4M, -M4)|[<F, h',

) 1
max [y® (M +10M +M; )| Gphy

1<i<k-1'71
@ _ 1 _ _ r
Ve = (14M = 5My g+ dMy o =My 5) [ < Hph'

where r = min(n,4)

(1.10)
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(ii1) There exist constants k, and L, independent of h such that

3 1 B _ r—1
2Srinsa1§—2 | ys ~an (Mi—Z 14Mi—1 + 14Mi+1 Mi+2) |<kph" 7,

r =min (n,5), (1.11)

@ 1 .
1< 1Y hz(Nﬁ—l M+ M, DI < Lph

The following conclusions can be drawn immediately from the above
results. If, in (1.8), n> 2 then the cubic spline s has optimal 0(h*)
convergence uniformly on [a,b]. If n > 3 then the derivatives of s

display the superconvergence properties (1.9),and the linear combinations

(2)

of the M ; contained in (1.10) give more accurate approximations to y;

than those obtained from s® .Finally, if n = 6 then the linear

combinations of the M j contained in (1.11) give 0(h*) approximations

€) 4

to y. and y; respectively.

It should be observed that some of the results (1.9) - (1.11) hold under
much weaker'requirements thany C®[a,b]. Full details concerning these
requirements can be found in Lucas [7]. (See also Behforooz and
Papamichael [3], where an alternative interpretation to some of the
results corresponding to the case n= 3 is established under the

assumption y € C’[a,b].)

The purpose of the present paper is to derive various classes of end
conditions and to compare their quality by using as a criterion the

order of

2 4
max |y.(2) - h—y.(h) + h—yi(6) -M

. (1.12)
0<i<k '~ 1 12 71 360

;

In particular we derive a number of end conditions for which (1.12)



achieves O0(h") with n> 5. Such end conditions are needed for

)

computing accurate approximations to y; and yi(4)by means of the

formulae contained in (1.11). Although some of the results
concerning the less accurate end conditions can be established
under weaker continuity requirements, in order to simplify the

presentation we assume throughout that y € C%[a,b].

The following lemma is needed for the derivation of the results
given in Section 2. It can be established easily, from (1.4),

by Taylor series expansion about the point x; ; see Lucas [7, p.576].

Lemma 1.1 Let
2 4
k.:y.(z)—h—y.(4)+h—y.(6)—M.; 1=0,1,. ... , k
i i 12 71 360 ° 1 i
If y e C*[a,b] then
M-l o+ o4 T A, =B i=1,2,....k-1

where

2. End Conditions

(1.13)

(1.14)

We let s be an interpolatory cubic spline which agrees with y € C*® [a,b]

at the equally spaced knots (1.1) and satisfies end conditions of the
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form

1[4 2. m,.22 O
2 =_2{i§()aiyi Th2 by TR ey

oM, +BM, +YM
0 1 h

2.1)

+[3M +ocM

My, K=

4
M 42 (2)
{goaiyk_i ‘hlzob Yk Th z ¢ yk—l}

where we assume without loss of generality that a > 0. Our purpose is
to examine the effect that various choices of the parameters ao,f3,y,
aibj and c¢; have upon the quality of the spline approximation. We

do this by using as a criterion the order of Orgepé L | Ki | where,as before.
<i<

2
ORI ORLMNON

.5 1=0,1,.ccc. .. k. 2.2
1 1 12 Vi 360 1 (22)

With this notation the equations (2.1) and (1.4) give

ok o +Bhy +phy = Eg

Ao 4+ 4h.+ A, =E.:i=12,.. k-1, (2.3)

i-1 1 i+1 i

yxk_z +Bxk_1 +(I7xk =Ek s

where
) 2 2 2) (2) (2) ( )

Eozlz Zayl—h%by —h ch +h? (avy " +By; )

h

6
(2.4)

g oL g e on il S Dot e ey

n2 | =0

(ay( D eni g 360 360 Y i +hyic) + )2}



and, from (1.14),

516 8) . .
\Ei|£7h6Hy()H;1:1,2, ......... k-1 (2.5)

