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Abstract. We consider the numerical approximation and simulation of a particle beam,
usually modeled by the Vlasov-Maxwell system. Our work will deal with a 3D paraxial
approximate model, derived from asymptotic expansions. It includes a finite element
numerical implementation of the paraxial Maxwell model coupled with a Particle-In-Cell
method for the corresponding paraxial Vlasov model. Both methods are implemented
with Freefem++ software. Numerical results illustrated the efficiency of the method.

1 INTRODUCTION

Charged particle beams and plasma physics problems are extensively used in Science
and Technology. Although we often associate accelerators with the large machines of high-
energy physics, charged particle beams have continually expanding applications in many
branches of research and technology. Recent active areas include flat-screen cathode-ray
tubes, synchrotron light sources, beam lithography for microcircuits, thin-film technology;,
production of short-lived medical isotopes, radiation processing of food, and free-electron
lasers. Clearly, there exists a significant interest in building mathematical models for
these beams.

If we consider collisionless plasma or non-collisional beams, one of the most complete

mathematical models is the time-dependent Vlasov-Maxwell system of equations. How-
ever, the numerical solution of such models requires a large computational effort. There-
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fore, whenever possible, we have to take into account the particularities of the physical
problem to derive asymptotic approximate models leading to cheaper simulations.

In this article, we consider the case of high energy short beams. A typical example is the
transport of a bunch of highly relativistic charged particles in the interior of a perfectly
conducting hollow tube. Numerical simulations are mostly performed using the particle-
in-cell method.

Following [1-5], we introduce a paraxial model that approximate the coupled time-dependent
Vlasov-Maxwell equations. This model is derived by introducing a frame which moves
along the optical axis at the speed of light. Then, considering a scaling of the equations
which reflects the characteristics of the high energy short beam, a small parameter 7 is
introduced, and asymptotic expansion techniques are used to derive a paraxial model,
accurate up to fourth order in 7.

This model is then approximated by a finite element method, for the paraxial Maxwell
model, coupled with a Particle-In-Cell method for the corresponding paraxial Vlasov
model. This implementation is based on the Freefem++ software [7]. First numerical
results are proposed, and show the efficiency of the method.

2 THE 3D GOVERNING EQUATIONS
2.1 The Vlasov-Maxwell model

We consider the transport of a population of highly relativistic charged particles, with
a mass m and a charge ¢, in the interior of a perfectly conducting hollow tube, whose axis
is constituted by the z-axis. We denote by () the transverse section of boundary I'. Let
x=(z,y,2) denote the position of a particle, p=(p,,py.p.) its momentum and v=(v,,v,,v;)
its velocity. We assume that the beam is non collisional so that its distribution function
f=f(x,p,t) in the phase space (x,p) is a solution to the Vlasov equation

af

2
v _
E“'V-fo‘i‘F.vpf: 0, where p = ymv, v=(1- %) /2. (1)

Above, F = ¢(E + v x B) denotes the electromagnetic force acting on the particles.
The electric field E=E(x,t) and the magnetic field B=B(x,t) are solutions to Maxwell’s
equations

E 1
a——(PVXB:——J, a—B+V><E:0,
ot €0 ot (2)
vVE="L V.B =0,
€o
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where the charge and the current density p and J are obtained from the distribution
function f with

p=a [ fip, I=q [ viib. 3)

Assuming the tube being perfectly conducting is equivalent to assuming that E (respec-
tively B) have a vanishing tangential (respectively normal) trace on the tube boundary.

2.2 The paraxial model

Assuming that the beam is highly relativistic corresponds to assume that v >> 1.
Since v, ~ ¢ for any particle in the beam, the Vlasov-Maxwell equations (1-2) can be
written in a frame which moves along zaxis with the light velocity ¢. For this purpose,
we set ( = ct—z, v = c—v, and we perform the change of variables (z,y, 2, v, vy, v,,t) —
(x,y,(, Vs, vy, ¢, t). It is also convenient to introduce the transverse quantities

x| = (z,y), vi = (v, vy)

and to define the transverse operators

Oy Oy dp Oy
( )7 a __>7 AJ_QO = 2 )

ox’ dy dy Ox ox? Oy
for ¢ = ¢(z,y) a given scalar function. Similarly, for A = (A,, A,) denoting a transverse
vector field, we set

grad, ¢ = curl, p = (

A, A, 0A
0 04 curlLAL—a y 04

div A= ox ay T or oy

With these notations, the Vlasov-Maxwell equations (1-2) can be expressed in the new
variables. The second step to derive the paraxial model consists in introducing character-
istic quantities and rewrite the system of equations in dimensionless variables. Introducing
a small parameter, the paraxial model was derived by retaining the terms up to the third
order in the asymptotic expansion of the distribution function f. This third order ex-
pansion of f is entirely determined from the expansion of the transverse electromagnetic
force F | up to order 2, and from the expansion of the longitudinal electromagnetic force
F, up to order 1 only.

