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Wöhlerstrasse 11, 79108 Freiburg, Germany

e-mail: hanna.lagger@iwm.fraunhofer.de, www.iwm.fraunhofer.de

Key words: Magnetorheological Fluid, Magnetization Model, Discrete Element Method,
Numerical Simulation

Abstract. In this study, three-dimensional particle-based simulations are used to model
magnetorheological fluids. The numerical model of the MRF is implemented in the frame-
work of the Discrete Element Method (DEM) and takes into account the coupling of the
magnetic dipoles, the hydrodynamic drag forces and steric forces between particles. To
accurately treat the magnetic interaction between particles, the magnetic field at the
particles’ position is computed and an appropriate magnetization model is implemented.
DEM simulations with different volume fractions of the MRF are carried out and the
resulting magnetization curves are put in comparison with experimental data.

1 INTRODUCTION

Typical magnetorheological fluids (MRF) consist of magnetically permeable particles
(e.g. iron) in carrier oil. Upon activation of an external magnetic field, the apparent
viscosity of the MRF changes within a few milliseconds by orders of magnitude, inducing
a change of the MRF from liquid to solid. By controlling the strength of the magnetic
field, the viscosity of the MRF can be adjusted very accurately. For this reason, MRF
are highly interesting for several industrial applications, such as controllable dampers or
automotive clutches.

In this work we use numerical simulations to investigate the mechanisms which govern
the behaviour of the MRF when subjected to a magnetic field. Inside the MRF, the
contribution of the magnetized particles to the local magnetic field cannot be neglected
[1]. Therefore an accurate description of the particles’ magnetization is required. We can
experimentally assess magnetization curves of magnetorheological fluids, but not of single
particles. Different magnetization functions to model the response of an iron particle to a
magnetic field can be found in the literature [2, 3, 4], however there is no well-established
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magnetization function which is suitable for every MRF. A specific magnetization func-
tion is an arbitrary choice and can also be different for different materials [5]. Here we
choose to perform simulations based on different single-particle magnetization functions,
compare the resulting MRF magnetization curves to experiments [4, 6] and adapt the
curve parameters.

In Sec. 2 the simulation method is presented. The calculation of the magnetization of
a particle is explained in Sec. 3. Different magnetization models from the literature are
discussed. In Sec. 4 we derive an expression to evaluate the magnetization of the MRF in
the simulation. In Sec. 5 we show first simulation results and bring them in comparison
with experimental results from the literature.

2 DISCRETE ELEMENT MODEL

The numerical description of the MRF is based on the Discrete Element Method
(DEM), originally proposed by Cundall and Strack to compute the motion of a large
number of particles [7]. After the computation of the forces Fi on each particle, Newton’s
equation of motion

mG
i r̈i = Fi (1)

is solved numerically for an ensemble of particles i = 1, . . . , N with masses mG
i and center

of mass positions ri. We model the MRF clutch with a three-dimensional simulation box
containing spherical particles, terminated by solid walls in one direction and with periodic
boundary conditions in the other two directions.

The forces included in the model are magnetic interaction forces between the particles,
elastic repulsion, and the Stokes’ drag of the fluid on the particles. The wall is modeled
as a dense and flat ensemble of non-magnetic particles. Gravity and Brownian forces are
neglected.

2.1 Magnetic forces

The dipole-dipole interaction energy Ei,j of two magnetic particles i and j with mag-
netic moments mi and mj is [8]

Ei,j =
µ0

4π

[

mi · mj

r3
i,j

− 3

r5
i,j

(mi · ri,j) (mj · ri,j)

]

, (2)

where ri,j = ri − rj is the vector connecting the centers of particle i and j, ri,j = |ri,j| its
norm and µ0 = 4π · 10−7 Tm

A
the vacuum permeability.

The force on dipole i caused by dipole j is given by

Fi,j = −∇iEi,j

=
3µ0

4π

[

(mi · mj) ri,j + (mj · ri,j)mi + (mi · ri,j)mj

r5
i,j

− 5
(mi · ri,j) (mj · ri,j) ri,j

r7
i,j

]

.

(3)
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The total magnetic force on particle i is then the sum of the contributions of all other
particles j

Fi =
∑

j

j �=i

Fi,j. (4)

The magnetic moments of the particles depend on the local magnetic field. The depen-
dence is specified by a magnetization function which is described in detail in Sec. 3.2.

