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Abstract. In this work, we solve numerically the governing equations for quasi-steady 

Newtonian flow past and through a cellular biological medium, which is attached to the 

surface of a straight vessel. The flow past the cellular biological medium is described by the 

Navier-Stokes equations. For the modeling of momentum transfer within the cellular 

biological medium, we consider that the cellular biological medium constitutes a biphasic 

fluid-solid mixture with poroelastic behaviour. The system of governing equations is solved 

numerically with the mixed finite element method. The computational domain is discretized 

using an unstructured, variable density triangular element mesh. From the numerical solution 

we obtain the spatial distributions of: (i) the fluid velocity and pressure, and (ii) the 

displacement and stresses of the solid matrix within the cellular biological medium. Also, the 

components of the overall hydrodynamic force exerted by the flowing fluid on the cellular 

biological medium are calculated. A parametric analysis is performed with regard to the 

Reynolds and Darcy numbers that characterize the flow past and through the cellular 

biological medium. 

1 INTRODUCTION 

The interaction between a flowing fluid and a cellular biological medium (e.g. biofilm, or 

tissue) attached to the surface of a vessel is of key importance in several natural phenomena, 

and processes of physiological and technological significance. The biodegradation of organic 

contaminants by microbial biofilms in soil and aquifers, the in vitro construction of artificial 

tissues from human stem cells in synthetic porous scaffolds, the flow of blood in vessels 

containing thrombus and atheromatous plaque formations, are some of the processes in which 

fluid-cellular biological medium interactions are important.  
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In all the  aforementioned processes, the interaction between the flowing extracellular fluid 

and the deformable solid matrix (cells plus extracellular matrix) plays multiple important 

roles: (a) affects the internal architecture (spatial arrangement of cells and extracellular 

matrix) and the external morphology (overall size and shape) of the cellular biological 

medium [1], (b) enhances the mass transfer rate of chemical species (nutrients, wastes, 

chemical signaling molecules, etc) within the cellular biological medium [2], and (c)regulates 

the function of cells through the action of mechanical stresses, which are either applied 

directly on the outer surface of the biological cell, or transmitted indirectly through the 

extracellular polymeric matrix [3].  

Significant research effort has been directed toward the elucidation of the exact 

mechanisms through which the complex interaction between a flowing fluid and a cellular 

biological medium occurs. Along this direction, it is standard practice to employ experimental 

techniques that allow the study of the effect of a well-controlled flow field on the function and 

morphology of individual biological cells, layers of cells, or cellular biological media 

samples. In particular, flow chambers with parallel plate configuration have been used in 

several studies to observe the response of cellular biological media to fluid shear.  

Mathematical modelling is an indispensable tool, which is complementary to experimental 

investigation and provides qualitative interpretation and quantitative correlation of the fluid-

structure interactions in these systems in terms of velocity, stress fields, etc. A comprehensive 

survey on the available approaches for theoretical modelling of momentum transport in 

cellular biological media, with focus on the formulation of governing equations and the 

calculation of material properties, is given in [4]. 

In this work, we present preliminary results from computer simulations of flow past and 

through a poroelastic biomaterial, which is attached to the surface of a straight vessel. Fluid 

flow in the clear fluid regions is described by the Navier-Stokes equations, and momentum 

transfer in the cellular biological medium is described in the context of biphasic mixture 

theory. The effect of the Reynolds and Darcy numbers that characterize the flow past and 

through the biological medium is investigated. 

2 MATHEMATICAL MODEL 

We consider the quasi-steady flow of an incompressible Newtonian fluid in a straight 

vessel with rigid solid walls, and a cellular biological medium attached to the wall of the 

vessel as shown in Figure 1. In the clear fluid region, which is denoted by f, fluid flow is 

described by the Navier-Stokes and continuity equations 

0
f

 v  in f  (1) 

2

f f f f f fP     v v v  in f  (2) 

where 
f

v  is the velocity, 
f

P  is the pressure, 
f

  is the density, and 
f

  is the viscosity of the 

fluid. The flow in the vessel is driven by a prescribed, constant pressure drop 
ref

P  between 

the inflow and outflow boundaries of the vessel. Further, the gradient of the velocity 

components along the flow direction (x-axis) is nil at the inflow and outflow boundaries 

because the flow is considered to be fully developed there. At the fluid-solid interface the 

fluid velocity is nil based on the no-slip and no-penetration assumptions. 



