
High performance conjugate heat transfer with the openPALM coupler

V International Conference on Computational Methods for Coupled Problems in Science and Engineering
COUPLED PROBLEMS 2013

S. Idelsohn, M. Papadrakakis and B. Schrefler (Eds)

HIGH PERFORMANCE CONJUGATE HEAT TRANSFER
WITH THE OPENPALM COUPLER.

Florent Duchaine∗, Stéphan Jauré∗, Damien Poitou∗, Eric Quémerais†,
Gabriel Staffelbach∗, Thierry Morel∗ and Laurent Gicquel∗

∗CERFACS, 42 avenue G. Coriolis,
31 057 Toulouse Cedex 01, France
e-mail: florent.duchaine@cerfacs.fr

†ONERA, DSNA,
29 Avenue de la Division Leclerc
92 322 Châtillon Cedex, France

Key words: Massively Parallel, Conjugate Heat Transfer, Large Eddy Simulation

Abstract. Optimizing gas turbines is a complex multi-physical and multi-component
problem that has long been based on expensive experiments. Today, computer simu-
lations can reduce design process costs and are acknowledged as a promising path for
optimization. Although the simulations of specific components of gas turbines become
accessible, these stand-alone simulations face a new challenge: to improve the quality of
the results, new physics must be introduced. Based on the simulation of conjugate heat
transfer within an industrial combustor to predict the temperature of its walls, the current
work aims at studying the scalability of code coupling on HPC architectures. Coupling
accurately solvers on massively parallel architectures while maintaining their scalability
is challenging. The strategy investigated relies on recent developments made in a generic
parallel coupler. Performance tests have been carried out until 12,288 cores on the CURIE
supercomputer (TGCC / CEA). Results show a good behavior and advanced analyzes are
carried out in order to draw new paths for future developments in coupled simulations.

1 Introduction

Determination of heat loads such as wall temperatures and heat fluxes, is a key issue in
gas turbine design [1, 2]. With the constant increase of computing power, numerical simu-
lations of the thermal interaction between fluid flows and solids offer new design paths to
diminish development costs through important reductions of the number of experimental
tests. To determine mean heat loads on structures, many authors use Conjugate Heat
Transfer (CHT) where the fluid and solid equations are resolved simultaneously. CHT is
a difficult field and most existing tools are developed for chained (rather than coupled),

1

1154

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

steady (rather than transient) phenomena thanks to Reynolds Averaged Navier-Stokes
(RANS) solvers [3, 4]. The accuracy of the CHT predictions largely relies on the Com-
putational Fluid Dynamics (CFD) method. Recent contributions based on Large Eddy
Simulation (LES) [5, 6] provide promising results especially for the prediction of heat
transfer in complex geometries [7, 8, 9, 10].

Using an unsteady LES flow solver to resolve such problems raises several complexities
to address for CHT. LES requires high mesh resolutions to accurately capture the flow
physics. It is also more CPU consuming than RANS methods to converge spatial and
temporal statistics. These specificities imply the use of specific strategies to accelerate
the convergence toward steady heat transfer problems as well as efficient methods to use
existing high performance architectures. Previous studies have proposed guidelines to
reach stable convergence of CHT problems with LES based on time desynchronization
of convection and conduction as well as the use of high frequency information exchanges
between the physics [7, 11].

Note that, there are two basic approaches to numerically solve CHT problems. The first
one is a direct coupling approach where the different physics are solved simultaneously
in a large system of equations by a monolithic solver. The second approach consists in
solving each set of equations separately with dedicated solvers that exchange interface
conditions through a coupler. The last solution adopted here has the advantage of using
existing state-of-the-art codes to solve fluid and solid equations.

