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Abstract— One of the most effective ways to improve quality of life in dementia is by exposing people to meaningful activities. 

The study of engagement is crucial to identify which activities are significant for persons with dementia and customize them. 

Previous work has mainly focused on developing assessment tools and the only available model of engagement for people with 

dementia focused on factors influencing engagement or influenced by engagement. This paper focuses on the internal functioning 

of engagement and presents the development and testing of a model specifying the components of engagement, their measures, 

and the relationships they entertain. We collected behavioral and physiological data while participants with dementia (N=14) were 

involved in six sessions of play, three of game-based cognitive stimulation and three of robot-based free play. We tested the 

concurrent validity of the measures employed to gauge engagement and ran factorial analysis and Structural Equation Modeling 

to determine whether the components of engagement and their relationships were those hypothesized. The model we constructed, 

which we call the ENGAGE-DEM, achieved excellent goodness of fit and can be considered a scaffold to the development of 

affective computing frameworks for measuring engagement online and offline, especially in HCI and HRI. 

Index Terms— Modelling human emotion, Nonverbal signals, Physiological measures, Health care, Social agents/robotics. 
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1 INTRODUCTION

 
EMENTIA is an umbrella term for a set of neuro-

degenerative diseases that affect cognition, functioning, 
and psychosocial wellbeing (e.g., Alzheimer’s Disease). It 
causes a reduction in thinking, problem-solving, and mne-
monic ability, progressively impairs the self-care capabil-
ity of a person, and often causes the emergence of disor-
ders of perception, mood, and thought content called be-
havioral and psychological symptoms of dementia (BPSD; 
e.g., apathy, depression, anxiety) [1]. Several recent studies 
have underlined that quality of life (QoL) in dementia is 
not just driven by the progression of the disease and the 
incidence of BPSD [2][3], but is also worsened by social iso-
lation [4] and lack of engagement [5][6][7]. According to 
the World Alzheimer Report [8], one of the most effective 
ways to improve QoL in dementia is by exposing people to 
meaningful and rewarding activities [9][10][11]. The study 
of engagement is hence crucial to identify those activities 
that are significant for the person with dementia and cus-
tomize them. 

Previous work has mostly focused on developing tools 
to assess engagement in dementia [12][13][14][15]. The 
only available model of engagement for dementia is the 
Comprehensive Process Model of Engagement [16], which fo-

cuses on the factors that influence engagement (i.e., per-
sonal, environmental, and stimulus attributes) and on 
those that are influenced by engagement (i.e., affect and 
behavior problems). The present paper aims at broadening 
the current knowledge on engagement in dementia by fo-
cusing on its internal functioning. In detail, it presents the 
development and testing of a model of engagement that 
specifies the components of engagement, how these can be 
measured in people with dementia, and which relation-
ships they entertain. A proper formalization of the func-
tioning of engagement can help designing architectures of 
sensors tracking engagement in real-time, thus automating 
the measurement of this state, and supporting the research 
on dementia and the work of caregivers and clinical staff. 
The online detection of engagement could help to adapt in-
teractive technologies (e.g., social robots) to the user’s af-
fective state, thus making their use more enticing. 

In the present study, we involved participants with de-
mentia in two playful activities, a Game-Based Cognitive 
Stimulation (GBCS) and a Robot-Based Free Play (RBFP), 
and recorded their physiological and behavioral data with 
a wearable multi-sensor device (the E4 wristband [17]) and 
two hand-held cameras, respectively. Subsequently, we 
measured their engagement-related behavior with the 
Ethographic and Laban Inspired Coding System of En-
gagement (ELICSE) [18] and extracted features from their 
Electrodermal Activity (EDA) [19] and accelerometer sig-
nals [20]. The development of the ELICSE, and the suitabil-
ity of EDA and accelerometer signals to assess engagement 
in dementia are discussed in previous work [18][19][20]. In 
this paper, we run a concurrent validity and factorial anal-
ysis to link these measures to the different components of 
engagement, and test our model of engagement, whose de-
velopment is based on the extant literature, with Structural 
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Equation Modeling (SEM). 
In spite of being constructed around people with de-

mentia, the applicability of this model can be extended to 
other user groups (e.g., children with autism, typically de-
veloped children) and other measurement techniques (e.g., 
eye-tracking), the main limitation being the type of activi-
ties assessed. These should have the following characteris-
tics, they (a) should not entail physical effort, (b) should en-
vision a proactive role for the user, and (c) should involve 
the use of tangible artifacts (being these traditional or tech-
nological). The model that we present can be thought of as 
a scaffold to support the development of affective compu-
ting frameworks for the online and offline measurement of 
engagement through nonverbal behavior and physiology. 
It is hence particularly suited to the fields of Human-Com-
puter and Human-Robot Interaction (HCI and HRI). 

The paper is organized as follows. In the section Related 
Work, we review the literature to identify definitions, com-
ponents, and measures of engagement. In the section Re-
search Questions and Hypotheses, we detail the questions that 
we addressed and the hypotheses we formulated on them. 
In the section Methods and Materials, we describe the meth-
odology that we employed to collect a database of multi-
modal data while participants with dementia were in-
volved in playful activities. In the section Results and Dis-
cussion, we present and discuss the concurrent validity of 
the measures of engagement we employed and the valida-
tion of the model. Last, in the section Conclusions, we sum-
marize the contribution of this paper and outline possible 
future directions. 

2. RELATED WORK 

2.1. Definitions of Engagement 

At present, there are many available definitions of en-
gagement [21]. The literature is filled with partially over-
lapping notions called with different names and suited to 
different purposes and contexts: engagement, engross-
ment, immersion, enjoyment, and flow. The review that we 
performed returned a double definition of engagement. 
Engagement is described as the involvement with a task or 
activity, but also as the social interaction with an agent. We 
report both definitions of engagement, as they share simi-
larities in their composition, and often co-exist in activities 
for people with dementia. 

2.1.1 Engagement with a Task/Activity 

One of the most prominent definitions of engagement 
with an activity is Csikszentmihalyi and LeFevre’s defini-
tion of flow [22]. Flow is the way interviewees describe the 
experience of being engaged in autotelic activities [23]. As 
a state, flow entails an intense and focused concentration, 
the union of awareness and action, a sense of control of 
one’s actions, the loss of self-consciousness, the distortion 
of the temporal axis, and the perception of intrinsic re-
ward. Central to the notion of flow is the balance between 
challenges and skills. When a person is in flow, the activity 
is just manageable. The imbalance between challenges and 
skills can either lead to anxiety – when challenges exceed 
skills – or apathy – when skills exceed challenges. 

Brown and Cairns [24] use the term immersion to de-
scribe a concept similar to flow, but not precisely overlap-
ping, the experience of getting lost in a game and being out 
of contact with reality. According to the authors, immer-
sion has three levels of intensity: engagement, engrossment, 
and total immersion. When engaged, gamers invest their 
time, effort, and attention in the game. When engrossed, 
their emotions are directly affected by the game. When to-
tally immersed, they are cut off from reality, all that mat-
ters is the game. Douglas and Hargadon [25] also describe 
immersion, but in novels and films. In contrast with Brown 
and Cairns, who situated engagement in the continuum of 
intensity of immersion, they differentiate engagement from 
immersion: “immersive novels require virtually no engage-
ment from their readers and viewers since they can simply 
follow the plot and enjoy the ride.” What this statement 
suggests is that engagement has to do with the proactive 
effort of the reader/viewer in the activity of reading/view-
ing, while immersion entails the act of being passively car-
ried away by the novel/film.  

In contrast with these views, engagement in dementia is 
mostly defined through its observable and tangible behav-
ioral outcomes. Cohen-Mansfield et al. [16] define it is the 
“act of being occupied or involved with an external stimu-
lus”, and, by extension, as “the antithesis of apathy;” Judge 
et al. [13] as the motor or verbal behavior exhibited in re-
sponse to an activity. The behavioral nature of these defi-
nitions is due to the fact that the study of engagement in 
dementia has grown in importance in the last decade, es-
pecially thanks to the work of Cohen-Mansfield [26], and 
Moyle [27], but research has only recently focused on its 
more subjective and experiential aspects [28]. 

In conclusion, every reviewed definition of task/activ-
ity engagement includes the following elements: (a) a per-
son – the user, the gamer, the reader, the viewer, (b) a 
task/activity – running, reading, playing games, watching 
films (c) the allocation of the resources of the person to the 
task/activity – attentional and affective resources, and (d) 
the subjective experience produced by the resource alloca-
tion. In the present paper, we are going to focus on activi-
ties that do not entail a physical effort, envision a proactive 
role for the person with dementia, and involve the use of 
tangible artifacts. 

2.1.2 Engagement with an Agent 

The definition of social engagement is rather settled and 
refined in the context of social sciences. One of its most em-
inent formalizations is Tickle-Degnen and Rosenthal’s rap-
port [29]. According to the two authors, when people expe-
rience rapport, they are other-involved and form a cohe-
siveness with each other through the expression of mutual 
attentiveness. Also, they feel a mutual sense of friendliness 
and caring (i.e., positivity) and are fine-tuned with each 
other to the extent that they react simultaneously, sympa-
thetically, and sometimes in a synchronized way (i.e., coor-
dination), for instance, by mirroring each other’s postures, 
gestures [30], and physiological states [31]. 