1122

Terpsichori S. Alexiou, George E. Kapellos and Stavros Pavlou. 

 3 

 

Figure 1: Schematic representation of the flow geometry 

The cellular biological medium is treated as a biphasic mixture consisting of: (a) a viscous 

fluid phase denoted by f (extracellular aqueous solution), and (b) an elastic solid phase 

denoted by s (cells and extracellular matrix). The mathematical formulation of the mass and 

momentum balances for the cellular biological medium is based on the theory of mixtures, 

which was developed for the mathematical description of momentum, mass, and energy 

transport in multicomponent, multiphase systems at a scale of observation with resolution 

much larger than the characteristic length of the individual constituents and phases (the 

structure of the system at finer spatial scales is disregarded completely). The mathematical 

foundation of the theory relies upon the concept that the constituents of the mixture can be 

modeled as superimposed, interacting continua. In this way, a material point is assigned for 

each constituent at every point in space, which is occupied by the mixture. Exhaustive 

reviews on the theory of mixtures are given in [5,6]. The governing conservation laws for 

each constituent of the mixture contain the usual terms (that appear in formulations for a 

single phase), and an additional term which accounts for the interaction between the reference 

constituent and the other constituents of the mixture.  

We consider that the fluid (f-constituent) behaves as a Newtonian fluid, and the solid (s-

constituent) behaves as a linearly elastic isotropic solid. For the systems under consideration, 

it is reasonable to neglect the convective momentum transfer and mass production–

consumption (for time scales of observation much smaller than the characteristic time of cell 

division). Furthermore, we assume that the flow is in quasi-steady state. Under these 

assumptions, in the context of biphasic mixture theory, the equations that govern momentum 

transfer in the cellular biological medium are 

0
f

 v  in p  (3) 

f s f   0  F  in p  (4) 

s f s   0  F  in p  (5) 

The stress tensors and the interaction force are given by the following constitutive expressions 

 T

f f f f f f
P        

 = - I v v   (6) 
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   T

s s f s s s s sP           = - I + u  I u u   (7) 

f f

f s s f f f s

eff

P
k

 
     F F v  (8) 

Here, 
a
 is the volume fraction of the th constituent in the cellular biological medium (with 

1
f s

   ), 
s

u  is the solid displacement, 
s

  and 
s
  are the Lamé parameters for the solid, 

and 
eff

k  is the hydraulic permeability of the material. 

The mathematical formulation is completed with the boundary conditions at the interface 

between the cellular biological medium and the free fluid. We consider continuity of the fluid 

velocity and, further, that the normal stress exerted on the interface by each constituent of the 

cellular biological medium equals the total normal stress weighted by the corresponding 

volume fraction [7].  

3 NUMERICAL SOLUTION 

For the numerical solution of the governing equations of the problem we used the Galerkin 

finite element method. The spatial discretization of the computational domain is performed 

with triangular elements. An unstructured, variable density triangular element mesh is 

generated by combining a Delaunay triangulation algorithm with a force-based mesh 

smoothing methodology, so as to optimize the mesh quality. A typical mesh used for the 

numerical calculations is shown in Figure 2. 

 

Figure 2: Typical unstructured mesh of triangular elements. 

For the approximation of the fluid pressure we use 3-node linear basis functions, while the 

fluid velocities and solid displacements are approximated by 6-node quadratic basis functions. 

For the solution of the non-linear systems of equations that result from the discretization of 

the fluid momentum balances we employ a combination of Picard iterations and the Newton-

Raphson method. Due to the assumptions postulated in section 2, the governing equations and 

boundary conditions of the problem constitute a one-way coupled system, so that the fluid and 

solid constituents momentum balances can be sequentially solved.  