In this context and with the convergence recommendations, the resolution of CHT
problems puts a lot of pressure on the tool used to couple the solvers. Several communities
have investigated the use of code coupler in many different area ranging from climate
studies to industrial applications. These communities are now faced to the challenge of
running the coupled applications with highly loaded codes on massively parallel machines
where the solvers exchange a lot of amount of data at a high frequency. The strategy
investigated in this work to address these issues relies on recent developments made in a
generic parallel coupler [12]. The first section presents the fluid and solid solvers. Then,
implementation details on the coupling library are provided. Finally performance tests
carried out until 12,288 cores on the CURIE supercomputer (TGCC / CEA) are proposed.

2 Presentation of the flow and conduction solvers

This section aims at presenting the fluid and solid solvers used to construct the CHT
tool. Both solvers have a mesh partitioning based parallelism. After a short description
of their functionalities, parallel performance of each solver is given.

2.1 The fluid solver AVBP

Recent information about this flow solver can be found in [13]. AVBP solves the
compressible Navier-Stokes equations and focuses on unsteady turbulent flows (with and
without chemical reactions) for internal flow configurations on unstructured grids. The

2

1155

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

prediction of turbulent flows is based on the LES sub-grid scale closure problem [14].
The numerical methods are either 2nd order or 3rd order in time and space [13]. AVBP
library includes integrated parallel domain partitioning and data reordering tools, handles
message passing and includes supporting routines for dynamic memory allocation, parallel
Input/Output and iterative methods.

Typical strong speed-up obtained with AVBP are illustrated on Fig. 1-(a). This flow
solver shows an excellent scalability until 8, 192 cores. Results are still good for 24, 000
cores (efficiency is around 85%). The decrease of performance for a very large number
of cores underlines a physical limit often encountered on massively parallel applications.
Indeed for very large numbers of cores the ratio between computation time and com-
munication time is directly proportional to the problem size (number of grid points and
unknowns). For this specific illustration, the configuration tested with 16, 000 cores corre-
sponds to a calculation without enough cells by core or a too low computational workload
for each core compared to the amount of exchanges needed to proceed with the CFD
computation. It shows that a given task is limited in terms of scalability and no increase
of performance is expected beyond a given number of cores.

100 1000 10000
Cores

100

1000

10000

Eq
ui

va
le

nt
 p

er
fo

rm
an

ce

Ideal
AVTP - Explicit (F=0.5) (1)

AVTP - Implicit (F=0.5) (1)

AVTP - Implicit (F=10) (1)

AVBP (2)

(1) 18M Tetrahedra case - PRACE/TGCC, CURIE, BullX
(2) 21.4M Tetrahedra case - PRACE/TGCC, CURIE, BullX

(a) (b)

Figure 1: Strong speed-up curve obtained for (a) AVBP on different machines and physical configurations,
(b) AVBP and AVTP on the CURIE/TGCC supercomputer with the target configuration of the study.

2.2 The solid solver AVTP

The AVTP solver has been written based on the data structure of AVBP. The solver
inherits from the mesh capability and the computational performances of AVBP. AVTP
solves the time dependent energy conservation equation. A second order centered scheme
is used for spacial discretization. Time integration is done either with an explicit or an
implicit first order forward Euler scheme.

A typical strong speed-up obtained with AVTP is illustrated on Fig. 1-(b) for explicit

3

1156

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

and implicit schemes. Due to the small number of operations per iteration compared to
AVBP, the scaling of the explicit integration becomes poor at about 500 cores and then
saturates. For the same Fourier number (F = 0.5 at which the explicit scheme is limited
due to stability reasons), the implicit scheme shows better scaling performances due to the
fact that it needs more operations per iteration than the explicit scheme. The price for one
iteration on one processor is thus higher when using the implicit scheme than the explicit
one. Increasing the Fourier number, the number of operations per iteration increases (the
method needs more sub-iterations to converge) and thus the scaling appears to be better
(F = 10 on Fig. 1). On the other hand, using larger Fourier numbers increase the time step
leading to a global decrease of the CPU time consumed to simulate a given physical time,
which is why implicit schemes are preferred for this type of solver. Finally, the more the
domain is partitioned by increasing the number of core, the more the conjugate gradient
algorithm needs sub-iterations to converge which increases the number of operation per
iteration and thus participate to the decrease of the efficiency of the solver. After 750
cores, the efficiency of the implicit solver at F = 10 is less than 75%.