Engagement with an agent is a critical topic in HRI. 
However, as opposed to social sciences, HRI has not yet 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAFFC.2020.2980275, IEEE Transactions on Affective Computing

PERUGIA ET AL.:  ENGAGE-DEM: A MODEL OF ENGAGEMENT OF PEOPLE WITH DEMENTIA 3 

 

developed a globally accepted definition of social engage-
ment. Most of the studies regarding engagement with a so-
cial robot abstain from presenting a definition of engage-
ment and rely on the reader’s common sense to fill the 
void. Few of the definitions that can be retrieved are those 
of Sidner et al. [32], Rich et al. [33], Castellano et al. [34], 
and Díaz-Boladeras [35]. To these authors, engagement is: 
(i) “the process by which individuals in an interaction start, 
maintain, and end their perceived connection to one an-
other” [32][33]; (ii) “the value that a participant in an inter-
action attributes to the goal of being together with the other 
participant(s) and continuing the interaction” [34]; and (iii) 
the observable component of bonding (e.g., time spent, 
joint activity, attention) and its behavior-inferred or self-
reported emotional correlate (i.e., feeling of closeness) [35]. 
Due to the lack of a formal definition of social engagement 
in the context of social HRI, engagement is often confused 
with attention. However, as Castellano et al. [34] observe, 
engagement comprises an affective component on top of 
the attentional one.  

Social engagement is always more central in the debate 
on QoL in dementia. Indeed, lack of meaningful social con-
tact in people with dementia has been shown to speed up 
cognitive decline [36] and facilitate the occurrence of de-
pression and apathy [37]. In the Comprehensive Process 
Model of Engagement, Cohen-Mansfield et al. [16] do not 
distinguish engagement with a task/activity from engage-
ment in social interactions, and present sociality as an at-
tribute of the stimulus. On the opposite, Jones et al. [14] 
define social engagement in dementia (in this case with a 
social robot) as a social connection/interaction, consider-
ing sociality as a quality of the interaction itself rather than 
of the stimulus. 

In conclusion, the reviewed definitions of social engage-
ment include the following elements: (a) a person, (b) a so-
cial interaction – human-human or human-robot, (c) the al-
location of the resources of the person to the social interac-
tion – attentional and affective resources, and (d) the sub-
jective experience produced by the social interaction. Ac-
cording to this analysis, task/activity engagement and so-
cial engagement are structurally similar. They just differ in 
the target of their focus. 

2.1.3 Co-activities 

In activities for people with dementia, task/activity en-
gagement and social engagement often co-exist. Indeed, 
most of the playful activities for people with dementia are 
carried out in dyads or groups. Brandtzæg et al. [38] call 
co-activities all those activities that imply a collective action. 
In these, users do not engage in a task/activity or a social 
interaction alone, but with one or more social partners. Co-
activities are particularly important in dementia because a 
partner can provide support in situations of high strain [39], 
but could also act as a scaffold [40] showing less competent 
(or cognitively fit [41]) peers how to pursue the goals of the 
task/activity or social interaction. Given the common 
structure of task/activity engagement and social engage-
ment and their co-presence in most of the playful activities 
for people with dementia, we are going to treat these two 
constructs as one in the remainder of the paper, but keep 

differentiating them based on their target. 

2.2 Components of Engagement 

According to the literature, engagement is a compound 
of observable (i.e., attentional and affective resource allo-
cation) and subjective elements (i.e., the subjective experi-
ence that derives from resource allocation). As the main fo-
cus of this paper is to develop a model of engagement that 
can be fully automated and measured in real-time, we are 
going to focus exclusively on the observable facet of en-
gagement. As we saw, this regards resource allocation and 
is made of two elements: attention and affect. The next sub-
sections are meant to describe attention and affect in en-
gagement in more detail.  

2.2.1 Attention  

Attention is unanimously recognized as the essential 
component of engagement. Indeed, it appears in all the re-
viewed frameworks. Nakamura and Csikszentmihalyi [42] 
state that attention plays a crucial role in entering and stay-
ing in flow, as it shapes a person’s experience. “What to 
pay attention to, how intensely, and for how long are 
choices that will determine the content of consciousness, 
and therefore the experiential information that is available 
to the organism” [43]. O’Brien and Toms [44] describe four 
steps of engagement all modulated by attention: (1) point of 
engagement, which occurs when the user’s attention is 
drawn by the aesthetic qualities of a system, (2) period of 
engagement, which is the period of time during which the 
user maintains the attention on the system, (3) disengage-
ment, which occurs when the user sways the attention from 
the system to direct it somewhere else, and (4) re-engage-
ment, which happens when the user’s attention is brought 
back to the system after a period of disengagement.  

In the context of social engagement, attention can be-
come mutual. This is because all participants in the inter-
action – being those persons or artificial agents (e.g., virtual 
agents, social robots) – can, at the same time, direct the at-
tention towards others and receive attention from others 
[29][32][33]. Similar to task-directed attention, mutual at-
tentiveness occurs as a process with a phase of establish-
ment, maintenance, and end [32][33]. 

Attention is considered one of the main dimensions of 
engagement, also when it comes to dementia [16]. In this 
case, it is described as the amount of focus that the person 
pays to the stimulus in terms of gaze allocation, manipula-
tion of the stimulus, and verbal behavior regarding the 
stimulus. In our framework of engagement, we adopt 
Csikszentmihalyi’s definition of attention [45] both refer-
ring to attention toward a task/activity and toward an 
agent. According to this definition, attention – or focused 
attention – is the voluntary focusing of attention on a lim-
ited stimulus field (i.e., task/activity/social interaction). 

2.2.2 Affect 

In Csikszentmihalyi, affect is not a necessary condition 
of flow. However, most of the frameworks that we re-
viewed feature affect – of a positive nature – as a crucial 
dimension of engagement. Attfield et al. [46] and Chap-
man et al. [47] affirm that engaged users are affectively in-
volved. Castellano et al. [34] and Peters et al. [48] regard 
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engagement as a compound of attention and affect. Doug-
las and Hargadon [25] talk about a pleasure principle em-
broidered in engagement. Brown and Cairns [24] present 
emotional involvement as the element discriminating be-
tween engagement and engrossment. O’Brien and Toms 
[44] describe an emotional thread built in the state of en-
gagement. Last, Tickle-Degnen and Rosenthal [29] feature 
positivity as a component of rapport. 

With regards to dementia, Cohen-Mansfield et al.’s 
framework of engagement [16] features an affective com-
ponent, the attitude toward the stimulus. This is the 
amount of excitement and expressiveness towards the 
stimulus that the person with dementia displays. Also, 
Jones et al. [14] include an affective element in their con-
ception of engagement in dementia. Indeed, they incorpo-
rate Lawtons’ Observed Emotion Rating Scale (OERS) [49] 
in their Video Coding – Incorporating Observed Emotion. 
The OERS features negative and positive emotions (i.e., 
pleasure, anger, anxiety/fear, sadness, and general alertness). 

In our framework of engagement, we borrowed Rus-
sell’s definition of affect [50] as it is the most appropriate 
for a framework envisioning both behavioral and physio-
logical assessment. According to Russell, affect – or core af-
fect – is the neurophysiological state accessible to con-
sciousness as a single simple feeling which a blend of two 
dimensions: valence – the pleasantness of the feeling– and 
arousal – the degree of activation that it entails. 

2.3 Measurements of Engagement  

Engagement can be measured on three different levels, 
according to three different response systems [51]: (i) expe-
riential/subjective, which deals with the personal self-per-
ceived experience of engagement, (ii) behavioral/expressive, 
which addresses the outer manifestation of engagement 
through behavior, and (iii) peripheral-physiological, which 
treats the physiological substrate of engagement. As the fi-
nal purpose of our model of engagement is to support au-
tomation, we are mostly interested in the behavioral/ex-
pressive and peripheral-physiological levels. In recent 
years, research on dementia has also investigated the expe-
riential/subjective level (i.e., self-reports) [52][53], and 
people with dementia have been involved in first person in 
designing assistive technologies [52]. Yet, a pilot study that 
we conducted in a nursing home faced us with the diffi-
culty of participants to correctly remember the activities 
they took part in and retrieve how they felt during them. 
In order not to generate stress in participants, we decided 
to use observational rating scales, filled out by the clinical 
staff as a gold standard of engagement in the present 
study. These were the Observational Measurement of En-
gagement (OME) [12] and the Observed Emotion Rating 
Scale (OERS) [49]. 

Due to the incidence of BPSD such as apathy and de-
pression in dementia (prevalence rates: apathy 55.5%; de-
pression 44.9% [54]), the behavioral/expressive measure-
ment level can also be impaired [55]. Persons with demen-
tia might show blunted emotional reactions to activities. 
This is one of the reasons why it is crucial to enrich behav-
ioral analysis with physiological data. To date, the periph-
eral-physiological level of assessment has been only rarely 

studied in dementia. We attempt to fill this gap. 
In the next sub-sections, we describe the main behav-

ioral/expressive and peripheral-physiological measures of 
engagement. We leave aside the subjective/experiential 
measures because, as already discussed, they do not fall 
within the domain of interest of the present paper, nor did 
we use them as gold standard. 