As a consequence, it was proved that the asymptotic paraxial Vlasov- Maxwell model
requires the knowledge of the principal parts (zero order) of the transverse electric field
E |, the first order part of the longitudinal electromagnetic field (E,, B, ), and the second
order part of the transverse so-called ”pseudo-fields” &£, where £, = (&,,&,) is defined
by & = E, — ¢B,, &, = E, + ¢B,. Details may be found in [2], [3].
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Based on these remarks, we have to approximate by numerical methods the paraxial
Vlasov equation, and the electromagnetic components E |, E., B,, £, solutions to the
following paraxial Maxwell equations:

curl T E;, =0 in Q,

0B
1 1 _ 0By
div, E; = —p in Q, B =--E, xe,, {CUI'ILEZ— BT in Q,
50 C E _ P
E,-7=0onTl, »=0onl,
0B
1 OE _ _9b: .
curl | B, = poJ1 + — = in Q, curl 1 €, 5 in 2,
2 Ot ' 10E, )
/Bde:() on I, dWLgL:MOCJg—E T in Q,
. El-T=0onl,

where J¢ is defined by J: = pc — J, = ¢ / ve fdV. In this model, the expression of the
Lorentz force F = (F |, F,) is given by

F, =q& +(v.xe,)B, +v/(B) xe,), (5)
Fz:q(EquvL-(BLxez)).

3 NUMERICAL METHODS

Our aim is now to build numerical methods to solve the problem (4-5). We have chosen
to derive a finite element approximation for the electromagnetic fields computations. The
Vlasov equation will be solved by a particle method.

3.1 Numerical schemes for the electromagnetic fields

The first step to get the numerical schemes consists in deriving variational formulations
of equations (4). Since the model is written in a frame which moves along the optical
axis at the speed of light, the bunch of particles is evolving slowly in that frame. As a
consequence, the 3D computational domain is defined as the product 2x]0, Z[,0 < ¢ < Z.

Let us now introduce the variational formulations which will be the basis of the method.
For the sake of simplicity, we will only consider the components E; and E., the other
components solving more or less similar equations. Moreover, as the regularity of the
fields are not an issue for our study, we will assume that they are smooth enough, for
instance belonging to a standard Sobolev space. For the sake of simplicity, we will denote
by V the space of the fields and of the test functions, regardless of the boundary condi-
tions they satisfy.

Let v denote a sufficiently smooth vector test function. We first apply the curl | operator
to the first equation of the system. Then, we take the dot product by v, and integrate
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over (2. Applying then Green’s formula for the curl |, we obtain the following variational
formulation

/curlLELcurl v, dQ — /(VJ_ ~T)curl JE, dI' =0
Q r

The divergence equation is handled through an augmented Lagrangian formulation. Mul-
tiplying it by div, v, integrating over €2, and adding it to the above equation, we get

1
/{curllELcurl v, +div E div v, }dQ — / v, -T)curl | E dl' = = pdiv | v dQ)
0Ja

To handle the boundary condition on the curl —div system, we will use a Nitsche method,
as proposed in [6]. This is performed on the discretization level. Consider a regular finite
element mesh 7}, (where T, = UK) of the domain, and a finite element approximation
space Vy, = {v, € V | v, € Pt(K)}, where P4(K) denotes the set of all vector fields
which are polynomials componentwise on K with degree < k. Let us denote by Ei the
approximate solution of E | in Vj, C}, being the trace mesh induced by 7}, on the boundary
of the domain. Essentially, Nitsche’s method imposes the boundary condition via three
boundary terms. Two of them contain the weak form of the tangential trace of the
solution and the test functions. These two terms cause the method to be symmetric and
consistent. The third term (with a parameter /3) depends on the domain tetrahedrization,
and causes the method to be stable. In our case, the Nitsche method is written

/{curlLEh curl v+ + div | Ej-div v, }dQ — /(VJ_ -7)curl | Ei-dl
r

1
/(Eh T)curl ;vidl'+ Z / E; -7)(vy-7)dl = pdiv | v, dQ,
r

o
EeC), 079

where [ is some positive sufficiently large constant.

Concerning the computation of E,, we have first to derive a suitable variational formula-
tion. Basically, we apply the curl | operator to the third equation of (4) and we use the
identity curl ;curl | = —A; to get

0B

AL FE, = curl
1 curt | ot

As previously, we take the dot product by v,, a sufficiently smooth scalar test function, and
integrate over ). We then apply the classical Green’s formula for the Laplace operator,
and use that E, vanishes on the boundary I'. The variational formulation, basis of our
finite element method, is finally written

0B,
0y

/grad L E, -grad | v.dQ) = / 8t(8i — v, dS2 . (6)
Q Q
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Similar formulations are obtained for the components B, and £, following the same
principles. As a result, one derives the finite element conforming P, approximations by
using the FreeFem++ package [7]. The time discretization is performed with a classical
finite difference scheme. Remark that time discretization is not an issue here, since it
only appears in the right-hand sides of the formulations. Hence, there is no necessity to
satisfy any stability condition.