3 Presentation of the coupler

The OpenPALM software is a code coupler, i.e. a library of functionalities that fa-
cilitate the scheduling of existing components execution as well as the exchange of data
between these components [12]. This is achieve in part via a collection of primitives that
are called in the codes as well as with more complex mechanisms for application schedul-
ing. OpenPALM aims at implementing a general tool allowing to easily integrate high
performance computing applications in a flexible and evolutive way proposing a solution
to the balance among performance, software reuse and numerical accuracy.

OpenPALM is mainly composed of 3 complementary components, (1) the PALM li-
brary1 , (2) the CWIPI library2 and (3) the graphical interface PrePALM. As the applica-
tion programming interface is available in Fortran and C/C++, OpenPALM can couple
codes written in different languages. The CWIPI library is the part of OpenPALM that
is mostly used in this study and is thus explained in more details in the following. CWIPI
aims at providing a fully parallel communication layer for mesh based coupling between
several parallel codes with MPI communications. Like most existing coupling libraries for
multi-executables paradigm [15, 16, 17], CWIPI is a static coupler in the sense that all the
components of the simulations are started at the beginning, exchange data during the run
phase and finish together at the end. Coupling is made through 1D, 2D or 3D exchange
zones that can be discretized in different ways in the coupled codes. The library takes
into account all types of geometrical elements (polygon, polyhedral) with an unstructured
description. CWIPI functionalities involve the construction of the communication graph
between distributed geometric interfaces through geometrical localization, interpolation

1Projet d’Assimilation par Logiciel Multiméthodes
2Coupling With Interpolation Parallel Interface

4

1157

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

on non coincident meshes, exchange of coupling fields for massively parallel applications
as well as visualization file building.

3.1 High performance mesh based coupling

Code coupling is an appealing method to develop multiphysics applications. However
if it is done incorrectly it can become a performance pitfall and render useless the efforts
invested to optimize each individual code. There are at least two important aspects to
take into account to manage efficient code coupling in a HPC context: (1) reducing the
overhead of data transfer between the solvers and (2) maintaining a global processor idle
time low, unless both codes have perfectly equal CPU per iteration times, the fastest code
will have to wait the other. Having a good load balancing is the key to maintain a low idle
time and thus reduce CPU waste. The first point requires the most attention and a direct
point to point communication between each solver’s processors is proposed. Also non
matching grids being used, a parallel interpolation method is required. The algorithm
consists of two parts: the initialization or setup phase, i.e. where the communication
routes and the interpolation coefficients are computed, and the run-time phase, or how
inter code synchronization is actually executed. The first phase is done just once per
coupled simulation except if the geometries are mobile.

For the description of these phases, lets consider that solvers A and B are linked by a
coupling through their respective discretized interface IA and IB.

3.1.1 Inter-code communication scheme (ICCS) determination

The communication routes construction consists in projecting the discretized interface
IA on IB and vice-versa in order to prepare the communication phase. To maintain full
scalability, coupling massively parallel applications has to remain a distributed process not
only during the run-time part, but also the initialization part. Furthermore distributing
the workload in the initialization improves the capacity of the coupled application to
handle large simulations (which is a key for future applications).

Connecting the interfaces IA and IB means being able to perform geometrical searches
from a computational domain into the other in order to locate the degrees of freedom
of IA in IB and vice-versa. To keep the data distribution, the geometrical searches are
performed in a parallel way by avoiding data centralization and sequential treatment.
This objective faces a clear difficulty: in massively parallel CFD applications or heat
transfer solvers the meshes are partitioned into sub-domains each processed by different
processors. This partitioning also applies to the coupling interfaces. As the partitioning
algorithm is usually not aware of the coupling process, the different distributions have
no reason to match, leading to complex associations between interface processors of both
solvers. To address these specific difficulties the CWIPI algorithm is composed of an
optimized three levels location method (Algo. 1): the first level is the partition number
of the mesh, the second one is the cell number in the selected partition, and the next one