Also, by Taylor series expansions about the points x ; and Xyx, , we

find that
Eg= 3 —3hi72y{D om0
j=0 J!
(2.6)
T . 6
By = 2, 0T TEAD, o),
where
BO:—aO—al—az—a3—a4,
B2=—4a0—a1—a3—4a4+4b0+2b1—200—201—2c2+2a+2[3+2w
B3:8a0+a1—a3—8a4+12b0+3b1+12co+6cl—12a—6BB
2.7)
B4:—16a0—a1—a3—16a4+32b0+4b1—48c0—1201+46a+10[3—2w
B5:32a0+a1—a3—32a4—80b0—5b1+160c0+20c1—140a—10[30
B6:—64a0—a1:a3—64a4+192b0+6b1—48Oc0—3001+362a—2[3+2w
B, :128a0 +a; —az —128a4 —448b0 —7b1 +1344c0 +42c1 -812a +14p4

To simplify the presentation we assume that in (1-1) k> 5. Then a
sufficient condition for the unique existence of s is that the parameters
o,B,and y satisfy either

(i) o =y and B # 4a
or

(i) o # y and

2
3B<11a+y-5—(y—a)+, (2.8)
or

5[3>19a+y+§—(y—oc)+,



where

0, v < a,
(Y—OL)+ =
Yy — o > o.

This follows easily from the results of Behforooz and Papamichael
[2, p.358-59], by observing that the linear system (2.3) can he written
in the tridiagonal form

(@ =)Aoy +B-4v)A =Ej -vE,

}\/ +4}\/i+}\/i+1:Ei; i:1,2, ............ ,k_l, (2.9)

i—1

(B— 47 + (e -1hy =B, —7E, .
and that the matrix in (2.9) is the matrix of the linear system which
determines the parameters M ; of s. The results of [2] also show that
if (2.8) holds and

Ei; = 0™ ; i= 0,k , (2.10)

then
max [ A, | = 0(h™), (2.11)

0<i1<k
where n = min (m,6). This shows that the quality of end conditions of

the form (2.1) is determined by the order of E;; i = 0,k.

The remainder of the paper is concerned with examining various classes
of end conditions of the form (2.1). In each case we consider only end
conditions for which s attains the optimal order 0(h*) of uniform
convergence on [a,b]. This requires that E;= 0(h™) ;i=0k, with

m > 2, and implies that the parameters a, 3, ai,b;and c; must be

chosen so that in (2.7),

B; =0; 1i=0,1,2, 3. (2.12)



To avoid unnecessary repetition, we point out now that all the results
of subsequent sections are established under the assumption that the
parameters a, 3 and y satisfy the condition (2.8). This condition
certainly holds for all the specific values of o, 3 and y that occur

in some of the results, considered in the following sections.

3. End conditions involving values of v only

We take b; = ¢; = 0; 1=0,12 and y = 0 in (2.1) and consider end

conditions of the form

1

h? i
L3

= a.y L
n2 iZo 17 k—i

It should be observed that there is no loss of generality in assuming

ocM0+BM1:

(3.1)

M k_1+ocMk

that y = 0 The reason for this is that the terms yM2 and yMk_2 can

always be eliminated by means of the relations (1.4).

It can be shown easily from (2.7) that the requirement (2.12) is
satisfied for any values of the parameters o, and a4 provided that

the other four parameters in (3.1) satisfy the relations

a0—2a+B+a4, a1=—50c—2[3-4a4,
(3.2)
a2—4oc+[3+6a4, a3=—oc—4a4.
When (3.2) hold then
Bi:O;i:0,1,2,3,
B4:4(50L—[3-6a4), B5:20(—4oc+[3), (3.3)
B6:60(40c—[3-2a4),B7:140(—4oc+[3),
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and, by using (1.4), the end conditions (3.1) can be written as

4 3 2
A*M = (0= 6a,)A’M j — (Sa—P-6a,)A"M, =0,

a4
(3.4)
a%tVAIM, +(a—6a,)V M, —(50—B-6a,)VZM, =0
k 4 k 4 k
In particulars if as = O,i.e. if in (3.1)
a0=2oc+B, a1=—50c—2[3,
(3.5)
a2:4a+[3, a; = —a, a4:0,
then (3.4) gives the class of end conditions
3 2 _
a A M0+(50c—B)A MO =0,
(3.6)
aVIM, - (50 -B VM, =0,
which is considered fully in Behforooz and Papamichael [2]. The
special case a = 0, B= 1 of (3.6) i.e. the conditions
A My = VM = 0 , (3.7)

have also been considered by De Boor [4] and [5, p.55] Kershaw [6] and

Lucas [7].

