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Abstract.  A hybrid numerical technique is proposed for a characterization of the radar cross 

section of a microstrip patch antenna residing in a dielectric filled cavity which is loaded by a 

sinusoidal mechanical pressure. A new 3D hexahedral finite element is developed in order to 

take into account the deformed shape of the antenna within the electromagnetic computations. 

The numerical tool combines the finite element and boundary integral methods to formulate a 

system for the solution of the fields at the aperture and those inside the cavity. In this work, 

numerical examples are presented for demonstrating the ability and the validity of the 

hexahedral element. 
 

 

1 INTRODUCTION 

The framework of the present study is the development of metamaterial strip antennas for 

aeronautical applications. This work is part of the MSIE project (Intelligent Materials and 

Structures for Electromagnetism), launched in 2008 by the competitiveness French cluster 

AStech. The aim of this project is the reduction of antennas on aircrafts using conformable 

microstrips made of metamaterials. 

Such antennas, which are thin and conformable to planar or warped surfaces, can easily be 

embedded on any aircraft surfaces. Since these surfaces are subjected to aerodynamic and 

thermal loads, the influences of geometry change and mechanical strains on the 

electromagnetic signals of the antenna have to be studied. Available commercial predictive 

analysis tools appear not to be well suited for structural systems involving multiphysical 

couplings, and in particular electromagnetism. 

The main difficulty in the solution of a problem involving deformable antennas is the 

accurate evaluation of the integrals over the unbounded domain of the electromagnetic 

radiation. Classical numerical methods for structural mechanics, such as Finite Element 

Method (FEM), require the discretisation of the domain far from the source region, which 
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leads to an excessive computational effort. An efficient solution consists in the combined 

Finite Element-Boundary Integral (FE-BI) Method [1], first developed in mechanical 

engineering and later introduced in electromagnetism. 

This method consists in introducing a fictitious boundary that encloses the structures to be 

studied. Classical FEM is then used to approximate the fields in the interior domain, whereas 

the fields in the exterior region are evaluated by the boundary integral method. These fields 

are coupled at the fictitious boundary via the field continuity conditions. This leads to a 

coupled system of the interior and boundary fields to be solved.  

The new numerical tool here proposed is based on a weak coupling between 

electromagnetism and mechanical behaviour. The FEM/BIM approach is used with a new 

dedicated 3D hexahedral finite element. The mechanical field is approximated through a 

classical nodal formulation while the electromagnetic one is expressed by an edge formulation 

[2]. This completely new software has been implemented from scratch and it has been 

validated through various benchmarks found in the literature [4]. This contribution presents 

an extension of the FEM/BIM technique applied to numerical simulations for the 

characterization of a patch antenna subjected to bending loads. 

 

2 FORMULATION OF THE COUPLED PROBLEM 

2.1 Geometric description  

In the present work, the considered antennal structure is illustrated in Figure 1. It consists in 

a rectangular patch antenna residing on a cavity [1] recessed in an infinite ground plane. The 

cavity is filled with a homogeneous dielectric material having a relative permittivity εr and a 

relative permeability µr. The antenna thickness is assumed to be smaller than the substrate 

height. Therefore, it will be neglected in the following developments. Furthermore, this 

structure is supposed to be integrated on composite aircraft panels. 
 

 
Figure 1: Studied one patch antenna 

 

In the following sections, the free space region above the cavity and the ground plane, and 

below these ones will be respectively denoted by V∞ and V symbols (see Figure 2). 

The antenna is studied in a receiving run mode. Thus, the cavity is illuminated by 

electromagnetic waves emitted by a source point of the region V∞. Considering the Cartesian 

coordinate system presented in the Figure 3, the incident wave, emitted from a source point M' 
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and received by an observation point M, is respectively located by the following position 

vectors   

€ 

 
r '= OM ' and   

€ 

 
r = OM . The related Euclidian norms are defined by 

  

€ 

′ r =
 
′ r = ′ x 

2
+ ′ y 

2
+ ′ z 

2
 and

  

€ 

r =
 
r = x

2
+ y

2
+ z

2
. 

At last, the cavity is assumed to be subjected to some mechanical loads such as pressures. 

The governing equations and variational formulations are presented in the next sections. 