5

1158

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

is the mean values computed in the selected cell.
As the process is fully symmetric, lets consider that code A is the source code (where the

data is localized for the interpolation) and code B is the target code. The corresponding
interfaces IA and IB are partitioned on processes, leading to nA sub-interfaces noted InA
and nB ImB with n ∈ [1, nA] and m ∈ [1, nB]. It is worth noting that the number of
sub-interfaces nA (respectively nB) is lower or equal to the total number of total partition
of the code A (respectively B). Only the processes which contains a sub-interface are
involved in the projection algorithm.

The location algorithm is parametrized to adjust the size of the bounding box around
the source process sub-interface InA for step #2 as well as around the source cells for step
#4. This parameter takes the form of a tolerance: increasing it leads to helping locating
points when geometries are not exactly matching. Note however that increasing tolerance
results in an increase of the time requested by the location algorithm to converge.

Algorithm 1 Inter-code communication scheme (ICCS) determination algorithm

Step0:
- Each partition n of the source code defines its discretized source sub-interface InA to
the coupler (nodes coordinates & connectivity of the cells).
- Each partition m of the target code defines its discretized target sub-interface ImB to
the coupler (nodes coordinates & connectivity of the cells)

Step1: Each process of the the source code defines a surrounding box of its partition
InA

Step2: Each process of the source code checks for geometrical intersections of its sur-
rounding box of sub-partition InA with target nodes of the different target sub-interface
ImB
return Determination of a reduce number of target nodes per source process n
return Construction a first communication graph between source and target processes

Step3: Each process of the source code classifies the previous target nodes in an octree
structure in order to optimize the next research step
return Octree structure containing the target nodes

Step4: Each source process defines a sub-box per mesh element of its sub-interface InA

Step5: Each source process checks the intersection between each source cell sub-box
of InA and the target nodes classified in the octree
return Determination of a limited number of candidate target nodes per source cell

Step6: For each target node, the source process identifies the closest element of the
source sub-interface InA and defines the final communication graph
return Final communication graph from the source processes to the target ones

6

1159

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

3.1.2 Communication phase

The communication phase consists in the interpolation of the fields and the exchange
of the data between the solvers. The data can be stored either at the center of the cells for
cell-centered solvers or at the nodes for cell-vertex solvers. Interpolation is done directly
by the source solver via linear methods. Note that user can customize the interpolation
with call-back definition. To ensure communication scalability the communication scheme
between each solver is based on direct point to point communications between the pro-
cessors which share a common interface following the communication graph setup in the
previous phase. Each processor generally has several counter parts, which have to provide
a portion of its data field.

Two communication schemes exist in the library: (1) synchronous and (2) asyn-
chronous. In the synchronous mode, each process of code A that treats a sub-interface InA
is involved in a loop of communications with processes of code B that share partially this
sub-interface. The bounds of this loop are obtained thanks to the inter-code communica-
tion scheme determination phase and follow the natural order of the process numbering.
The exchanges are based on the MPI Sendrecv primitive so that they can be mono or bi-
directional. This primitive is a blocking one implying that an exchange between process
n of code A with process m of code B has to be finished before starting the exchange be-
tween n and m+1. This method is not well optimized when a very large number of cores
is involved in the coupling. Concerning the asynchronous mode, the exchanges are based
on loops around the primitives MPI Issend for the sending and MPI Irecv for reception.
The completion monitoring of the exchanges is achieve thanks to loops around primitives
MPI Wait. In this mode, the communication times can overlap in a fully transparent way
which is prone to be more performant than the synchronous mode. The other advantage
of the method is its potential to overlap the communication times with other treatments
in the code that don’t affect the exchanged fields.

4 Application to an industrial combustion chamber

The configuration of interest is a sector of an annular helicopter combustion chamber
(Fig. 2), including the secondary air flow (A), the flame tube (B) and the high pressure
distributor (C). The flame tube is fed with air and kerosene through an injector (D). The
flame stabilizes in the primary zone (E). The thermal problem studied here by conjugate
heat transfer consists in the determination of the temperature of combustor wall as well
as of the stator.