2.3.1 Behavioral/Expressive Measures 

Most behavioral metrics of engagement for healthy sub-
jects come from the field of social psychology (e.g., interac-
tion studies on children) and social HRI. In this latter con-
text, researchers look for behavioral indicators that robots 
can track and use to infer engagement states. In this sense, 
gaze is one of the most exploited behavioral cues of engage-
ment [33][34][56][57] as it provides the robot with a clear 
idea of what the user is paying attention to. 

Other extensively used behavioral cues of social en-
gagement are backchannel events [29][33][58]. These are, for 
instance, nods and saying “uh, huh” and are typically used 
in conversation to notify the responder’s comprehension of 
the initiator’s communication. Also, facial expressions and 
postures are commonly used to quantify engagement. With 
regards to the first, the majority of the reviewed studies 
employ the Facial Action Coding System (FACS) [59] to 
recognize emotional facial expressions [34][60][61]. With 
regards to the latter, posture actions (e.g., sitting on the edge, 
leaning forward, sitting upright, leaning backward, 
slumping back), joint kinematics (i.e., the motion of joints or 
body segments), and posture features (i.e., body lean angle, 
slouch factor, quantity of motion, contraction index) are 
used to define engagement levels [60][62][63][64]. 

In the context of dementia, we identified two methodol-
ogies to assess engagement through behavior: (1) observa-
tional rating scales, which are Likert-type scales that gauge 
engagement on a number of items operationalized through 
behavior (i.e., OME and OERS) and (2) ethograms and cod-
ing schemes, which are respectively comprehensive and ac-
curate inventories of actions observed in context and used 
to annotate videos (i.e., [49][14][16]) and excerpts of those 
aimed at answering specific research questions (i.e., [15]). 
Observational rating scales, ethograms, and coding 
schemes feature some of the behavioral metrics identified 
by social HRI. However, they take on a more exhaustive 
approach and also include affective touch (e.g., stroke, hold, 
tapping), facial gestures (e.g., kissing, yawning, winc-
ing/grimacing), manipulations (e.g., hold, touch), vocaliza-
tions (e.g., singing, humming), content of conversation (e.g., 
yelling, cursing, berating), and stereotyped and agitated be-
haviors (e.g., hand-wringing, wandering) in the measure-
ment of engagement.  

In our previous work, we developed the ELICSE and 
the Evidence-based MODel of Engagement-related Behavior 
(EMODEB) in the attempt to provide a systematic meas-
urement framework of engagement-related behavior for 
dementia [18][65]. The ELICSE describes different behav-
ioral modalities that could be used to assess engagement 
(gaze, postures, and arms/hands behavior), and clusters 
micro-behaviors into macro-labels based on the different 
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foci of the activity (i.e., game, partner, facilitator/experi-
menter, or none of them). The ELICSE is a modular coding 
system that can be down or upsized based on the peculiar-
ities of the activities and persons whose engagement is to 
be assessed. The EMODEB, instead, describes and vali-
dates the hierarchical organization of the behaviors in the 
ELICSE, and accounts for engagement-related behavior as 
a whole (i.e., body configurations). It solves the fragmen-
tation of the behavioral assessment tools of engagement, 
where multiple scores are obtained from annotations, and 
helps to obtain a unique score of engagement mindful of 
the expressive value and hierarchy of the different behav-
ioral modalities. 

In our previous work, we also found out that quantity 
of movement (QoMov), gauged through a wrist-worn tri-
axial accelerometer can be used to assess engagement-re-
lated behavior in dementia [20]. The insight came from a 
number of studies using a wrist-worn actigraph (i.e., accel-
erometer) to diagnose apathy in dementia [66][67]. These 
discovered that people with apathy present a lower quan-
tity of movement on the wrist. As arms/hands are used to 
manipulate objects and proactively participate in a task, 
we tested whether QoMov could increase as a consequence 
of engagement as much as it decreased due to apathy and 
depression, and demonstrated that this was the case.  

In this study, we used the scores obtained from the EL-
ICSE and EMODEB to measure the valence of engagement 
and the overall attention toward the activity, and the fea-
tures of QoMov to gauge proactive attention. 

2.3.2 Peripheral-Physiological Measures 

As partially anticipated in section 2.3.2, our model of en-
gagement leans on the circumplex model of affect [68]. This 
model describes affect as a two-dimensional space defined 
by two axes: a vertical axis – arousal – and a horizontal axis 
– valence.  

Arousal can be assessed through a number of physio-
logical measures. Among the others, heart rate (HR), heart-
rate variability (HRV), pupil dilation, electroencephalog-
raphy (EEG), and EDA. In spite of these multiple measure-
ment possibilities, EDA - the electric change in the skin de-
rived from the activation of the Sympathetic Nervous Sys-
tem (SNS) [69] – seems to be the most used [70][71]. The 
extensive use of EDA is to be ascribed to its low cost and 
minimal intrusiveness. Moreover, it is also due to the fact 
that EDA is more straightforward as a measure of engage-
ment than cardiac measures (i.e., HR and HRV). Indeed, 
while the skin is exclusively innervated by the SNS, the 
heart is dually innervated by the SNS and the Parasympa-
thetic Nervous System (PNS). As engagement can have an 
effect both on the SNS and the PNS, and each of these ef-
fects brings about an opposite physiological reaction of the 
heart (SNS > increased HR, PNS > decreased HR), the as-
sessment of engagement through cardiac measures can 
lead to counterintuitive results [72]. Another measure of 
autonomic activation is pupil dilation [73], the increase in 
pupil diameter due to emotional stimulation. The main de-
terrent to the use of pupilometry in our study was the dif-
ficulty of keeping light conditions constant across sessions. 
As we collected data in nursing homes, the luminosity of 

the room depended on the daily weather conditions. Un-
fortunately, we could not keep the set-up and light condi-
tions of the room fixed without disrupting the workflow of 
the institutions. 

There is a number of physiological measures that can be 
used to measure valence, too. Among the others, HRV and 
facial electromyography (EMG). HRV – which is the varia-
tion in the interval between heart-beats in a given time 
frame – is highly related to mental stress and negative va-
lence [74]. Facial EMG – which is the electrical activity of 
the muscles of the face – is related to facial expressions of 
happiness (i.e., zygomaticus major and orbicularis oculi) and 
anger and sadness (i.e., corrugator supercilii) [75]. We de-
cided to exclude HRV from our work as studies found that 
patients with dementia might show a decreased HRV 
[76][77]. With regards to facial EMG, we excluded it be-
cause its intrusiveness (i.e., electrodes are to be placed on 
participants’ faces) was deemed unsuited to our target us-
ers and field data collection.  

As a result of the review of the literature, we decided to 
employ EDA to assess arousal, and use the behaviors in the 
ELICSE, hierarchically organized as suggested by the 
EMODEB, to gauge valence. We presented exploratory re-
sults on the measurement of engagement-related arousal 
through EDA in [19]. In general, studies on the physiology 
of engagement of people with dementia are limited and 
mainly tackle the health benefits of engagement. They in-
volve costly or invasive procedures that are not suited to 
field measurement: EEG [78], urinalysis and hormones 
analysis [79], and fNIRS [80]. The main antecedent to our 
work is a study carried out with healthy seniors and sen-
iors with Mild Cognitive Impairment (MCI) during inter-
actions with a telepresence robot (Giraff) using cardiac 
measures (i.e., HRV) [81].  

3. RESEARCH QUESTIONS AND HYPOTHESES 

In this work, we explore the following research questions: 

RQ1 Is there a good concurrent validity between the EL-
ICSE, EDA, and QoMov [18][19][20] and the gold 
standard measures of engagement, OME and OERS 
[16][49]? 

RQ2 Are the relationships between the different compo-
nents of engagement described by the literature 
supported by Structural Equation Modeling (SEM)? 

As seen in Section 2, according to the literature, the com-
ponents of engagement are attention and affect, with the lat-
ter being composed of valence (the pleasantness of an affec-
tive state) and arousal (the degree of activation that the af-
fective state entails). As anticipated, in our model, we em-
ploy EDA to measure arousal, QoMov to gauge (proactive) 
attention, and the ELICSE to assess (overall) attention and 
valence. With regards to RQ1, we expect: 

H1.1 The behaviors of attention in the ELICSE to posi-
tively correlate with the item attention of the OME 
and/or with the item general alertness of the OERS 

H1.2 The behaviors of valence in the ELICSE to positively 
correlate with the items attitude toward game, attitude 
toward partner of the OME and/or with the item 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAFFC.2020.2980275, IEEE Transactions on Affective Computing

6 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID TAFFC-2019-06-0163 

 

pleasure of the OERS (and consequently to nega-
tively correlate with the items anger, anxiety/fear, 
and sadness of the OERS) 

H1.3 The features of QoMov to positively correlate with the 
item attention of the OME and/or with the item gen-
eral alertness of the OERS 

H1.4 The features of EDA to positively correlate with the 
items attention, attitude toward game, and attitude to-
ward partner of the OME and/or with the items 
pleasure and general alertness of the OERS (and con-
sequently to negatively correlate with the items an-
ger, anxiety/fear, and sadness of the OERS) 

It must be noted that, while the OME and OERS mainly 
assess attention and valence, EDA gauges arousal. Arousal 
varies as a result of attention and valence. However, there 
is no one-to-one correspondence between arousal, as meas-
ured via EDA, and attention and valence, as gauged with 
the OME and OERS, as should be the case in a test of con-
current validity. Unfortunately, we could not find a valid 
measure of arousal for people with dementia that we could 
use in the place of the OME and OERS. 