2.2 Hydrodynamic forces

The fluid acts on the particles via Stokes’ drag,

FStokes
i = 6πηRi (vfluid − vi) , (5)

where vi is the velocity of particle i, Ri is the particle radius, vfluid is the velocity of the
carrier oil and η its viscosity.

2.3 Contact forces

A repulsive contact force which prevents the particles from overlapping is included.
The normal force of particle j on particle i is given by the Hertzian repulsion

Fn
i =

(

2
3
Y

1 − ν2

√

RiRj

Ri + Rj

ξ
3/2
i,j

)

ri,j

ri,j

, (6)

where Y is Young’s modulus, ν is Poissons’s ratio, and ξi,j = max{Ri + Rj − |ri,j|, 0} the
overlap [9].

As a first approach, no tangential forces are assumed.

3 TREATMENT OF THE MAGNETIC INTERACTIONS

In this section we introduce a selfconsistent algorithm for the calculation of the local
magnetic field as well as general features of the single-particle magnetization function
(Sec. 3.1). Three specific magnetization models are then discussed in Sec. 3.2.

3.1 Selfconsistent calculation of local magnetic induction and particle mag-
netization

The local magnetic induction at the position of particle i,

Bi,ext = Bapplied +
∑

j

j �=i

Bi,j , (7)

is given by the sum of the externally applied magnetic field Bapplied = µ0Happlied and the
sum of the contributions from other particles
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Bi,j =
µ0

4π

[

3
(mj · ri,j) ri,j

r5
i,j

− mj

r3
i,j

]

. (8)

The magnetization Mi of particle i is Mi = mi

Vi
where Vi is the volume of particle i. The

magnetic field Hi,in at the interior of particle i is given by [3]

Hi,in =
1

µ0

Bi,ext + αMi. (9)

The parameter α thus describes the contribution of the particle’s own magnetization to
its inner field Hi,in.

For the magnetization of the particle, we consider a model of the form

Mi = |MS|f(b|Hi,in|)Bi,ext

Bi,ext

, (10)

where MS is the saturation magnetization of the particle and f is a scaled magnetization
function which is linear for small |Hi,in| and tends to 1 for large |Hi,in|. The parameter b
is chosen such that the slope for small fields matches the low-field susceptibility χ of the
material.

As Hin itself depends on M, Eq. (10) is an implicit equation. We solve this equation
numerically by a root-finding algorithm that combines Newton-Raphson with the bisection
method for a fail-safe routine [10]. We approach the solution of the coupled equations
(7), (8) and (10) by the following iterative algorithm.

1. Initial step: Mi = 0, Bi,ext = Bapplied

2. Solve Eq. (10) with root-finding algorithm, update Mi for all i

3. Update Bi,ext for all i with equations (7) and (8)

4. Repeat steps 2. and 3. until the convergence criterion

max
i

|Mi(n) − Mi(n − 1)| < ε (11)

is reached, where Mi(n) is the magnetization of particle i in the n-th iteration.

The positions of the particles are not changed during the selfconsistency loop.

3.2 Different magnetization models proposed in the literature

Magnetorheological fluids are mostly suspensions of carbonyl iron powder, a highly
pure iron, where magnetic hysteresis is negligible [4]. Therefore we consider only models
of the form of Eq. (10), describing anhysteretic magnetization behaviour. In this section
three different choices for the magnetization function f as introduced in Eq. (10) are
presented, the role of the model parameters is discussed, and the different models are
compared.
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3.2.1 Three magnetization functions

The three models we want to compare are the following:

1. A simple magnetization function for axially anisotropic materials with applied field
along the easy axis, found in [2]

µ0M = µ0MS tanh(
χ

MS

Hin) (12)

2. A phenomenological model for isotropic materials, based on the modified Langevin
function [3]

µ0M = µ0MS

(

coth(
3χ

MS

Hin) − 1
3χ
MS

Hin

)

(13)

3. The Fröhlich-Kennely law for the magnetization of a particle located inside an infi-
nite chain [4]

µ0M = µ0MS

χ
MS

Hin

1 + χ
MS

Hin

(14)

3.2.2 How to choose the parameters

Saturation magnetization MS is the saturation magnetization of the material of the
spheres. This value can be obtained experimentally. Following [11], the saturation mag-
netization MS of the suspension of particles and carrier oil can be related to the saturation
magnetization of the bulk magnetic solid MS,bulk by the volume fraction φ of the suspen-
sion, MS = φMS,bulk.