The fluid domain is discretized with 3.8 million nodes and 21.4 million tetrahedra.
To describe the flame with sufficient accuracy, the mesh is refined in the primary zone
where the flame stabilizes. The solid domain is discretized with 3.8 million nodes and
18.2 million tetrahedra. The high number of solid cells is linked to a resolution constraint
that requires at least 4 elements in the wall thickness. The conjunction of very thin walls
with the use of tetrahedra leads to a large number of elements.

7

1160

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

Air inlet
Outlet of

burned gases

!"

#"

$"

%"

&"

Figure 2: View of the configuration, fluid and solid models. Only one sector of the annular combustion
chamber is investigated.

Computations are done on the CURIE supercomputer, owned by GENCI and operated
at the TGCC by CEA. CURIE offers different fractions of x86-64 computing resources.
Thin nodes among the 5040 B510 bullx nodes of the architectures are used in the present
study. Each node is composed of 2 eight-core Intel processors Sandy Bridge EP (E5-2680)
with 2.7 GHz, 64 GB and 1 local SSD disk. A total of 80,640 cores are availables on the
machine. The coupling has been tested on 768 processors, ie 12,288 cores.

The strong speed-up obtained with AVBP on the present configuration is shown on
Fig. 1-(b). The performance of the solver are very good till 2,048 cores. After, a significant
loss of performance is observed. This is directly linked to two main reasons: (1) the
MPI allreduce that are not optimized in the version of Bullxmpi used for these tests and
(2) the size of the fluid mesh which doesn’t contain enough degrees of freedom to reach
good scaling properties up to 8,000 cores. The strong speed-up obtained with AVTP
based on 8 cores on the present configuration is also shown on Fig. 1-(b). The curve is the
one already discussed during the AVTP description. A good scalability is observed till
650 cores with the implicit scheme at Fourier F = 10 used for the coupled computations.

5 Parallel efficiency results

This section presents the strong scaling analysis of the coupling between AVBP and
AVTP from 128 to 12,288 cores. In a first part, the simulations conditions are detailed.
Some important features resulting from the application that directly impact the efficiency
results are underlined. Finally, the performance of the coupled application are analyzed.

5.1 Simulations conditions

The physics and the numerics of the coupling methodology to reach a steady thermal
state of the solid are detailed in [7, 11]. The main idea relies on a desynchronization of

1161

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

Case # 1 2 3 4 5 6 7 8 9
AVBP 124 224 480 992 1,984 4,000 6,016 8,000 12,032
AVTP 3 31 31 31 63 95 127 191 255

OpenPALM 1 1 1 1 1 1 1 1 1

Total 128 256 512 1,024 2,048 4,096 6,144 8,192 12,288

Table 1: Repartition of cores between AVBP and AVTP for the coupled simulations. The OpenPALM
driver takes one core.

the temporal evolutions in the fluid and solid with a high frequency data exchange to
reduce the CPU costs while ensuring stability of conjugate heat transfer computations.
It results that for the present case, both solvers run in parallel and exchange data at a
fixed frequency corresponding to 20 times steps for the fluid code and 1 time step for the
solid one.

Table 1 presents the repartition of cores between AVBP and AVTP for the 9 cases
tested. Knowing the performances of the codes on the target machine, these repartitions
aim to not slow down the fluid code which is the more CPU greedy in case of not perfect
synchronization at meeting points (ie the cores of the solid solver wait for the fluid ones
for data exchange). As a result, the performances of the coupling are compared to AVBP
performances in the following of the paper. Note that the driver of OpenPALM runs
on one core and that AVBP always runs on a whole processor count in order to avoid
processor sharing between AVBP and AVTP.