With regards to RQ2, as previous studies stated that 
arousal can grow due to attentional processes [69], we hy-
pothesized that: 

H2.1 The components attention and arousal were posi-
tively correlated in our model of engagement  

As attention is known to increase regardless of the di-
rection of valence [50], we assumed that: 

H2.2 The components attention and valence could be cor-
related as well as uncorrelated in our model  

Finally, as arousal grows both as a consequence of at-
tention and as a result of positive and negative valence 
[50], we postulated that: 

H2.3 The components arousal and valence could be corre-
lated as well as uncorrelated in our model 

We describe the relationships between the components 
of engagement – valence, arousal, and attention – with corre-
lations, instead of regressions, because we assume that the 
components of engagement can only rarely increase simul-
taneously. In the results section, we translate these hypoth-
eses into path diagram notation and test them with SEM. 

4. METHODS AND MATERIALS 

4.1 Participants 

To answer the research questions in section 3 and test 
the respective hypotheses, we ran an experimental study 
in two nursing homes in the province of Barcelona in Spain 
(Redós de Sant Josep i Sant Pere and La Mallola). Inclusion cri-
teria for the participation in the study were a diagnosis of 
mild and moderate dementia and the informed consent of 
both the participants and their legal guardians (i.e., closest 
relative). Exclusion criteria were severe dementia, acute vis-
ual impairment, bedridden condition, reduced motility in 
the upper limbs, Parkinson’s disease, Parkinson’s disease 
dementia, and strong hallucinatory or delusional states. 
The selection of participants was performed by the clinical 

staff of the nursing homes (i.e., psychologist and geriatri-
cian) in three steps: (1) exclusion of residents with severe 
dementia and MCI, (2) exclusion of residents with Parkin-
son’s disease, Parkinson’s disease dementia, and motility 
issues in the upper limbs, and (3) exclusion of residents not 
willing to participate or sign the informed consent. Out of 
17 participants that were found to comply with the inclu-
sion and exclusion criteria, one refused to participate for a 
privacy concern, one fell ill immediately after being pro-
posed the study, and one found it distressful to join the ac-
tivity due to a severe form of agitation and wandering. The 
resulting 14 participants (Mage= 83.93; SDage= 7.28) were 
screened with the Mini-Examen Cognoscitivo (MEC [82], the 
Spanish version of the Mini-Mental State Examination 
[83]), the Neuropsychiatric Inventory – Nursing Home ver-
sion (NPI-NH [84]), and the Reisberg Global Deterioration 
Scale (Reisberg GDS [85]). All selected participants had a 
score of 4 or 5 at the Reisberg GDS (i.e., mild and moderate 
dementia), a score between 10 and 23 at the MEC (i.e., mod-
erate to mild dementia), and a score inferior to 4 (i.e., the 
threshold for clinical significance) at the sub-items delu-
sions and hallucinations of the NPI-NH. As the focus of the 
study was modeling engagement in co-activities, the 14 
participants were randomly coupled and took part in the 
study in pairs. The participants in the couples did not 
know each other before the start of the study. 

 4.2 Experimental Design 

The study followed a repeated measures design and fea-
tured two activities as experimental conditions: a GBCS, 
and a RBFP. Each activity was presented in a different ses-
sion and was repeated three times within the study (3 ses-
sions per activity x 2 types of activity x 7 couples = 42 ses-
sions). The sessions of GBCS (i.e., jigsaw puzzles, shape 
puzzles, domino) and RBFP were alternated in order and 
presented to participants every other session (see table 1). 

All sessions of activities were conducted by a facilitator 
(i.e., psychologist or social educator) at the presence of an 
experimenter – always the same researcher from the univer-
sity. The presence of the experimenter was functional to 
monitoring the equipment and helping facilitators in case 
of problems. To reduce participants’ reactivity, the experi-
menter took part in the activities of the two nursing homes 
for one month before the start of the study and was intro-
duced to the participants as someone observing which ac-
tivities they liked the most.   

TABLE 1 
OVERVIEW OF SESSIONS AND ORDER OF ACTIVITIES 

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 

Jigsaw 1 

Pleo 

Dominoes 

Pleo 

Shape 1 

Pleo 

Jigsaw 2 Jigsaw 1 Shape 2 

Jigsaw 3 Jigsaw 2 Shape 3 

Shape 1 Jigsaw 3 Dominoes 

Shape 2 Shape 1 Jigsaw 1 

Shape 3 Shape 2 Jigsaw 2 

Dominoes Shape 3 Jigsaw 3 
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4.3. Activities 

The activities constituting the experimental conditions 
of the study were chosen as they fitted in the definition of 
co-activities. Also, GBCS and RBFP differed in a number of 
aspects, they involved: (1) different skills (social and cogni-
tive vs social and emotional), (2) different degrees of chal-
lenge (right or wrong activity vs failure-free activity), and 
(3) tangible artifacts with different degrees of interactivity 
(static artifacts vs interactive technologies) and different 
interactive qualities (non-social artifacts vs social artifacts). 
Thus, the two activities were likely to prompt engagement 
states with diverse characteristics, behavioral and physio-
logical correlates. This was the ideal condition to test a 
model of engagement generalizable to further activities. 

4.3.1 Game-based Cognitive Stimulation (GBCS) 

In the jigsaw puzzles, the couples were asked to collabo-
ratively assembly a set of pieces in a complete picture, usu-
ally of an animal. In the shape puzzles, they were requested 
to wedge a set of shapes, usually in wood, in a board with 
a series of slots. In the match with the tiles of domino, the 
players were requested to down a numbered tile from a set 
of seven that matched the tile on the table. The jigsaw puz-
zles and the shape puzzles to complete were three. They 
were presented in a progressive order of difficulty, from 
the easiest to the most difficult across sessions (see table 1). 
The challenge of the jigsaw puzzles was customized ac-
cording to the cognitive level of participants. The right 
level of challenge for the different degrees of dementia se-
verity was identified in a pilot study. With regard to the 
dominoes, all couples played one match with dominoes. 
The order of presentation of the three different board 
games was randomized using a Latin Squares technique 
and was always different across sessions (see table 1).  

4.3.2 Robot-based Free Play (RBFP) 

In the RBFP, the couples interacted with Pleo. Pleo is a 
robotic dinosaur developed by UGOBE, which acts as a liv-
ing pet (see figure 1). It has an array of sensors that allow 
it to make sense of the surrounding environment and in-
teract with people. For instance, touch sensors to discrimi-
nate among different types of touch, microphones to per-
ceive sound and orientate towards it, ground foot sensors 
to detect surfaces, a camera-based vision system to detect 
light and navigate, and an internal clock to recognize the 
time to get up, eat, or sleep. Pleo is also able to display its 

internal states (e.g., hunger, sleepiness) and moods (e.g., 
happy, scared). We chose Pleo among the available social 
robots because, while being very interactive and respon-
sive, it featured a series of traits that are demonstrated to 
be appealing to older people [81]: it is small (in relation to 
human size), it has animal-like features, and its behavior 
mimics that of a domestic animal (e.g., cat and dog). 

During sessions, participants interacted with Pleo in a 
spontaneous manner. However, due to the unstructured 
nature of the activity, the facilitators were given a list of 
activities that Pleo could support (e.g., feed Pleo, make 
Pleo sleep) so that they could prompt further interactions 
in case of a deadlock. 

4.4 Data Acquisition 

4.4.1 Video Cameras 

All sessions were video recorded with two hand-held 
cameras positioned one in front and one on the side of par-
ticipants. The video cameras were switched on as soon as 
participants reached the activity room and were switched 
off once they left the room after the activity. Each session 
lasted around 50 minutes, and the activities had a duration 
of ~20-25 minutes. As a result, we collected ~35 hours of 
video footage, half of which (~17.5 hours) were of activi-
ties. Albeit the presence of cameras can be thought of as a 
factor that could affect participants’ behavior, we noticed 
that participants stopped paying attention to cameras once 
the activity started. 

4.4.2 E4 Wristband 

We collected physiological signals with the E4 wrist-
band (see figure 2). The E4 is a wearable multi-sensor de-
vice for real-time computerized biofeedback and data ac-
quisition [17]. It has four sensors embedded in its case: (1) 
a photoplethysmography sensor (PPG) to measure blood vol-
ume pulse and derive HR, HRV, and inter-beat interval, (2) 
a triaxial accelerometer to capture motion-based activity and 
detect movement patterns, (3) an infrared thermophile to 
gauge peripheral skin temperature, and (4) an EDA re-
sponse sensor to measure the electrical conductance of the 
skin. The E4 was selected among the available wearable 
sensors for its light weight and unobtrusiveness. It was 
also the only device measuring EDA that did not entail the 
positioning of electrodes on the medial or distal phalanxes. 
This was of crucial importance as it left participants free to 
manipulate objects during activities without jeopardizing 
the data collection. In the context of this study, the E4 was 
employed to collect both the EDA and accelerometer data. 