 

 

 

Figure 2: The cavity model and its surrounding regions 
 Figure 3: The incident field and the Cartesian 

coordinate system 

2.2 Mechanical governing equations and weak form 

Assuming the antenna is embedded on a composite panel, the cavity volume V will be 

subjected to mechanical distortions of its support. Taking into account strains in the 

electromagnetic computations is then essential. 

Considering a static approach, the mechanical governing equations consists in the 

equilibrium equation, the constitutive equation in V and the strain-displacement relationship 

[3] : 

  

€ 

div T +
 
f =
 
0  (1) 

  

€ 

T = C S
 
u ( )  (2) 

  

€ 

S
 
u ( ) =

1

2
grad

 
u + grad
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(3) 

where T, 
  

€ 

S
 
u ( ) ,

  

€ 

 
f  and C are respectively the stress tensor, the strain tensor, the prescribed 

body forces vector applied to V and the elastic stiffness tensor. In addition to these equations, 

one has to take into account the mechanical boundary conditions : a first one where 

mechanical vector displacement   

€ 

 
u  is imposed, and the second one where a surface force 

vector   

€ 

 
F  is applied on the boundary 

€ 

∂V
F

. 

The weak form of the mechanical boundary value problem is then given by : 
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find 
  

€ 

 
u ∈U
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(4) 

for any admissible virtual displacement 
  

€ 

 
u 
*
∈U

ad

* . This variational principle is the usual 

starting point for any finite element approximation in mechanical modelling. 

2.3 Electromagnetic governing equations and weak form 

Here, the FEM/BIM technique [4] is used. The proposed method involves the equivalence 

principle to subdivide the original problem into two equivalent problems. They are then 

coupled by enforcing field continuity. The fields in each region are subsequently formulated 

via a variational or integral equation approach leading to a coupled set of integral equations 

solved via the finite element method. 

2.3.1 The governing equations 

The Maxwell's equations (in the usual time harmonic convention 

€ 

e
jωt) and the constitutive 

relations are : 
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where  

€ 

 
D ,   

€ 

 
B , 

€ 

ε
0
, 

€ 

µ
0
 and 

€ 

ρ  respectively are the electric flux density related to the  

€ 

 
E  field, the 

magnetic flux density related to the   

€ 

 
H  field, the permittivity and the permeability in the free 

space region and the electric charge density. 

2.3.2 Boundary conditions and loads 

− The excitation vector : Considering the antenna runs in a receiving mode, the excitation 

vector is defined by the incident plane wave model [4]. The propagation direction of the 

travelling wave is defined by   

€ 

 
k 

inc . Thus, the excitation vector received by an 

observation point located by   

€ 

 
r  is given as a function of the electric field polarisation
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0

 

and the wavenumber k0 by : 

  

€ 

 
E 

inc
=
 
E 
0

e
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(10) 

− The perfect electric conductor : the boundary conditions associated to the cavity model 

are those of perfect electric conductors prescribed on the cavity walls indicated in the 

Figure 2. They enforce no tangential electric fields on the metallic regions such as the 
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patch and the ground plane : 

  

€ 

 
n ∧
 
E =
 
0  (11) 

− The integral equation on the aperture surface S : in accordance with the equivalence 

principle [4], the fields existing in the free space region (above the ground plane) are 

then due to the radiation caused by the equivalent magnetic currents   

€ 

 
M =

 
E ∧
 
n  residing 

on the ground plane. Accordingly, the magnetic field   

€ 

 
H 

ext
 created by  

€ 

 
M  in the external 

region is defined by : 
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where   

€ 

 
H 

inc
 denotes the magnetic field due to an incident wave, Z0 is the intrinsic 

impedance in free space and 

€ 

G0  is the free space dyadic Green's function [5]. Enforcing 

continuity of the tangential electric fields across the interface S, the fields in both the 

internal and external regions are then coupled : 
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(13) 

where the superscripts int and ext respectively denote the fields created in the internal 

region V and the unbounded external region V∞. 

2.3.3 Weak form formulation 

Considering the equations (5) to (13), the variational principle leads to the weak form of 

the electromagnetic problem : 
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where S = Saperture represents the aperture zone of the cavity that is not covered by the metallic 

patch as illustrated in Figure 2. The   

€ 

 
n  and   

€ 

 
′ n  denote the normals associated to the observation 

point M and the source point M' lying on the aperture area. The fields  

€ 

 
E and

  

€ 

 
E 

S
 are 

respectively the internal and aperture electric fields. 