AVBP treats around 0.48 million cells on its discretized coupling interface and AVTP
about 1.7 million elements. The core distribution among the solvers as well as the number
of cores on which these coupling interfaces are partitioned for the 9 cases are shown on
Fig. 3. It is worth noting that 100% of the solid cores are involved in the coupling
process for all cases. On the other hand, the proportion of AVBP processes involved in
the coupling interface decreases almost exponentially when the number of cores increases.
This behavior is linked to the ratio between the volume of the configuration and its
surface which is higher in the case of the fluid solver. It is important to note that mesh
partitioning is managed independently in each solver resulting in non conformal patterns
of the partitioned discretized surfaces.

It is thus of interest to analyze the evolution of the distribution of the number of
mesh elements in the sub-interfaces as the number of cores increases. Indeed, a reduced
amount of AVBP cores have more task to perform than the others in order to perform
the exchanges with AVTP. Moreover, the way this additional load is distributed and
its evolution when the number of processing cores increases is particularly important to
ensure the scaling of the coupled application. To analyze these distributions, Fig. 4 and 5
show the probability density functions (PDF) of the number of cores treating nc cells
(these PDFs are constructed based only on the cores with coupling cells). Abscissa scales
are logarithmic in order to facilitate the interpretation. Concerning the fluid solver AVBP,

9

1162

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

1000 10000
Total number of cores

1

10

100

1000

10000

1e+05

N
um

be
r o

f c
or

es

AVTP Solver

AVBP Solver

AVTP coupling cores

AVBP coupling cores

1000 10000
Total number of cores

30

40

50

60

70

80

90

100

%
 o

f c
or

es
 in

vo
lv

ed
 in

 th
e

co
up

lin
g

AVTP Solver

AVBP Solver

(a) (b)

Figure 3: (a) Repartition of the total cores allocated to the solvers as well as evolution of the number of
cores involved in the coupling and (b) corresponding percentage of cores involved in the coupling process
for each solver .

the PDFs at low number of cores are rather spread out with distinct peaks, reflecting an
inhomogeneous partitioning of the coupled discretized interface among the computing
cores. Increasing the number of cores narrows the range of the PDF around the small
number of cells. A significant peak emerges indicating a homogenization of the distribution
of coupling cells on the cores. Nevertheless, a peak at very low number of cells exists
highlighting the participation of cores in the process of inter-code exchanges for a small
number of information. From case #3 to 9, the peak has the same order of magnitude as
the main peak of the distribution.

case #1 case #2 case #3 case #4 case #9

Figure 4: Probability density functions of the distribution of coupling cells per AVBP core depending on
the total number of cores of the coupled simulations.

As far as AVTP is concerned, case #1 exhibits a perfectly homogenous distribution on
the 3 cores. Then all the distributions show a multimodal profile with a marked peak in
the range of small numbers of coupling cells per core.

The analyzes of this section underline phenomenological issues resulting from the cou-
pler as well as the CHT application. Some of these results consist of potential weaknesses
for the performance results: imbalance between the number of cores allocated to the

10

1163

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

case #1 case #2 case #3 case #4 case #9

Figure 5: Probability density functions of the distribution of coupling cells per AVTP core depending on
the total number of cores of the coupled simulations.

solvers, all the cores of the AVBP solver don’t participate to the coupling creating a dif-
ference of computing load, imbalance repartition of the sub-interface among the coupling
cores on each solver, complex communication scheme with a lot of connection between
processes of the solvers, and finally a combination of these features. Knowing these fea-
tures, the next section analyzes the scalability of the application.

5.2 Performance of the coupled application

The time needed to construct the ICCS is presented on Fig. 6-(a). Except for case #1,
this time is almost constant when the number of cores increases. For case #1, the ratio of
cores involved in the coupling for AVBP over the one involved in the coupling for AVTP
is the most important: this imbalance of cores that have to communicate together leads
to a very poor efficiency of the algorithm. Increasing the number of cores for AVTP from
case #1 to case #2 leads to a drastic reduction of the consumed time. From case #2 to 4,
the number of cores allocated to the AVTP coupling interface is fixed while the number
of AVBP cores increases. It results a slight increase of the time spent to construct the
communication scheme. Then, the ratio of coupling cores between the solvers is almost
constant resulting in a slight decrease of the time consumed by the ICCS algorithm until
8,000 cores. From this analyzes, one can note that the scaling of the ICCS algorithm
largely depends on the number of processes involved in the coupling on each side of the
coupled problem. Increasing the number of cores of just one code is not sufficient to
ensure good scaling of this step.