Fig.2. E4 wristband 

Fig. 1. Pleo, the robotic dinosaur 
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4.4.3 Setting and Procedure 

The data collection was performed in the nursing 
homes, in rooms that were usually allocated to recreational 
activities. A rectangular table was placed on one side of the 
room. The frontal video camera was positioned on a small 
table facing the rectangular one, while the lateral video 
camera was either hidden on a library shelf or positioned 
on a desk. During activities, participants sat on the same 
side of the rectangular table, the facilitator stood up in-be-
tween them, and the experimenter sat on a chair close to 
the frontal camera. The sessions were made of six phases: 

1. Preparation phase (~10 minutes): the experimenter set 
up the room, while the facilitator helped participants 
to reach it. Once participants reached the room, the ex-
perimenter switched on the video cameras 

2. Habituation phase (~5 minutes): the experimenter and 
facilitator conversed with the participants, while they 
sat to recover from the effort of walking to the room, 
then s/he helped them to wear the E4 wristband 

3. Synchronization phase (~2 minutes): the experimenter 
switched on the wristbands of both participants and 
simultaneously pushed the tag button on top of them 
to synchronize them with the video footage 

4. Baseline phase (~5 minutes): the facilitator read a de-
scriptive extract from a fairytale to the participants to 
collect the baseline of EDA 

5. Activity phase (~20-25 minutes): the participants com-
pleted the three board games  or interacted with Pleo 

6. End of the activity (~5 minutes): the experimenter 
switched off the wristbands in front of the cameras, re-
moved them, and turned off the cameras. At this point, 
the participants were guided back to their units. 

In healthy adults and in lab environments, a relaxing 
film clip is usually employed to collect EDA at baseline 
[87]. However, this task did not fit the context of a nursing 
home and was a mismatch with the proposed activities. 
We ran a pilot data collection with four residents to 
establish a method for baseline collection. We obtained 
their EDA for 5 minutes in three conditions: while they 
rested in a common room, while they conversed with the 
clinical staff, and while they were read descriptive excerpts 

from fairytales. Participants had abrupt phasic responses 
in the first and second condition, mainly due to the events 
occurring in the surroundings (e.g., someone not feeling 
well) or to the conversation content (e.g., war, death of a 
loved one). Instead, while listening to fairytales, their EDA 
signal dropped and smoothened. The reading seemed to 
act as a distractor allowing participants to not focus on the 
environment and to relax. 

4.5 Experimental Measures 

4.5.1 OME and OERS 

The observational rating scales of engagement em-
ployed as a gold standard in the study were the OME [16] 
and OERS [49]. With regards to the former scale, we used 
the items attention (four-point Likert scale, where 1 stands 
for not attentive and 4 for very attentive) and attitude (seven-
point Likert scale, where 1 stands for very negative and 7 for 

very positive), using the latter twice, to obtain scores regard-
ing the attitude of participants toward the game and the at-
titude toward the partner. Moreover, we added a further 
item, cognitive difficulty (five-point Likert scale, where 1 
stands for not at all difficult and 5 very difficult), present in 
further elaborations of the OME, to keep track of the level 
of challenge of the proposed activities. With regards to the 
OERS, we used it in its original version to rate the presence 
or intensity of five affective states on a five-point Likert 
scale (where 1 is never and 5 is more than 5 minutes): pleasure, 
anger, anxiety/fear, sadness, and general alertness. We asked 
facilitators to fill out one OME and one OERS for the RBFP, 
and one OME and one OERS for each game of the GBCS at 
the end of the sessions. We then computed the median of 
the three scores of the GBCS and used it for analyses. 

4.5.2 ELICSE  

As anticipated, in this study, we employed the ELICSE 
to measure engagement at a behavioral/expressive level 
[18]. The ELICSE is composed of behaviors and modifiers. 
The behaviors in the ELICSE measure changes in the direc-
tion of attention along three modalities: head (gaze), torso 
(postures), and arms/hands (see table 2). The modifiers de-
fine whether these changes have a positive, neutral, or neg-
ative value, or are accompanied by gestures having a pos-
itive, neutral, or negative value. For instance, stroke the ro-

TABLE 2 
THE ELICSE: OVERVIEW OF BEHAVIORS AND MODIFIERS 

HEAD BEHAVIORS HEAD MODIFIERS 

GAZE GAME (GG) 

positive gestural support (_pos) 
no gestural support (_no) 
negative gestural support (_neg) 

GAZE PARTNER (GP) 

GAZE FACILITATOR/EXPERIMENTER (GFE) 

NONE OF THE TARGET HEAD 
MOVEMENTS (NoH) 

TORSO BEHAVIORS TORSO MODIFIERS 

NEAR REACH/LEAN TOWARD GAME 
(NRLTG) positive postural support (_pos) 

no postural support (_no) 
negative postural support (_neg) LEAN IN PARTNER (LIP) 

NONE OF THE TARGET TORSO 
MOVEMENTS (NoT) 

(none) 

ARMS/HANDS BEHAVIORS ARMS/HANDS MODIFIERS 

MANIPULATE GAME (MG)  

positive quality of gesture (_pos) 
no quality of gesture (_no) 
negative quality of gesture (_neg) 

REACH OUT PARTNER (RoP) 

REACH OUT FACILITATOR/ 
EXPERIMENTER (RoFE) 

POSITIVE SIGNS OF AFFECTION 
INVOLVING ARMS/HANDS (SoA_pos) (none) 

NEGATIVE SIGNS OF AFFECTION 
INVOLVING ARMS/HANDS (SoA_neg) (none) 

NONE OF THE TARGET ARMS/HANDS 
MOVEMENTS (NoAH) (none) 

The behaviors that can be further specified by modifiers are written in italics 
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bot or squeeze the robot’s tail fall both in the behavior ma-
nipulate game, but the former can be categorized with the 
modifier positive quality of gesture, while the latter should 
be classified with negative quality of gesture. Likewise, one 
can gaze toward partner (behavior) while frowning (modi-
fier negative gestural support) or smiling (modifier positive 
gestural support). Behaviors and modifiers in the ELICSE 
were measured as durations. For an overview of them, re-
fer to table 2. For more information on the development of 
the ELICSE, and the operational descriptions, see [18]. 

4.5.3 EDA 

The set of EDA features to extract was compiled based 
on previous literature [88]. The feature notation in table 3 
was constructed in the following way. The set of samples 
was recorded in a window of time defined by the begin-
ning of the recording and the end of the activity (see 4.4.3). 
The Short Fast Fourier Transform of this set of samples was 
formed by 𝑆1

𝑊, … 𝑆𝑁
𝑊 through (1): 

𝑆ℎ
𝑊 = ∑ 𝑠𝑛𝑒−𝑖2𝜋ℎ

𝑛

𝑁𝑁
𝑛=1   (1) 

Where ℎ = 1, … , 𝑁. 𝑆ℎ
𝑊is a set of N complex numbers 

that represent the amplitude and phase of a harmonic. 
With regards to Npeaks, we denoted it as the number of sig-
nificant local maxima found in SW. NPRW is defined as 
Npeaks(SW) divided by the length of SW.  

Before feature extraction, the EDA signal was synchro-
nized with the video footage to establish the beginning and 
end of the baseline phase, and the beginning and end of 
the activity phase. Then, it was normalized and denoised 
with a 2nd order Butterworth low pass filter with a cutoff 
frequency of 0.05 Hz. We extracted EDA features with 
Matlab from the baseline phase – w(1) – and the activity phase 
– w. To take into account the baseline state of the person 
with dementia, the values of the features extracted during 
baseline were subtracted from those of the features ex-

tracted during the activity phase (see table 3). Due to tech-
nical issues (e.g., failure to record or artifacts), we excluded 
10 sessions. The final EDA dataset was hence composed of 
74 sessions (NGBCS=34; NRBFP=40). 

4.5.4 Quantity of Movement 

In order to extract features from the accelerometer sig-
nal, we inputted in Matlab the same synchronization files 
used for EDA. With regards to the selection of accelerom-
eter features, David et al. [66] and David et al. [67] did not 
extract features from the raw accelerometer signal but re-
lied on the counts of supra-threshold movements on the 
wrist provided by an actigraph. We assumed that the most 
adequate accelerometer features of quantity of movement 
could be the signal magnitude area of the acceleration. This 
gauges the amount of variation in the accelerometer signal 
within a certain window. We extracted two features from 
the accelerometer signal: the signal magnitude area of the 
module of the three axes (SMA AccM) following equation 
(a) and the summation of the signal magnitude areas of the 
three axes (SMA AccS) as defined in equation (b). SMA 
AccM is related to the general quantity of movement, SMA 
AccS to the variability of movements. 

𝑆𝑀𝐴𝑀 = ∑ |√𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2|𝑑𝑡 𝑇

𝑖=1     (a) 

𝑆𝑀𝐴𝑆 = ∑ |𝑥𝑖|𝑑𝑡 𝑇
𝑖=1 + ∑ |𝑦𝑖|𝑑𝑡 𝑇

𝑖=1 + ∑ |𝑧𝑖|𝑑𝑡 𝑇
𝑖=1    (b) 

Xi, Yi, Zi are the acceleration of the X, Y, and Z axes in 
the i sample. T is the length of the window measured in 
number of samples. In the database of accelerometer sig-
nals, all sessions except one were valid (N=83). However, 
14 sessions were collected on the dominant wrist due to 
problems encountered in collecting data on the non-domi-
nant one (e.g., bruises due to dialysis). These sessions were 
excluded leading to 69 valid sessions (NGBCS=34; NRBFP=35). 