Susceptibility and α All chosen models are constructed in a way that

M ∼ χHin for small Hin, (15)

where χ = χmat is the susceptibility of the material. The susceptibility χpart of a particle
is given by

M ∼ χpartHext for small Hext. (16)

Combining equations (9), (15) and (16), we get

χmat =
χpart

1 + αχpart

. (17)

Unfortunately, the single particle parameters are usually not known. In experiments, the
magnetization curve of the whole MRF is measured instead [12]. Thus we have to infer
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the susceptibility of the particle from the experimentally measured magnetization curve
of the MRF.

Regarding the parameter α, one obtains for uniformly magnetized spheres α = −1
3

and thus χsphere = 3χmat

3+χmat
[8]. In other cases, α is a coupling parameter depending on the

coupling of the magnetic domains inside the particle and on the particle geometry and
has to be fitted to experiments [3, 8].

3.2.3 Comparison of the magnetization models

Figure 1 shows the different magnetization models for parameter values µ0MS = 1.709 T
(taken from [4]), α = −1/3 (uniformly magnetized spheres) and a susceptibility χmat ≈ 5.7.

Figure 1: Comparison of the three magnetization functions Eq. (12), Eq. (13), and Eq. (14).

We see that the three models differ strongly in their behaviour for intermediate field
strength. The tanh function is very steep and approaches saturation early. The modified
Langevin function deviates from the linear regime for small fields earlier and needs stronger
fields to reach saturation. The same holds for the Fröhlich-Kennely function, only that
the effects are still more pronounced.

4 DEFINITION OF THE MRF MAGNETIZATION

Experimentally the magnetization of the MRF is obtained by

µ0M = Bmeasured − µ0Happlied, (18)

where Happlied is the externally applied magnetic field, controlled by a electromagnet, and
Bmeasured is the magnetic induction measured at a location close to the MRF.

If we want to mimic the experimental procedure in the simulation, we need to choose
a point where to measure the magnetization. We can–similarly to the experiment–apply
a certain external field H and measure the magnetic induction B at some point close to
the MRF. Figure 2 shows the value of Bmeasured − Bapplied for a setup where the MRF is
between two discs at z = ±37.5 µm. Bmeasured is the measured magnetic induction in the
simulation (at y = 0, averaged in x-direction) as a function of the measuring position,
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Figure 2: Locally measured magnetic induction (only the contribution of the MRF, without externally
applied field). The MRF is located between the yellow bars.

called z0, in z-direction. We see that the measured value depends significantly on the
distance of the measuring point from the MRF. However, we want to have a value for the
magnetization of the MRF, which is independent of the measuring point. To this purpose,
we analyze the contribution of the MRF to the magnetic field B at distances far from the
MRF. The behaviour of the absolute value of the magnetic field for large distances from

Figure 3: Magnetic field B induced by the MRF, far from the MRF.

the MRF can be described by

|Bmeasured(z) − Bapplied| =
c

z3
(19)

with a constant c, as shown in Fig. 3. Thus the field of the MRF shows the same decay
as a magnetic dipole field. We therefore define the magnetic moment of the MRF mMRF

as the magnetic dipole moment inducing the same magnetic field B as the MRF at larger
distances from the MRF.

A magnetic dipole located at the origin with dipole moment m = mez creates a
magnetic field

Bdipole(z) =
µ0

2π

m

|z|3 (20)
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at location (0, 0, z). The value of mMRF = |mMRF| can be found by fitting the large-
distance magnetic field B (19), yielding

mMRF = c
2π

µ0

. (21)

Another expression for the MRF magnetization can be obtained by considering that, seen
from a larger distance from the MRF, the magnetic dipoles carried by the particles inside
the MRF are approximately at the same spot. With the superposition principle we get
for the field created by the MRF:

BMRF(z) =
∑

i

Bi(z) =
∑

i

µ0

2π

mi

|z|3 =
µ0

2π

1

|z|3
∑

i

mi , (22)

where Bi is the magnetic field created by particle i and mi is the magnetic moment of
particle i. On the other hand

BMRF(z) =
µ0

2π

mMRF

|z|3 . (23)

Combining the equations (22) and (23) we get

mMRF =

∣

∣

∣

∣

∣

∑

i

mi

∣

∣

∣

∣

∣

. (24)

Thus, we expect the two definitions (21) and (24) for mMRF to be equivalent. To test this
hypothesis, we performed simulations with an externally applied field of µ0H = 0.14 T,
0.42 T, and 1.4 T. The results are shown in Table 1.