Figure 6-(b) presents the evolution of the time taken by an AVBP iteration compared
to the time of an exchange between the solvers as a function of the total number of cores
of the coupled system. The exchanges are made in the synchronous mode. As previously
mentioned, the fluid solver exhibits a rather good scaling until 4,000 cores. Above 8,000
cores, the time of an iteration reaches a plateau. The time needed for the data exchange
is almost constant on the whole range of cores. As for the first phase, the time of the
communication step exhibits an important decrease from case #1 to 2. This reveals that
the balance of processes that are coupled continues to play an important part in this
phase. Then, the communication time slightly increases as the number of cores grows.
Until several thousand of cores, the time requested by an exchange is several order of

11

1164

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

magnitude lower than the time of an AVBP iteration. Then both times are of the same
order. As the coupling is done every 20 iterations of the fluid solver AVBP, the global
scaling of the application is conserved as shown on Fig. 7. The communication phase is
thus fully transparent in term of restitution time for the user.

1000 10000
Total number of cores

40

50

60

70

80

90

100

Ti
m

e
(s

)

1000 10000
Total number of cores

0.01

0.1

1

Ti
m

e
(s

)

AVBP iteration

Coupling exchange

(a) (b)

Figure 6: (a) Time taken by the inter-code communication scheme determination algorithm, (b) compar-
ison of the time for one iteration of AVBP and the time to do one exchange as a function of the total
number of cores of the coupling.

2000 4000 6000 8000 10000 12000
Total number of cores

0

2000

4000

6000

8000

10000

12000

Eq
ui

va
le

nt
 p

er
fo

rm
an

ce

Ideal
AVBP standalone
AVBP / AVTP coupling

Figure 7: Comparison of the strong speed-up curve obtained for AVBP / AVTP coupling with the AVBP
standalone one.

6 Conclusion

The different choices made for the resolution of conjugate heat transfer problems on
complex geometries put a lot of pressure on the tool used for coupling. As in several

12

1165

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

communities, developers are now faced to the challenge of running coupled applications
with highly loaded codes on massively parallel machines where the solvers exchange a lot
of data at a high frequency. The strategy investigated in this work to address these issues
relies on recent developments made in a generic parallel coupler. The characteristics of
the coupled tool including the fluid and solid solvers as well as the coupler are detailed.
Then, the tool is applied to an industrial combustion chamber. Performance tests are
carried out until 12,288 cores on the CURIE supercomputer (TGCC / CEA) and relevant
informations that influence the coupling scalability are detailed. The coupler exhibits a
very good behavior up to 12,288 cores implying that the use of HPC can drastically reduce
the restitution time of coupled applications for industrial design with high fidelity solvers.
Analyzes of the scaling response underline the impact of imbalanced repartition of cores
among the codes, imbalance repartition of the sub-interface among the coupling cores
on each solver, as well as the complex communication scheme with a lot of connections
between processes of the solvers on coupling overhead. These points are independent from
the coupler and can be addressed by incorporating the knowledge of the coupling in the
preprocessing step of the solvers (constraint and co-partitioning). Moreover, recent tests
on asynchronous communication show an important improvement of the scalability of the
coupler indicating development paths for the future.

The work was supported by the Fondation de Recherche en Aéronautique et Espace in
the project STRASS. The TGCC is gratefully acknowledged for providing access of the
CURIE machine during the Grand Challenge. Turbomeca is acknowledged for supporting
code developments and permission for publishing results.

REFERENCES

[1] Lakshminarayana, B., 1996. Fluid Dynamics and Heat Transfer of Turbomachinery.
Wiley.