A difficulty in the evaluation of this quadruple surface integral within (15) is the usual 

singularity associated with the derivatives of the free space Green's function. This can be 
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numerically computed by considering two different Gauss quadratures, each is related to the 

observation surface (S) and the source surface (S'). 

3 SOLVING THE COUPLED PROBLEM 

3.1 Weak form of the coupling 

The mechanical behaviour of the antenna is assumed to be non sensitive to the 

electromagnetic phenomena. Therefore, a weak coupling between the electromagnetic part 

and the mechanical one is considered. The problem can be studied in two successive steps : 

− firstly, the mechanical problem (4) is solved in order to compute the deformed shape of 

the antenna. The displacements are interpolated at the element nodes. 

− secondly, the computation of the electromagnetic problem (14) is done by taking into 

account the deformed mesh. 

3.2 A 3D hexahedral vector/node-based element 

The antenna is meshed using 3D hexahedral finite elements (see Figure 4). The same 

element is used to solve either the mechanical or the electromagnetic problem. In order to 

ensure the compatibility between the two physical domains, the mechanical displacements are 

linearly interpolated at the 8 nodes of the element : 

  

€ 

 
u = N

i
ξ,η,ζ( )

 
u 

i

n=1

8

∑  (17) 

whereas the electric fields are approximated through the 12 edges of those : 

  

€ 

 
E =

 
W 

i
ξ,η,ζ( )E

i

n=1

12

∑  (18) 

The 

€ 

N
i
 are the classical nodal shape functions of a hexahedra while 

  

€ 

 
W 

i
 are the vector 

shape functions [1] related to this kind of finite element. In (19), the quantities 

€ 

E
i
 represents 

the electric field magnitude lying on the hexahedra edges. 

Through this way, the hexahedral elements are able to take into account the deformed 

shape information when performing the electromagnetic computation. By virtue of the finite 

element method, the technique is then pertinent to study a patch antenna residing on a 

dielectric substrate that is mechanically loaded. 

Introducing the field approximations in equations (4) and (14), the mechanical discretized 

problem can be written as the following form : 

€ 

KFEM qU{ } = Fext{ }
mech

 (19) 

where 

€ 

K
FEM

, 

€ 

qU{ }and 

€ 

F
ext{ }

mech
, are respectively the stiffness matrix, the unknown 

displacements and the mechanical excitation vector. For the electromagnetic problem, one 

obtains : 
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€ 

YFEM − k
0

2
LFEM − LBIM( )( ) qE{ } = Fext{ }

em
 (20) 

where 

€ 

Y
FEM

, 

€ 

L
FEM

, 

€ 

L
BIM

, 

€ 

qE{ }and

€ 

F
ext{ }

em
represent respectively the admittance matrix, the 

inductance matrices related to the interior and the exterior fields, the unknown electric fields 

and the electromagnetic excitation vector. The subscripts FEM and BIM denote the matrices 

that are resulting from the discretization of the interior volume V and the aperture region S. 
 

 
Figure 4: The 3D hexahedral vector/node-based finite element 

4 NUMERICAL VALIDATION 

In order to validate the coupling formulation, a numerical test presented in [4] is 

considered. It consists in computing the radar cross section (RCS) of a patch antenna as a 

function of its curvature. In the test, the deformed shape of the antenna is just controlled by 

the curvature radius. In this section, the RCS of the same antenna is computed with a 

deformed mesh resulting from a mechanical pressure load. 

The radar cross section 

€ 

σ  is computed from the scattered magnetic fields   

€ 

 
H 

far
 and is 

defined by : 

  

€ 

σ = lim
r→∞

4π r
2

 
H 

far
2

 
H 

inc
2

 (21) 

where 
  

€ 

 
H 

inc
2

 is equal to unity. The RCS is usually normalized to λ
2
, the squared wavelength. 