For any values of o, B and a4 the end conditions (3.4) are such that
E; = 0(h%); i = 0k . However, it follows from (3.3) and (3.4) that

whenay4 = (50-B)/6, i.e. when in (3.1),

ay = (17 a + 5B)/6, a; = —(50 o +8p)6, a,=9a,
3.8
a,y = (=25 a + 4p)/6, ay = (5a — B)/6,
then
B. =0;i=0l,.. 4, Bg =20 (40 + ),
(3.9)
B, =20(7a-2p) , B, =140 (-40 + ),
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and the end conditions (3.1) can be written as

(5o - ATM 5 + 640 -pa M =0,

(3.10)
Sa-BVIM, +6(4a-pVM, =0.
This class of end conditions is considered in Behforooz [1].
For any values of a and B the end conditions (3.10) are such that
E; = O(h3) ; i=0,k .However, if a = 1 and B = 4, i.e. when in (3.1)

o=1, B=4, ay=37/6, a;=-82/6, a,=9, az=-10/6, as=1/6, (3.11)
then

B = 0 ; i= 0,1,...,5, B¢ = -20 , B; = 0. (3.12)
Thus, from (3,10) and (3.12) the end conditions
A*My, = V"M, = 0, (3.13)

are such that E; = 0(h*); i=0,k. Furthermore, (3.13) are the most
"accurate" end conditions of the class (3.1), in the sense that they are

the only such end conditions for which E ;= O(h4) ; 1= 0,k.

The end conditions (3.13) are considered by Lucas [7] who also considers

the conditions

AMy = VM= 0, (3.14)
i.e. the special case a = 1,B = 5, of (3.10). It 1is interesting to
observe that (3.14) are also the special case a=1,8 = 5 of the class

(3.6), and that they are the only conditions of this class for which

E;i = 0h’); i=0k.
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4. End conditions involving values of \/(LL only

In this section we consider end conditions of the form

ELW L e ML (M)

Gm +Bmy+Tmy =bgyy’ +byyp +byyy’,

> 3 ~ _x .M (1) (1)

ymy 5+ Bmy g +@my =byy o +byyl v bgy,
where a >0 and, as before m; = s(')(xi).
By using the cubic spline identities

h h 1 )

mi:_?Mi_gMi—‘-l_‘_E(yi—‘-l_yi)’ 1:0,1, ......... ,k_l,

and
= M hM ! | o1 =1,2 k
ml—g i_1+? i+E(y1—yi_l), 1=1,2,..... , ,

a=a PB=(@+2B-7)/ y=(B-27)/2,
302—36, al(a_E_V)a 32:3(E+Y), 3323«4—
b.=-3b.: i=0,1, 2,

1 1

c. = 0: i=0.,102.

It follows easily from (2.7) and (4.2) that the requirement (2.12)

satisfied provided that in (4.1)

BO:&, Elzﬁ and 32:?.

4.1)

4.2)

is

4.3)

Furthermore, it turns out that for the parameters defined by (4.2) and

(4.3), B4 = 0 also. More specifically (4.2), (4.3) and (2.7) show that
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for any values of & B and ¥ the end conditions

ocmO—i-Bml—i-sz:&yO + By +7y5 7
“4.4)
o~ ~ (1 ~ (1 ~ (1
ymy o +Bmy ) +omy = Wizz + Byi-)l + “yi) )
are such that
Bi=0, 1=0,1,n. . 4,
4.5)

B. =2(a+B+7%), B

s = = —12(28 + B), B, =158 +32p - 107

Therefore, for any values of &,E and ¥ the end conditions (4.4) are
such that E; = 0(h®) ; i=0,k, and if &+B+7 = O then E; = 0(h*);

= 0.k.

The most "accurate" end conditions of the class (4.4) are those which

correspond to the values a = 1, E = -2 and 7y =1, For these values
(4,5) gives
Bi =0 ; 1=20,1,...,6 , B; = 84 , (4.6)

and thus the end conditions

2 2 (1)

A m, = A
( ) “4.7)
2 1
\% m —V Yk
and such that E=0(h’); i= 0.k.
The special case a = I,E = -1, ¥ = 0 of(4.4), (i.e). the end condtion
_ (1)
Am 0 = Ayo ,
(4.8)
_ (1)
V m K = Vyk ,



are considered in Lucas [7]. For these end conditions (4.5) gives
Bi=0; i=0,1..... 5, Be=-12, B;= 126, (4.9)
and thus E; =0(h"); i=0,k

The most frequently used end conditions of the class (4.4) are those

which correspond toa = 1, B = ¥ = 0, i.e. the conditions
1 1
my =y m =y (4.10)
For these end conditions (4.5) gives

B;=0; 1=0,1,..., 4, Bs = 2, B = -24 ,B; = 158, “4.11)

and thus E; = 0(h’) ; i=0k.