4.6 Ethical Approval 

The study was conducted according to the declaration 
of Helsinki and to Spanish laws number 159/2007 and 
41/2002. An informed written consent was signed by all 
the legal guardians of participants. All participants were 
informed about the study and gave their consent to partic-
ipate. Both the consent of the legal guardian and that of the 
participant were required to take part in the study. 

5. RESULTS  

5.1 Concurrent Validity of ELICSE 

5.1.1 Data Reduction of ELICSE 

 To ascertain the concurrent validity of the ELICSE, we 
annotated all the videos in the database (42 videos, two 
participants per video) using Observer XT 10.5. We aggre-
gated the behaviors and modifiers in the ELICSE as sug-
gested by the EMODEB (see table 4) [18]. Behaviors di-
rected toward the game and partner were considered as 
expressing attention and summed together. Behaviors di-
rected towards the facilitator/experimenter or elsewhere 
were regarded as expressing lack of attention and added 
to each other. The latter were subtracted from the former. 

TABLE 3 
SET OF EDA FEATURES AND EQUATIONS 

FEATURE EQUATION 

SMA EDAa ∑ 𝑠𝑖
𝑊𝑑𝑡𝑇

𝑖=1  -∑ 𝑠𝑖
𝑊(1)

𝑑𝑡𝑇
𝑖=1   

MEAN EDAb 𝑠𝑊 − �̅�𝑊(1), 𝑤ℎ𝑒𝑟𝑒 �̅�𝑊 =
1

𝑁
∑ 𝑠𝑖

𝑤
𝑁

𝑖=1
 

STD EDAc 𝜎𝑠𝑊 − 𝜎𝑠𝑊(1), 𝑤ℎ𝑒𝑟𝑒 𝜎𝑠𝑊=√
1

𝑁
∑ (𝑠𝑖

𝑊 − �̅�𝑊)2𝑁
𝑖=1  

RNG EDAd 
𝑅𝑛𝑔(𝑠𝑊) − 𝑅𝑛𝑔(𝑠𝑊(1)), 𝑤ℎ𝑒𝑟𝑒 𝑅𝑛𝑔(𝑠𝑊)

= 𝑚𝑎𝑥(𝑠𝑊) − 𝑚𝑖𝑛(𝑠𝑊) 

SUM H EDAe ∑ 𝑆1,N
𝑊

𝑁

𝑖=1
 

NPR EDAf 𝑁𝑃𝑅𝑊 − 𝑁𝑃𝑅𝑊(1) 

KURT EDAg 𝛿𝑠
𝑊 − 𝛿𝑠

𝑊(1)
, 𝑤ℎ𝑒𝑟𝑒 𝛿𝑧

𝑊 =
Ε [(|𝑆1,𝑁

𝑊 |
𝑖

− |𝑆1̅,𝑁
𝑊 |)

4

]

(Ε [(|𝑆1,𝑁
𝑊 |

𝑖
− |𝑆1̅,𝑁

𝑊 |)
3

])
2 

SKEW EDAh 𝛾𝑠
𝑊 − 𝛾𝑠

𝑊(1)
, 𝑤ℎ𝑒𝑟𝑒 𝛾𝑠

𝑊 = Ε [(
|𝑆1,𝑁

𝑊 |
𝑖

− |𝑆1̅,𝑁
𝑊 |

𝜎(|𝑆1,N
𝑊 |)

)

3

] 

a. SMA EDA= signal magnitude area of EDA; b. MEAN EDA= mean EDA; c. STD 
EDA= standard deviation of EDA; d. RNG EDA= range of EDA; e. SUM H EDA= 
summation of harmonics of EDA; f. NPR EDA= number of peaks ratio of EDA; g. 
KURT EDA= kurtosis of EDA; h. SKEW EDA= skewness of EDA 
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The result was a score of attention for each behavioral mo-
dality comprised between -100 and 100 (i.e., gaze toward ac-
tivity, lean toward activity, and reach out activity), where -100 
represented the lowest and 100 the highest possible atten-
tion. 

 A similar aggregation was performed for modifiers (see 
table 4). Negative modifiers (negative gestural support, nega-
tive postural support, and negative quality of gesture) were 
summed to each other, and we did the same with positive 
modifiers (positive gestural support, positive postural support, 
and positive quality of gesture). The former were subtracted 
from the latter (see gestural support, postural support, and 
quality of gesture in table 4). This way we obtained a nega-
tive score when negative valence was predominant, a pos-
itive score when positive valence was prevalent, and a 
score of zero when positive and negative valence were 
even.  

Following [18], we also computed the weighted average 
of gaze toward activity, lean toward activity, and reach out ac-
tivity, and the weighted average of gestural support, postural 
support, and quality of gesture. Before doing so, we trans-
formed the values comprised between –100 and 100 into 
positive values comprised between 0 and 100. The weights 
were assigned based on the hierarchical ranking of the be-
havioral modalities in the EMODEB (.50 for head behav-
iors: gaze toward activity and gestural support; .40 for 
arms/hands behaviors: reach out activity and quality of ges-
ture; and .10 for torso behaviors: lean toward activity and 
postural support). The result was a score for attention and 
valence ranging between 0 and 100. 

5.1.2 Test of Concurrent Validity of ELICSE 

As the items of the OME and OERS are ordinal, we per-
formed a Spearman rank correlation (one-tailed, pairwise 
exclusion of cases, NGBCS= 42, NRBFP= 42) between them and 
the partial (i.e., gaze toward activity, lean toward activity, and 
reach out activity, and gestural support, postural support, and 
quality of gesture) and averaged scores of attention and va-
lence obtained from the ELICSE. The results are displayed 
in table 5. Gaze toward activity and reach out activity were 

significantly positively correlated with the item attention of 
the OME in both GBCS and RBFP. In RBFP, they were also 
significantly correlated with general alertness. These results 
confirm our predictions (see H1.1 in section 3) that the be-
haviors of attention in the ELICSE were significantly cor-
related with the items attention and general alertness.  

On top of these expected results, we found other inter-
esting ones. In RBFP, gaze toward activity was significantly 
positively correlated with the item attitude toward game of 
the OME, and reach out activity was significantly positively 
correlated with the items attitude toward game and attitude 
toward partner of the OME and pleasure of the OERS. More-
over, while, in GBCS, lean toward activity was significantly 
positively correlated with pleasure, in RBFP, it was close to 
significantly negatively correlate with the same item.  

With regards to valence, gestural support was signifi-
cantly positively correlated with the items attitude toward 
game and attitude toward partner of the OME and the item 
pleasure of the OERS in GBCS, while it was positively cor-
related with attitude toward game and pleasure in RBFP. 
Quality of gesture was significantly positively correlated 
with the item pleasure of the OERS in GBCS, whereas it was 
significantly positively correlated with the items attitude to-
ward game of the OME and pleasure of the OERS in RBFP. 
Also, postural support was positively correlated with both 
attitude toward game and pleasure in RBFP, and it was close 
to reaching a significant positive correlation with pleasure 
in GBCS (p= .053). These results allow us to accept our hy-
pothesis (see H.1.2 in section 3) that the behaviors of va-
lence in the ELICSE were significantly positively corre-
lated with the items attitude toward game and attitude toward 
partner of the OME and pleasure of the OERS. With regard 
to anger, anxiety/fear, and sadness, we did not perform any 
analysis, as these items did not vary enough in the data-
base. The same holds for the item cognitive difficulty in 
RBFP which was constant (i.e., 1= not at all). 

On top of the postulated results for valence, we also 
found out that gestural support was significantly negatively 
correlated with cognitive difficulty in GBCS and signifi-
cantly positively correlated with attention in RBFP. In this 
latter activity, also quality of gesture achieved a significant 
positive correlation with attention. 
The results of the correlations between the partial scores of 
attention and valence drawn from the ELICSE were con-
firmed by those of the weighted averages. Indeed, the av-
eraged score of attention was significantly positively corre-
lated with the item attention of the OME both in GBCS and 
in RBFP, and also with the item general alertness of the 
OERS in the latter activity. Likewise, the averaged score of 
valence was significantly positively correlated with the 
items attitude toward game of the OME and pleasure of the 
OERS in both activities, but also with attitude toward partner 
in GBCS. Again, also in this case, our hypotheses were cor-
rect and could hence be accepted. Interestingly, the aver-
aged score of attention obtained from the ELICSE was also 
significantly positively correlated with attitude toward game 
in GBCS and with attitude toward game, attitude toward part-
ner and pleasure in RBFP. Similarly, the average score of va-
lence was positively correlated with the item attention in 
both GBCS and RBFP. 