The scattered magnetic fields result from the integration of the surface magnetic currents 

emitted by a test point M' lying on the aperture surface S , and received by an observation 

point M located at the infinity space : 

  

€ 
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H 

far = j
k0

Z0
G0 r, ′ r ( )

 
n ∧ ′ 
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E S( )d ′ S 

S
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4.1 Geometric description of the benchmark 

The structure consists in a rectangular patch residing in a dielectric filled cavity, which the 

relative permittivity is εr = 2.17, the relative permeability is µr = 1.00 and the Young modulus 

is about E = 1 000 MPa. The patch dimensions are 20 mm x 30 mm and the cavity size is 50 

mm x 60 mm x 0.7874 mm. The antenna is simply supported along the y direction at x = 0 

and is mechanically loaded by a sinusoidal pressure : 

€ 

p = p
0
sin π

x

L

 

 
 

 

 
  (23) 

where L = 50 mm here. 

Considering a receiving antenna, the electromagnetic excitation is a vertical incident field 

and set for a transversal magnetic polarisation (α = 0°, see Figure 5). 

 
Figure 5: Incident field and polarisation setup 

 

The sensitivity of the RCS to the curvature is studied with respect to various pressure 

magnitudes p0 and with respect to a frequency range going from 4.0 GHz to 6.0 GHz. The 

magnitudes p0 listed in Table 1 were chosen in order to match two curvatures studied by [4] 

for the considered antenna. Figure 6 presents two configurations of the strained antenna 
resulting from the cylindrical pressure p. 

 

  

Pressure magnitude p0 
Associated curvature 

radius R 

0.54 x 10-3 MPa 2 000 mm 

7.21 x 10-3 MPa 150 mm 

 
  

Table 1: Curvature radii as a function of the mechanical pressure p loading the antenna 
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(a) Curvature radius R = 2 000 mm 

(very close to planar configuration) 
(b) Curvature radius R = 150 mm 

Figure 6: Configurations of the strained patch antenna loaded by a sinusoidal pressure 

4.2 RCS as a function of the frequency 

The backscattered RCS of the antenna are shown in Figure 7. They are related to the planar 

and the curved cases which the curvature radii R = 150 mm and R = 2 000 mm. The results 

performed with the hexahedral elements are in good agreement with the brick elements 

simulations done in [4]. The resonance frequencies and the dB levels are similar with both the 

hexahedra and brick finite elements. As expected for a very large radius (2 000 mm), it can be 

seen that the planar and the curved RCS are nearly merged. A 19% RCS shift is noticed for 

the 150 mm curved configuration. Therefore, the planar configuration represents an envelope 

for infinite radii of curvature and bounds lower ones. 

 
Figure 7: RCS of a patch antenna related to a planar and two cylindrical structural configurations 

Conversely, an important point has to be underlined concerning the numerical treatment of 

the BIM part. Our solutions are computed with two different Gauss quadratures whereas an 
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exact form of the planar Green's function contribution is considered in the computational 

process used in [4]. Moreover, the ability of hexahedral elements to take into account each 

node coordinates allows both planar and conformal configurations to be computed through the 

same element. For brick elements, treating planar and conformal shape needs to implement a 

planar and a curved brick element respectively. In the future, the hexahedral elements will 

enable us to treat more arbitrary strained structures than using bricks and furthermore, to 

investigate the effects of singly or doubly curvatures on the RCS. 

 

5 CONCLUSIONS 

The presented work concerns the computation of the RCS property of a patch antenna 

loaded by a sinusoidal mechanical pressure. A weak coupling between the electromagnetic 

and the mechanical domains was assumed. The simulations were performed through the 

FEM/BIM method considering a new 3D hexahedral finite element that combines the 

interpolation of the electromagnetic fields (at the element edges) and the mechanical fields (at 

the nodes of the hexahedra). Then, the main feature of the hexahedral element is the ability to 

take into account the deformed shape of the antenna within the electromagnetic computations. 

Moreover, the FEM/BIM technique allows the computational domain to be only reduced to 

the structure volume since the unbounded external region is modelled through the BIM and 

then avoid the free space to be meshed. 

The good agreement between the numerical results and the literature ones confirms the 

validity of the hexahedral element and the ability of the method to be applied to simulate the 

mechanic/electromagnetic coupled problem for a cylindrical conforming context. In order to 

enlarge the use of this work, more a kind of mechanical loads imposed on the antenna has to 

be considered such as twisting loads. 
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