3.2 Particle approximation of paraxial Vlasov equation

The paraxial Vlasov equation (1), written in a paraxial form, that is for an electro-
magnetic force F deduced from the paraxial model, is numerically solved by means of a
particle method [8]. One approximates the function f(x,p,t) (where x = (x,()) by a
linear combination of delta distributions in the phase space (x, p), namely:

FO6pot) = D wpd(x = xi(t)3(p — pr(t)) , (7)

where w;, denotes the constant weight of the particle k. Its position in the phase space
x; = (x,y,¢) and py = (ps, py, p-) is solution to the differential system:

(d
_x = p_OC’ dpz = an
dt  ym dt
dy _ py dpy
7 2 — = F
dt  ym’ dt v (8)
d
a _ P: dp: ey
( dt ym'  dt

together with initial conditions.

The corresponding particle charge and current densities p and J are obtained by intro-
ducing the particle approximation (7) in equations (3) that yields:

px,1) =gy wid(x —xi(t)), (9)

and

J(x,t) = ¢ > wevir()d(x — xx(1)) (10)

Such expressions, built at the particle positions, cannot be used in this form for solving
paraxial Maxwell equations. Indeed, a P; finite element approximation requires values of
p and J at the vertices of the tetrahedral mesh. Following the classical procedure [8,9],
we introduce the assignment and interpolation procedures.
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According to the general approach, time discretization of system (8) is built from a
leapfrog scheme, which is a second-order centered finite-difference scheme. The particle
positions are defined at time ¢,, and the particle momenta are computed at time ¢, /s.
The equations of momentum py are approximated by

(1 n+% 1

A 4 X - :72 - Fn;
AP pz ?) =1L
1 ntg n—3 n
oot =y (1)
1 fn,_i'_l n_l
—(p: 2 —p. 2)=F",
\ At(p p ) #

where (F}', F)}, F') is a numerical approximation of the Lorentz force (5) at time ¢,, the
computation of which requiring the knowledge of the paraxial electromagnetic fields. Since
they are determined by finite element methods, an interpolation procedure is necessary
to recover the values of the fields at the particle locations. For this purpose, we use an
interpolation procedure, similar to the one proposed in [3], where the fields are computed
by a finite difference method.

The last step consists in computing the particle position solution to (8), that are obtained
by solving the following discretized system

( it B p;H'%
At N f)/”"'%m ’
n n ntg
Y +_ Y _ py ° (12)
At 7""';777, ’
Cn—H _ gn pg+%
\ At o ’y”Jr%m ’

D=

n—i—% 2 %
where 7"*2 is computed with 42 = (1 + | ) . The final complete time advance

(mc)?

algorithm has the same structure as the one described in [3], where two dimensional
paraxial Maxwell equations were approached by a finite-difference method. We refer the
interested reader to this reference.

4 NUMERICAL RESULTS

Our aim is to demonstrate the accuracy and the validity of the numerical method,
derived from the discrete variational formulations. To this purpose, we consider a 3D
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computational domain consisting of a cylinder, the axis of which being the { axis. The
transverse section {2 is made of a disk of radius R = 0.1. We choose a mesh made of 100
edges on the base on the cylinder and 30 layers up, for a cylinder of length 0.3. The total
number of degrees of freedom is equal to 86862. We also choose a time step At = 10~ %s.

All runs were performed on a commercial laptop (MacBook Pro, Processor 2.6 GHz Intel
Core i5, Memory 8 GB 1600 MHz DDR3).

We first derive an analytic solution E,; for a given charge density p(x,t). Choosing
p(x,t) = deg(cos(z? + y?) — (2% + y?) sin(a? + y?)) cost, one easily finds that the electric
field E; = (22 cos(x?+y?) cost, 2y cos(xz*+1?) cost) solves the first equation of (4). With
these definitions, we can numerically compute the quantities related to the paraxial model
and compare the computed solutions to this exact one. Figure 1 shows respectively the
x and y components obtained after 100 time steps of simulation. In order to make the
visual comparison between the computed and exact solution more convenient, we have
chosen to display the solution in a cut plane of the mesh (¢ = 0.15). As one can see there
is an good agreement between the computed solution and the exact one, depicted at the
same scale. Indeed, there is no way of distinguishing the difference between the two cut
plans of the solutions, even if we used a rather coarse mesh.

5 CONCLUSION

In this paper, we proposed a numerical approximation of a paraxial Vlasov-Maxwell
model in three dimensions, adapted to highly relativistic beam. The system of equations
we got is simpler and easier to solve than the complete 3D Vlasov-Maxwell equations.
We have derived a finite element numerical implementation of the Maxwell part of the
model, coupled with a Particle-In-Cell method for the Vlasov part. Both methods were
implemented by using the Freefem++ software. This approach seems powerful in its
ability to get an accurate, but fast and easy to implement algorithm. Numerical results
have been presented to illustrate the feasibility of the method. This solver should give an
interesting numerical tool for simulating high energy short beams problems, and could be
valuable to the computational accelerator physics community.
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) numerical solution - F,, ) exact solution - E,
) numerical solution - E, ) exact solution - E,

Figure 1: E, (x,,{ = —0.15) after 100 time steps
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