TABLE 4 
AGGREGATION OF BEHAVIORS AND MODIFIERS IN THE ELICSE 

BEHAVIORS DATA REDUCTION 

GAZE T. 
ACTIVITY 
(GAct) 

(GP + GG) - (GFE + NoH) 

LEAN T. 
ACTIVITY 
(LTAct) 

(LIP + NRLTG) – (NoT) 

REACH OUT 
ACTIVITY  
(RoAct) 

(RoP + MG) – (RoFE + NoAH) 

MODIFIERS DATA REDUCTION 

GESTURAL 
SUPPORT 
(Gest Sup) 

(GP_pos + GG_pos) – (GP_neg + GG_neg) 

POSTURAL 
SUPPORT 
(Post Sup)  

(LIP_pos + NRLTG_pos) – (LIP_neg + NRLTG_neg) 

QUALITY OF 
GESTURE 
(QoGest)  

(RoP_pos + MG_pos + SOA_pos) – (RoP_neg + MG_neg + SOA_neg) 
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5.1.3 Discussion of Concurrent Validity ELICSE 

Our predictions on the presence and direction of the sig-
nificant correlations were correct. Indeed, the single and 
global scores of attention and valence were significantly 
positively correlated with the corresponding items of the 
OME and OERS. Unexpectedly, however, the scores of at-
tention drawn from the ELICSE achieved a significant pos-
itive correlation not just with the items of attention of the 

OME and OERS, but also with those of valence in RBFP. 
Likewise, the scores of valence achieved a significant posi-
tive correlation not just with the items of valence of the 
OME and OERS, but also with those of attention in both 
GBCS and RBFP. While these results indicate that, in the 
selected activities, the more attention increased, the more 
valence turned positive, such functioning cannot be gener-
alized to engagement itself. Indeed, high attention can ap- 

TABLE 5 
RESULTS OF CONCURRENT VALIDITY: EDA, QOMOV, AND ELICSE 

EDA GAME-BASED COGNITIVE STIMULATION ROBOT-BASED FREE PLAY 

NGBCS= 34; NRBFP= 40 Attention Att. 

game 

Att.  

partner 

Cog. 

Diff. 

Pleasure General 

Alertness 

Attention Att. 

game 

Att. 

 partner 

Pleasure General 

Alertness 

SMA EDA 
r(s) .007 .025 .021 .277 .159 -.080 .066 *.351 .191 **.411 .224 

p .485 .445 .454 .060 .189 .329 .342 .013 .118 .004 .082 

MEAN EDA 
r(s) .080 -.151 -.029 -.140 .079 -.018 -.062 -.130 **-.416 .133 .004 

p .329 .201 .437 .219 .331 .461 .353 .212 .004 .208 .491 

STD EDA 
r(s) .008 -.017 .038 -.277 .221 -.089 -.108 -.175 *-.304 .039 -.055 

p .483 .463 .417 .059 .109 .312 .254 .140 .028 .406 .368 

RNG EDA 
r(s) .016 .097 .083 -.210 *.291 -.036 -.169 -.111 *-.264 .053 -.051 

p .464 .295 .324 .120 .050 .422 .148 .247 .050 .372 .378 

SUM H EDA 
r(s) .104 -.032 .045 -.168 .128 -.080 -.047 .011 -.222 .185 .134 

p .283 .430 .402 .176 .240 .329 .388 .474 .084 .126 .204 

NPR EDA 
r(s) -.063 -.263 -.086 .145 .041 -.195 -.006 *.279 .101 *.348 .018 

p .363 .070 .317 .211 .411 .138 .485 .041 .268 .014 .456 

KURT EDA 
r(s) -.177 -.054 -.141 -.268 -.062 *.302 *-.288 *-.280 -.146 -.230 -.009 

p .162 .382 .216 .065 .366 .044 .036 .040 .184 .076 .478 

SKEW EDA 
r(s) -.161 -.059 -.158 -.287 -.077 *.302 *-.318 *-.298 -.174 -.247 -.050 

p .186 .371 .190 .053 .335 .044 .023 .031 .141 .062 .379 

QoMOV GAME-BASED COGNITIVE STIMULATION ROBOT-BASED FREE PLAY 

NGBCS= 34; NRBFP= 35 Attention Att. 

game 

Att.  

partner 

Cog. 

Diff. 

Pleasure General 

Alertness 

Attention Att. 

game 

Att. 

 partner 

Pleasure General 

Alertness 

SMA AccM 
r(s) **.407 **.431 *.350 **-.451 .184 -.022 .221 ***.522 .085 **.462 .219 

p .008 .005 .021 .004 .148 .450 .101 .001 .313 .003 .104 

SMA AccS 
r(s) *.350 *.366 *.293 *-.372 .210 -.056 .212 ***.518 .063 **.473 .209 

p .021 .017 .046 .015 .117 .377 .111 .001 .359 .002 .114 

ELICSE (modalities) GAME-BASED COGNITIVE STIMULATION ROBOT-BASED FREE PLAY 

NGBCS= 42; NRBFP= 42 Attention Att. 

game 

Att.  

partner 

Cog. 

Diff. 

Pleasure General 

Alertness 

Attention Att. 

game 

Att.  

partner 

Pleasure General 

Alertness 

GAct 
r(s) *.284 .202 .225 .048 -.089 .189 ***.451 **.399 .242 .121 **.411 

p .034 .099 .076 .382 .288 .115 .001 .004 .061 .223 .003 

RoAct 
r(s) *.268 .180 .077 .103 .187 .069 **.420 ***.645 **.409 ***.561 *.302 

p .043 .128 .314 .257 .118 .331 .003 > .001 .004 > .001 .026 

LTAct 
r(s) .207 .153 .140 -.136 *.309 -.141 -.075 -.160 .045 -.237 -.192 

p .094 .166 .188 .195 .023 .186 .319 .156 .389 .066 .111 

GestSup 
r(s) **.426 ***.542 ***.604 *-.343 ***.683 -.041 **.428 ***.494 .039 ***.619 .128 

p .002 > .001 > .001 .013 > .001 .399 .002 > .001 .403 > .001 .210 

QoGest 
r(s) .039 .148 .241 .041 ***.477 -.073 *.272 ***.506 .203 ***.632 .145 

p .403 .175 .062 .398 .001 .323 .041 > .001 .098 > .001 .180 

PostSup 
r(s) -.180 -.121 -.027 .163 .252 .082 .255 ***.460 .196 ***.596 .116 

p .126 .223 .433 .152 .053 .304 .051 .001 .106 > .001 .233 

ELICSE (averaged) GAME-BASED COGNITIVE STIMULATION ROBOT-BASED FREE PLAY 

NGBCS= 42; NRBFP= 42 Attention Att. 

game 

Att.  

partner 

Cog. 

Diff. 

Pleasure General 

Alertness 

Attention Att. 

game 

Att.  

partner 

Pleasure General 

Alertness 

attention 
r(s) *.378 *.261 .189 .068 .176 -.017 **.439 ***.542 **.394 *.330 *.307 

p .007 .048 .115 .335 .133 .458 .002 > .001 .005 .016 .024 

valence 
r(s) **.391 ***.476 ***.540 -.245 ***.683 -.055 **.423 ***.568 .109 ***.710 .110 

p .005 .001 > .001 .059 > .001 .365 .003 > .001 .246 > .001 .244 

Significance level: *<.05; **<.01; ***<.001 
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pear with positive, but also with neutral and negative va-
lence. Indeed, in this study, we observed episodes where 
attention was high (gaze toward activity, lean toward activity, 
reach out activity) but valence was negative (e.g., frowning 
and vigorously squeezing the robot’s tail). 

In terms of attention, two scores obtained from the EL-
ICSE seemed to be the most crucial: gaze toward game and 
reach out game. The score lean toward activity appeared to be 
less critical. Moreover, it was significantly positively corre-
lated with pleasure in GBCS and negatively (but not signif-
icantly) correlated with the same item in RBFP. This con-
flicting result can be explained with the fact that, while, in 
GBCS, leaning toward the activity almost always led to reach 
out activity and hence to positive affect, in RBFP, it did not 
always do so. When leaning toward the activity, the par-
ticipants often lingered in a passive observation of the ro-
bot, which accounted for a less intense engagement. 

In terms of valence, all the three scores obtained from 
the ELICSE were significantly positively correlated with 
the items of valence in the OME and OERS. However, in 
GBCS, with respect to RBFP, gestural support seemed to be 
more meaningful. This did not come as a surprise. Indeed, 
while in the interaction with a social robot, valence can be 
expressed through affective touch (e.g., stroke, pat, hug, 
and cradle the robot), in the play with board games, it ra-
ther involves facial expressions (e.g., smile, frown). 

The last result that is worth discussing is the negative 
correlation between gestural support and cognitive difficulty. 
This points to the need to customize the challenges of ac-
tivities to the cognitive deterioration of the person with de-
mentia. Indeed, in line with [22], when challenges exceed 
skills, flow leaves space to anxiety and negative emotions. 