5. End conditions involving values of V(2)0n1V

We take a; =0; 1=0,1,....4, and b;=0, 1i=0,1,2, in (2.1) and

consider end conditions of the form

2 2 2
OLMO JrBM1 +yM2 = coyg ) +c1y§) ) +c2yg ),
(5.1)
2 2 2
My +BMy  +aMy = Czyi—)z +Cly§<—)2 +°0y§< ),

Then the requirement (2.12) is satisfied for any wvalues of o, B, y
and c; provided that the other two parameters in (5.1) satisfy the

relations

co =0a=y + c,, ci1 =P+ 2y - 2¢ . (5.2)
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When (5.2) hold then, from (2.7),

Bi =0;1=0,1,2,3,

B, =-2(a+B-11y+12¢,), Bg=10(c+p-12y+12c,) (5.3)

B6 =—1180L—28[3+422’Y-42002 B7 :532a+56[3-1260y+1260c2,

and the end conditions (5.1) can be written as

OLMO + BMI + yM2 = ay(()z) + By(z) + yy(zz) + (c y)A2 (2), 5.4,

YMk—Z + BMk—l + och yyf(z)2 + Byg% + ocy%(z) + (c \()V2 (2)

For any values of a, B, vy and C, the end conditions (5.4) are such
that E; = 0(h? ; i = 0.k. However, if ¢c; = - (ot+B =11vy)/12, 1i.e.

if in (5.1),
= (11a-P-y)/12, ¢ = Qat+14B+27y)/12, ¢ = -(a+p-11y)/12 , (5.5

then, from (5.3) ,

B, =0;i=0]...4, Bg=10(c—7)

(5.6)
B6 =-83a+ 7B+ 37y, B, = 427 o —49B -105 v.
Therefore, for any values of a, B and y the end conditions
2 2 2 2
oaM, +BM, +1M, = oy +8y D 4y B —(apayaZyP 2,
2 2 2 2
M,y +BM,  +oMy =1y +py ) +ayiP - @rp vy, 5.7)

are such that E; = O(h3) ; 1=0,k. In particular if a = y then,

from (5.6),

B;=0; i=0,1,....5 , Bs = -46a+ 7B, B, = 7(464-75) , (5.8)
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and therefore, for any values of a and 3, the end conditions

aMO + BMl + OLM2 = ocygz) + Bygz) + ocy(zz) - 2o+ B)szgz) /12,

(5.9)
2 2 (2
aMk_2+BMk_l+aMk —ayi )2+By§{)2+(xy§() Qa+p)V yf()/12,
are such that E; = OMh*) ; i = 0,k
The special case a =0, B = 1 of (5.9), ie. the end conditions
2 2
12M1 =—y§) )+14y( ) y(2 ),
(5.10)
_ 42 (2) _,(2)
12Mk 1= Ykl +14k—1 —Yi o
is considered in Lucas [7]. Lucas also considers the case a= 1, B = 10
of (5.9), i.e. the conditions
_ 10 v(2)
MO +10M1 +M2 = 12y1 ,
(5.11)
M, _, +10M, | +M, =12y\?)
k-2 k-1 k =Yk

The conditions (5.11) are of special interest because they require

knowledge of y® only at the two points x; and X i

As it is clear from (5.8), the most accurate end conditions of the class
(5.1) are those which correspond to the values a = 7, B = 46 in (5.9),

i.e. the conditions

2 2

M = 46M, + M, =2y 456y 1 2y (D),
2) 2 5.2 12
2 2 2

7Mk—2 +46Mk_1 + 7Mk = 2yk—2 +56yk_2 + Zyk )