[2] Bunker, R. S., 2006. “Gas turbine heat transfer: 10 remaning hot gas path chal-
langes”. In Procceedings of GT2006. ASME Turbo Expo 2006.

[3] Schiele, R., and Wittig, S., 2000. “Gas turbine heat transfer: Past and future chal-
lenges”. J. Prop. Power , 16(4), July, pp. 583–589.

[4] Garg, V., 2002. “Heat transfer research on gas turbine airfoils at NASA GRC”. Int.
J. Heat Fluid Flow , 23(2), April, pp. 109–136.

[5] Sagaut, P., and Deck, S., 2009. “Large-eddy simulation for aeronadymics: status and
perspectives”. Phil. Trans. R. Soc. Lond., 367, pp. 2849–2860.

[6] Leonard, T., Duchaine, F., Gourdain, N., and Gicquel, L., 2010. “Steady / unsteady
reynolds averaged navier-stokes and large eddy simulastions of a turbine blade at
high subsonic outlet mach number”. In ASME Turbo Expo, GT2010-22469, ed.

13

1166

Florent Duchaine, Stéphan Jauré, Damien Poitou, Eric Quémerais, Gabriel Staffelbach, Thierry Morel
and Laurent Gicquel

[7] Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., and Poinsot, T., 2009.
“Development and assessment of a coupled strategy for conjugate heat transfer with
large eddy simulation: Application to a cooled turbine blade”. Int. J. Heat Fluid
Flow , 30(6), pp. 1129–1141.

[8] Bhaskaran, R., and Lele, S. K., 2010. “Large eddy simulation of free-stream tur-
bulence effects on heat transfer to a high-pressure turbine cascade”. Journal of
Turbulence, p. N6.

[9] Maheu, N., Moureau, V., Domingo, P., Duchaine, F., and Balarac, G., 2012. “Large-
eddy simulations of flow and heat transfer around a low-mach number turbine blade”.
In Proc. of the Summer Program , N. A. U. Center for Turbulence Research, ed.

[10] Morata, E. C., Gourdain, N., Duchaine, F., and Gicquel, L., 2012. “Effects of
free-stream turbulence on high pressure turbine blade heat transfer predicted by
structured and unstructured les”. International Journal of Heat and Mass Transfer,
55(21-22), pp. 5754 – 5768.

[11] Jauré, S., Duchaine, F., Staffelbach, G., and Gicquel, L., 2013. “Massively parallel
conjugate heat transfer solver based on large eddy simulation and application to an
aeronautical combustion chamber”. Comput. Sci. Disc., Submitted.

[12] Piacentini, A., Morel, T., Thevenin, A., and Duchaine, F., 2011. “Open-palm: an
open source dynamic parallel coupler.”. In IV International Conference on Compu-
tational Methods for Coupled Problems in Science and Engineering.

[13] Gicquel, L., Gourdain, N., Boussuge, J.-F., Deniau, H., Staffelbach, G., Wolf, P.,
and Poinsot, T., 2011. “High performance parallel computing of flows in complex
geometries”. Comptes Rendus Mécanique, 339(2-3), pp. 104 – 124.

[14] Sagaut, P., 2000. Large Eddy Simulation for incompressible flows. Scientific compu-
tation series. Springer-Verlag.

[15] Joppich, W., and Kürschner, M., 2006. “Mpcci - a tool for the simulation of coupled
applications”. Concurrency and Computation: Practice and Experience, 18(2),
pp. 183–192.

[16] DeCecchis, D., Drummond, L., and Castillo, J., 2011. “Design of a distributed
coupling toolkit for high performance computing environment”. Mathematical and
Computer Modelling.

[17] Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R., Ford, R. W., Jacob, R.,
Larson, J., O’Kuinghttons, R., Riley, G. D., , and Vertenstein, M., 2012. “Coupling
technologies for earth system modelling”. Geosci. Model Dev. Discuss., 5, pp. 1987–
2006.

14

1167