Table 1: Comparison of the two definitions for the magnetic moment of the MRF.

µ0Happlied [T] 0.14 0.42 1.4

m = c
2π

µ0

[Am2] 2.40 × 10−8 5.94 × 10−8 6.92 × 10−8

m =
∑

i

mi [Am2] 2.38 × 10−8 5.90 × 10−8 6.86 × 10−8

The differences between the definitions amount to less than 1 % of the magnitude of
the magnetic moment. Therefore the two definitions can be regarded as equivalent. For
our simulations, we take mMRF =

∑

i mi as the working definition. MMRF is then defined
as

MMRF =
mMRF

VMRF

=
N 〈mpart〉

VMRF

= φ 〈Mpart〉. (25)
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Hanna G. Lagger, Joël Peguiron, Claas Bierwisch and Michael Moseler

The MRF magnetization for monodisperse suspensions can thus be expressed as the aver-
age particle magnetization 〈Mpart〉 = 〈mpart〉

Vpart
times the volume fraction φ = N Vpart

VMRF
, where

Vpart is the volume of one particle, VMRF the volume of the MRF, and N the number of
particles in the MRF.

Equation (25) provides a convenient definition for the magnetization of the MRF in
the simulation. The experimentally measured magnetization however still depends on
the unknown measuring point. We can get independence from the measuring point by
dividing the measured magnetization by the measured high-field saturation value at the
same measuring point. This gives transformed experimental values

|B(z0) − Bapplied|
|BS(z0) − Bapplied| =

µ0

2π

mexp
MRF

|z0|3

µ0

2π

mexp
S,MRF

|z0|3

=
mexp

MRF

mexp
S,MRF

(26)

The same can be done for the computed magnetization

MMRF

MS,MRF

=
mMRF

mS,MRF

(27)

With this scaling procedure, the experimental [Eq. (26)] and computed [Eq. (27)] mag-
netization values can be put in comparison.

5 RESULTS

Here we present DEM-simulation results at different volume fractions with spherical
particles of 1 µm in diameter, comparable to the experiments reported in [4]. We used the
tanh model with values from Sec. 3.2.3. In the simulations we see that the magnetization
curve of the MRF deviates significantly from the single sphere curve (Fig. 4). Figure 5

Figure 4: Scaled magnetization curve of the MRF (φ = 35 %) compared with the single sphere curve.

shows the unscaled MRF magnetization curves simulated at different volume fractions φ.
In Ref. [4], the relative differential permeability curves of MRF are shown instead of the
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Figure 5: Magnetization curves of the MRF for different volume fractions φ.

magnetization. From simulations, we get the relative differential permeability µr,dif of the
MRF as

µr,dif(B) = 1 + µ0
dMMRF

dB
(28)

The simulation results are shown in Fig. 6. As stated in Sec. 3.2.2, we can get experimental

Figure 6: Relative differential permeability µr,dif for different volume fractions φ of the MRF from DEM-
simulations.

values for the low-field susceptibility χMRF of the MRF, whereas the susceptibility of the
material χmat is unknown. The susceptibility χMRF is related to the relative differential
permeability by

χMRF = µr,dif(0) − 1. (29)

The computed values are shown in Fig. 7. The linear dependence of χMRF on volume
fraction is also observed in experiments [4]. The susceptibility there is much higher though.
By increasing the susceptibility of the material χmat we also get higher susceptibilities for
the MRF (see figure 8). However, the exact dependence still has to be investigated.
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Figure 7: Low-field susceptibility of the MRF from DEM-simulations vs. volume fraction φ.

Figure 8: Low-field susceptibility of the MRF vs. material susceptibility χmat for different volume
fractions φ.

6 CONCLUSIONS

A numerical model of a magnetorheological fluid based on the Discrete Element Method
with emphasis on the magnetization model was presented. The magnetic interactions
were treated using a selfconsistent algorithm. For the description of the anhysteretic
magnetization curve of the particles, three magnetization models from the literature were
compared. An expression for the magnetization of the MRF in the simulation was derived,
thus enabling the comparison of experimental and computed magnetization curves.

From simulations we see that the magnetization curve of the MRF deviates significantly
from the single sphere curve. The low-field susceptibility of the MRF depends linearly
on volume fraction. The material’s susceptibility, which is needed as a parameter for the
magnetization model, can be obtained by comparing the resulting MRF susceptibility to
experiments.
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