For these end conditions B;=0; i=0,1,..., 7 and the E;; 1 = 0,k, achieve
the best possible order 0(h®). The conditions (5.12) are also

considered in Lucas [7].
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The most frequently used end conditions of the class (5.4) are those

which correspond to a= 1, B=y= c, = 0, i.e. the conditions

_ . (2) _ 4 (2)
MO—yO , Mk—yk (5.13)
For (5.13),
B;=0; i=0,,2,3, Bs=-2, Bs =20, B¢=-118,B; = 532 , (5.14)

and thus E; =0(h?) ;i =0,k

6. Other end conditions

Of the end conditions considered in Sections 3, 4 and 5 the most
accurate are (4.7) and (5.12). These conditions give E; =0(h"); i=0k,
with n = 5 and n = 6 respectively. However, (4.7) and (5.12) require
knowledge of y'" and y™® respectively, at the six knots

Xi 3 1=0,1,2,k-2,k-1,k, and it 1is unlikely that this additional
information would be available in an interpolation problem. End conditions
of the class (3.1) do not require any additional information, but the
most accurate of these, i.e. the conditions (3.13), give

E; = 0(h*) ; i=0,k. In this section we show that it is possible to
construct end conditions which require derivative information only at

the two end points x ¢ and xx and which, like (4.7) and (5.12), give

E; =0h"); 1=0,k, with n > 5. This is done by forming linear

combinations of end conditions derived in earlier sections.

Let ECO, ECl1 and EC2 denote end conditions which belong respectively
in the three classes defined by (3.1), (4.1) and (5.1). Assume that

the E;; 1=0,k, corresponding to ECO, EC1 and EC2 are given by (2.6)



with B; = Bgr); r=0,1,2, respectively. Let EC denote the Ilinear

combination of ECO, EC1 and EC2, in the proportion d ¢ parts of ECO

to d; parts of EC1 to d. parts of EC2, i.e. symbolically
EC=d, (ECO0) +d; (EC]) + d, (EC2).. (6.1)

Then clearly the E;; 1 =0,k , for the end condition EC are given

by (2.6) with

_ _r(0) (1) (2). . _
Bi=dy =By +d B\ +d,B: j=0, 1.7, (6.2)

This observation leads to a simple technique for constructing accurate
end conditions of the form (2.1). We illustrate the technique by
deriving three such end conditions which are of greater practical value

than (4.7) and (5.12), in the sense that they require derivative

information only at the two points xo and X .

Let

EC = ECO + d; (ECD), (6.3)

where ECO are conditions of the class (3.1) with parameters (3.8) and
EC1 are the conditions (4.10). Then, from (3.9) (4.11) and (6.2), the

B. corresponding to the conditions EC are given by

Bi:0;i:O,l, ...... , 4, B5:20(—40c+[3)+2d1,
(6.4)
B¢ = 20 (7o = 2pB) -24d |, B5, =140 (-4a +p) =158d ;.
Therefore, if the parameters a, B of ECO and d; of (6.3) are chosen
so that
B/ = 41/10 and diy/aoa=-1, (6.5)
then

B, =0; i=0,1,...,6, B, = -144a , (6.6)
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and the conditions EC defined by (6.3) are such that E; =0(h’); i=0.,k.

In particular, when a = 20/72 then (6.5) and (6.3) give the end conditions

1 1

2
72h | ) (6.7)
Mk—l = 72?{1 85yk - 336yk_1 + 180yk_2 - 32yk_3 + 3yk_4 — 60hyk }
for which
B; = 0; 1i=0,1,....6, B; = -40, (6.8)
In a similar manner it can be shown that the end conditions
o 2.(2)
144M , +876M, = — {1313y, — 288y, +1866y, —320y, —29y , —60h“y5 "},
0 1 h2 0 1 2 3 4 0 (6.9)
_ 1 2.(2) '
876Mk_1 +144Mk = —{1313yk —2888yk_1 + 1866yk_2 —320yk_3 + 29yk_4 —60h Y },

h2
are such that E; =0(h”); i=0,k. More specifically, the B; corresponding

to (6.9) are

Bi=0; 1=0,1,...,6 , By = -23520. (6.10)

This result is obtained by taking ECO to be conditions of the form (3.1)
with parameters (3.2), EC2 to be the conditions (5.13) and determining
the parameters o, B and a4 of ECO and the constant of proportionality
d, so that

EC = ECO + d,(EC2)

gives B; =0; 1=0,1,...,6. Finally, by taking ECO1 and ECO02 to be
respectively the conditions (6.7) and (6.9) and determining the constant
d so that

EC° ECO1 + d(EC02)
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gives B7=0, we find that the end conditions

M, +2M, = L{—1187y0 864y, +237y, —352y; +27y,

0771 g64n2 1 )
_2940nyD —360n2y(?)y
. 0 0 (6.11)
ot P My = 1ISTyy 864y 236y 352y 5 42Ty
,2)

P h

2M

+2940hy ) —360n

are such that E; = 0th® ; i= 0,k.