4 RESULTS AND DISCUSSION 

In this section, we present preliminary results regarding the effects of the Reynolds and 

Darcy numbers that characterize the flow past and through the cellular biological medium, 

respectively. These dimensionless numbers are defined as follows 
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f c

f

U R
Re

µ


  (9) 

2

eff

c

k
Da

R
  (10) 

where U  is the magnitude of the average velocity for flow in a clear vessel, under the same 

pressure drop. All other parameters of the system are held constant for the simulations. The 

size ratio of the radius of the semicircular obstacle to the width of the vessel is equal to 0.4, 

the length to width ratio of the vessel is equal to 5.0, and the Young's modulus and Poisson's 

ratio for the solid are set equal to 1MPa, and 0.45. Figure 3 shows the fluid streamlines in the 

vessel for three different values of the Reynolds number (0, 1, and 10) and two different 

values of the Darcy number (10
-2

 and 10
-4

). We observe that as the Re number increases, the 

flow pattern past and through the obstacle changes qualitatively and, gradually, obtains an 

asymmetrical structure. This effect becomes more pronounced for the lower Da number, 

where an extended recirculation region is formed behind the obstacle. Interestingly, the 

recirculation zone extends into the permeable biological medium (Figure 3F). Furthermore, 

we observe that as the Da number decreases, the fluid streamlines begin to divert significantly 

from the permeable obstacle, meaning that the amount of fluid passing through the cellular 

biological medium undergoes noticeable decrease.  

Figure 4 shows the corresponding maps of longitudinal and lateral displacement of the 

solid in the cellular biological medium. An increase in the Re number affects the solid 

displacement field both quantitatively and qualitatively. The values of the horizontal and 

vertical displacement increase in response to the elevated values of the forces experienced by 

the solid due to fluid flow (namely, term 
f sF  in the momentum balance for the solid). In 

addition, the gradual loss of symmetry of the flow affects strongly the solid displacements 

(see for example Figure 4F). The Da number also has an important effect on the 

displacements. A decrease in the value of Da leads to an increase of the solid displacements. 

This is attributed to the increase of the fluid-solid interaction force, 
f sF , caused by the 

decrease of the permeability of the medium. 

In Figure 5, the effect of Re on the dimensionless drag and lift forces exerted by the fluid 

on the cellular biological medium is depicted for two different Darcy numbers, namely 

Da=10
-2

 and Da=10
-4

. The dimensionless drag and lift forces (per unit length) are defined by 

the following expressions: 

x

S

1
dSdrag f

y ref

F
L P

  
  e  n  (11) 

S

1
dSlift y f

y ref

F
L P

  
  e  n  (12) 

Here, 
y

L  is the width of the vessel, and 
ref

P  is a reference pressure drop. 
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Da=10
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, Re=0  

Da=10
-2
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Da=10
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, Re=10  

Da=10
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Da=10
-4

, Re=1  

Da=10
-4

, Re=10  

Figure 3: Fluid streamlines for representative values of the Reynolds (Re) and Darcy (Da) numbers. 
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Figure 4: Maps of the longitudinal (left column) and lateral (right column) displacements of the solid in the 

cellular biological medium for representative values of the Reynolds and Darcy numbers.  
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In Figure 5, we observe that an increase in the Re number is followed by an increase in the 

values of both the drag and lift forces, as expected. Interestingly, an increase in the Da 

number leads to a decrease in the value of drag and an increase in the value of lift.  

  

Figure 5: Effect of Re on the dimensionless drag and lift forces for two different Da numbers. 

5 CONCLUSIONS 

 As the Reynolds number increases and the Darcy number decreases, an extended 

downstream recirculation region forms which reaches into the cellular biological 

medium. 

 The drag force exerted by the flow on the cellular biological medium increases for 

increasing Reynolds number and decreasing Darcy number, while the lift force 

increases for increasing Reynolds number and increasing Darcy number. 
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