7. Numerical Results

In this section we present numerical results obtained by taking

y(x) = exp(x) ; xi = 0.051; i = 0,1,...,20,

and computing the parameters M ; i=0,1,...,20, of the cubic splines
with end conditions (3.13), (4.10), (5.13), (6.7), (6.9) and (6.11).
We denote these six splines respectively by S;,Si, S 111,Siv,Sv,

and SVI-

As was remarked earlier (3.13) are the most accurate end condtions of
the class (3.1), whilst (4.10) and (5.13) are respectively those most
frequently used from the classes (4.1) and (5.1). The three new
"accurate" end conditions (6.7), (6.9) and (6.11), like (4.10) and
(5.13), require derivative information only at the two endpoints

and for this reason are of greater practical interest than (4.7)

and (5.12).



- 21 -
The results in Tables 1 - 5 are computed values of

2 4
@ _nr @, 0t e
|7Vi|— yi D yi +360 yi Mi’

m -y 5Py 50 -y and 5 -y,

corresponding to sy, Sy,..., Svi, where yi(r); r = 2,3,4 denote the
approximations to y;” obtained by using the formulae contained in (1.10)
and (1.11). The results illustrate clearly that the use of accurate end
conditions, like (6,7), (6.9) and (6.11), leads to significant improvement

in the accuracy of the approximations y" ; r= 2,3.4, especially near the

two ends of the interval of interpolation.

An important observation concerns the results corresponding to the end
conditions (3.13) and (4.10). Although for these conditions the theory
gives l; = O(h*) and 1;= 0(h>) respectively, the numerical results of
s; are slightly less accurate than those of s;;. The reason for this
is that the theoretical results of the present paper concern orders of
convergence only. In fact a more detailed analysis similar to that

used in Behforooz and Papamichael [2] gives, for (3.13) and (4.10),

max [ | <5834 h* exp( 1)+ 0(h0); i=0,k, }
(7.1

| <
i max |4 | < (.0203 +.0405 h +.031h%)h? exp( 1)+ 0(h®) 5 i=0,k.

respectively. With h = 0.05 and the 0(h®) terms ignored (7.1) gives

max |Ai < 0.0225x(0.05)°exp(l),
and

max |[Ai| < 0.0291x(0,05)exp(l).






Values of | A
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TABLE 1

\ Si Su I S v Sv S vi
* 267x10 7 | .240x10”° |.208x107 | .997x10® | .173x107" | .873x10 *°
X1 716x10 ° | .644x10 ¢ | .558x10™* | .268x10° | .465x10° | .175x10 '°
X2 .192x10° | .173x10° | .150x10 * | .702x10 ° | .123x10 ®* | .196x107'°
X 4 138x107  |.124x107 | .107x10 7 | .357x107'° | .735x107"° | .162x107'°
X6 978x17° .879x17° | .771x1077 | .732x1™"" | .460x107"" | .110x107'°
X3 662x107"° | 574x107° | 562x10° | .536x107' [519X10 M| . 565x107"!
%10 183x10" | .261x107'°| .150x10 ® | .183x107'°| .183x107'° | .183x107"°
X 12 156x17° .176x107 | .151x107 | .335x10™"" | .379x10"" | . 274x107"!
X 14 219x10% | .243x10® | .210x10° | .188x107'°| 252x107'° | .102x107'°
X16 306x107  |.337x107 | .292x10”° | .153x10° | .241x10° | .331x107"°
X18 427x10° | .469x107° | .407x10™* | .172x107® | 295x10°® | .517x107"°
X19 159x107° [.175x107° | .152x107 | .627x10® | .109x107" | .418x107"°
X20 .595x107 |.634x10° | .566x107 | .235x107 | .406x107 | .214x107







Values of | m,
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TABLE 2

0

11

IIT

v

VI

X0

X1

X2

X4

X6

X8

X10

X12

X14

X16

X18

X19

X20

.387x107®

.468x1077
.356x1077
422x1077

.468x1077
.518x1077
.572x1077
.633x1077
.699x107’
777x1077
.915x10”’

.667x1077

.180x10°°

458x1077
.359x107’
.422x1077

468x107’
.518x107’
.572x1077
.632x1077
.699x107’
.768x107’
.786x107

.115x10 ¢

.304x107

769x107°
254x10°
.579x1077

.480x107’
.519x1077
.572x1077
.630x1077
,669x107
351x1077
.501x10°°

.228x107°

.808x10°7°

.346x107

365x1077
.384x1077
424x1077

469x107’
.518x10”’
.572x1077
.632x1077
.699%x107’
.773x1077
.854x1077

.898x1077

.940x107’

.345x107

366x1077
.383x107
424x1077

469x1077
.518x1077
.572x1077
.632x107’
. 699x107’
772x1077
.853x10”’

.899x1077

.938x107’

.347x107

.365x1077
.384x107
424x107

469x107’
.518x10”’
.572x1077
.632x1077
.699x107’
773x107
.854x1077

.898x1077

.944x107’
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TABLE 3
Values of | ?i(z) —yi(z) |.
S1 S11 St11 Stv Sv Svi

X0 402x107° | 367x107° | 271x107 | .543x10° | .553x10° | .530x10°
x| 376x10° | .340x10° | .279x10* | .196x107’ 206x107 | .182x1077
X5 768x107 | .671x107 | .750x10°° .188x1077 186x107 | .192x1077
X4 143x107 | .150x107 | .558x10° | .212x107 212x107 | .212x107
Xe 229x107 | .230x107 | .620x107 | .234x107 | 234x107 | .234x10”
X3 259x107 | .259x107 | .287x107 | .259x107 | .259x107 | .259x107
X10 286x107 | .286x107 | .294x107 | .286x107 | .286x107 | .286x1077
X12 .315x1077 317x1077 .392x1077 .316x1077 316x107 | .316x1077
X14 339x107 | .362x107 .140x10° | .350x107 | 350x107 | .350x107
X16 233x107 | .555x107 .150x107 .387x1077 388x1077 | .387x1077
X8 171x107° 277x10° | 204x107% | .436x107 | .442x107 | .427x107
X19 842x10° | .831x10° | .758x10% | .418x107 | .395x107 | .449x107’
X20 906x107° | .722x107 737x1073 .127x107° 125x107° | .130x107°
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TABLE 4

Values of |§i(3) —yi(3) |
\ S1 St ST S1v Sv Sv1
X5 101x107% | .909x107° | .777x1072 | .152x10°® |.180x10° |.115x10°°
X4 .843x10° | .771x10° .557x107 130x10°%  |.132x10°  [.127x10°°
Xe ,192x107° .187x10°% | .387x107° | .141x10° .141x10°° .141x10°°
X3 159x10° | .159x10° | .128x10°° | .155x10° [.155x10°® |.155x10
X10 .172x107° 172x10°% | 207x10°% | .172x10° [.172x10°% |.172x10°°
X12 .181x10°° .199x10°% | .970x10° | .190x10°® [.190x10° |.190x10°°
X14 .954x1077 336x10° | .111x10™ 210x10° |211x10° [.210x10°°
X16 .136x107° .198x107° | .152x107° | .239x10° |.243x10° |.232x10°
X1g 219x10™7 | 246x107 | .211x1072 343x10°%  |.407x10° [.257x10°°
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TABLE 5
Values of |?i(4) —yi(4) |

\ St S11 S11r S1v Sv Svi
X1 .172x1072 | .155x107 134 .642x107 111x10* |, 476x1077
X5 461x1073 414x1073 359x101 | .170x107° | .296x107° |.343x107’
X4 330x10% | .297x10% | .258x1072 | .984x1077 .189x10°% |.260x1077
X6 236x107° | .212x107° | .185x107 | .984x10-® | .332x10® |.188x107
Xg 161x10° | .140x10°¢ | .135x10™ .104x1077 | .995x10® |.110x107
X10 .154x1077 | .430x107 | .357x107° | .242x1077 242x107 |.241x107
X12 369x10° | .428x10° | .362x10™* .130x1077 | .141x107 |.116x1077
X14 527x107° | .582x107° | .503x102 | .359x107 | .510x1077 |[.152x107
X16 735x10% | .809x10™* | .701x107%2 | .339x10° | .550x10° |.508x10”’
X13 .103x1072 | .113x1072 | .976x10™" 410x107° | .704x107° |.891x107’
X19 383x1072% | .420x107 364 151x10™* | ,261x10™ |.117x10°®
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