5.2 Concurrent Validity EDA 

5.2.1 Test of Concurrent Validity EDA 

In order to determine the concurrent validity of EDA, 
we extracted the EDA features from all the valid sessions 
in the database. Then, we performed a Spearman rank cor-
relation (one-tailed, pairwise exclusion of cases, NGBCS= 34; 
NRBFP= 40) between the features of EDA and the items of 
the OME and OERS. The results are displayed in table 5. In 
GBCS, we found only a few significant correlations: RNG 
EDA was significantly positively correlated with the item 
pleasure, and KURT EDA and SKEW EDA were positively 
correlated with the item general alertness of the OERS. On 
the contrary, in RBFP, the number of correlations between 
EDA features and the items of OME and OERS was more 
substantial. SMA EDA was significantly positively corre-
lated with attitude toward game and pleasure. MEAN EDA, 
STD EDA, and RNG EDA were significantly negatively 
correlated with the item attitude toward partner of the OME. 
NPR EDA was significantly positively correlated with atti-
tude toward game and pleasure. Last, KURT EDA and SKEW 
EDA were negatively correlated with the items attention 
and attitude toward game of the OME.  

5.2.2 Discussion of Concurrent Validity EDA 

Our hypotheses on the concurrent validity of EDA were 
hence supported only in RBFP (see section 3, H1.4). Indeed, 

in this activity, the features of EDA were significantly pos-
itively correlated with the items of attention and valence of 
the OME and OERS. With regards to GBCS, the number of 
significant correlations was small. In general, EDA seemed 
to increase more as a result of valence than attention. This 
might explain why we found fewer correlations in GBCS 
than in RBFP. By observing the correlations that were close 
to reach significance in GBCS, we also noticed that tonic 
EDA (i.e., the slower acting component and background 
characteristics of the signal [87]) – represented by MEAN 
EDA, STD EDA, RNG EDA, and SUM H EDA – decreased 
with cognitive difficulty while it increased with pleasure. 
These opposite movements of the signal might have can-
celed out each other and caused the non-significant corre-
lations in GBCS. In future studies, it would be useful to ad-
dress this issue, and quantify to what extent cognitive vs. 
emotional processing influence EDA responses.  

A somewhat counterintuitive result regarded the nega-
tive correlation between attitude toward partner and MEAN 
EDA and STD EDA in the RBFP. When the attitude toward 
partner increased, tonic EDA decreased (i.e., MEAN EDA, 
STD EDA, and RNG EDA). This result can be explained by 
contrasting it with participants’ behavior. As the arousing 
element of RBFP was the robot, when participants directly 
interacted with it, arousal increased (see top image in fig-
ure 3). On the opposite, when participants did not directly 
interact with the robot but observed the partner interacting 
with it, arousal decreased (see bottom image in figure 3). 
This is a clear example of how the multilevel assessment of 
engagement could help to illuminate social dynamics that 
would otherwise go unnoticed. 

Fig. 3. EDA signal of the participant on the right. In the top image, 
EDA of the participant while she is interacting with the robot. In the 
bottom image, EDA of the participant while the partner is interacting 
with the robot 
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Another peculiar result regards KURT EDA and SKEW 
EDA. These features were positively correlated with gen-
eral alertness in GBCS and negatively correlated with atten-
tion in RBFP. This might have been due to the slightly dif-
ferent operationalization of general alertness and attention. 
However, while KURT EDA and SKEW EDA followed a 
similar pattern of correlation for attention in both activities 
(i.e., negative correlation), they did not follow the same 
pattern of correlation for general alertness across activities. 
Due to these conflicting results, we excluded KURT EDA 
and SKEW EDA from the final model of engagement. 

5.3 Concurrent Validity QoMov 

5.3.1 Test of Concurrent Validity QoMov 

In order to verify the concurrent validity of QoMov, we 
extracted the accelerometer features from the valid ses-
sions. Then, we ran a Spearman rank correlation (one-
tailed, pairwise exclusion of cases, NGBCS= 34; NRBFP= 35) 
between the features of QoMov and the items of the OME 
and OERS. Both SMA AccM and SMA AccS were signifi-
cantly positively correlated with the item attention of the 
OME in GBCS (see table 5). However, they were not posi-
tively correlated with attention nor with general alertness in 
RBFP, but rather with attitude toward game and pleasure. 
Similar correlations were present in GBCS, where SMA 
AccM and SMA AccS were also significantly positively cor-
related with the items attitude toward game and attitude to-
ward partner. The last interesting result to mention is the 
negative correlation between the features of QoMov and 
the item cognitive difficulty of the OME in GBCS.  

5.3.2 Discussion of Concurrent Validity QoMov 

Overall, QoMov achieved concurrent validity both for 
GBCS and RBFP. In the latter activity, however, the corre-
lations with the gold standard measures of engagement 
were not those expected (see section 3, H1.3). Indeed, while 
in GBCS, SMA AccM and SMA AccS were significantly cor-
related with the item attention of the OME, in RBFP, they 
were significantly correlated with the items of valence. This 
misalignment with our research hypotheses can be ex-
plained with the distribution of the behaviors of the EL-
ICSE in the two different activities. Indeed, while in GBCS, 
arms/hands movements were directed toward the activity 
(i.e., manipulate game and reach out partner) on average 
62.05% of the time, in RBFP, they were so 43.39% of the 
time. Of these 62.05% and 43.39%, .34% was positively va-
lenced in GBCS (i.e., positive quality of gesture), while 
20.68% was positively valenced in RBFP. This means that, 
in spite of being less prominent, attention was more posi-
tively valenced in RBFP, and justifies the correlations that 
we found. In line with the concurrent validity of the EL-
ICSE, the positive correlations between the features of 
QoMov and the items of valence were present also in 
GBCS. This underlines once more that, in the two proposed 
activities, positive valence grew alongside attention. 

Another interesting result regards cognitive difficulty. 
This not only had a negative effect on valence during GBCS 
(as we saw in section 5.1.3) but was also detrimental to pro-
active participation. When activities are perceived as too 
difficult, they not only elicit negative emotions but also 

bring people with dementia to withdraw from them. 

5.4 General Discussion 

In conclusion, we can answer RQ1 by stating that we 
found concurrent validity between the ELICSE, EDA, and 
QoMov and the gold standard measures of engagement. 
Indeed, these assessment tools captured crucial aspects of 
engagement. However, the captured aspects changed with 
the very nature of each activity’s engagement. For instance, 
in RBFP, as most attention had positive valence, the scores 
of attention obtained from the ELICSE correlated with both 
the items of attention and those of valence of the OME and 
OERS. In GBCS, instead, as the expression of positive va-
lence was less overt and critical to the activity, proactive 
attention (QoMov) took a more positive value. For the 
same reason, the attitude items of the OME (toward game 
and partner) seemed to capture something more than sim-
ple valence. The results of concurrent validity highlight the 
difficulty of establishing boundaries between the different 
components of engagement, and the impossibility of gaug-
ing them in isolation. 

In spite of EDA not achieving the expected results in 
GBCS, we feel confident enough to include it in the final 
model of engagement. Indeed, as specified in section 3, the 
OME and OERS were not direct measures of arousal, but 
rather of attention and valence.  

5.5 Model of Engagement 

5.5.1 Structure of the Model 

Once confirmed the concurrent validity of the ELICSE, 
EDA, and QoMoV, we proceeded to build and test the 
model of engagement. In agreement with the hypotheses 
on the functioning of engagement in section 3 (see H2.1, 
H2.2, and H2.3), we built the model in figure 4. In this 
model, three components of engagement are outlined: va-
lence, arousal, and participation. Valence is the weighted 
average valence drawn from the ELICSE. Arousal is a latent 
variable assessed through the two components of EDA: 
tonic EDA and phasic EDA (i.e., faster changing elements 
of the signal, such as its peakedness [85]). Tonic EDA is 
gauged through the features MEAN EDA, STD EDA, and 
SUM H EDA, while phasic EDA through the features SMA 
EDA and NPR EDA. As can be seen, we did not include 
KURT EDA, SKEW EDA, and RNG EDA in the model. 

Fig. 4. The final model of engagement tested with SEM. † fixed factor, 
*< .05, **< .01, ***< .001. Dotted covariance path: non-significant re-
sults 
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With regards to the first two features, the reason behind 
this choice is discussed in section 5.2.2. With regard to the 
latter, RNG EDA was not a positive definite with STD 
EDA, thus it was considered redundant. Finally, Participa-
tion is a latent variable measured through the features of 
QoMov – SMA AccM and SMA AccS – and the weighted  
average attention coming from the ELICSE. We renamed 
attention as participation since its indicators (i.e., attention,  
SMA AccM, and SMA AccS) grasped the proactive partici-
pation in the activity. Inspired by Csikszentmihalyi’s defi-
nition of focused attention, we define participation as the 
voluntary focusing of attention on a limited stimulus field 
that is proactively given (e.g., active manipulation of an arti-
fact or reaching out partner).  

The relationships between the components of engage-
ment valence, arousal, and participation are described with 
covariance paths in the model. We chose covariances ra-
ther than regressions as we assumed the three components 
of engagement could grow simultaneously only rarely (see 
H2.1, H2.2, and H2.3 in section 3). By connecting valence, 
arousal, and participation with covariances, we allowed 
participation and arousal to correlate positively, but, at the 
same time, we left participation and valence, and arousal and 
valence free to correlate (positively or negatively) or not.  

5.5.2 Testing of the Model 

The model of engagement was tested with SEM with the 
software SPSS AMOS 22.0 using data from both activities. 
As we had a moderate amount of missing data for EDA 
and QoMov (see sections 4.5.3 and 4.5.4) and these data 
were missing completely at random (MCAR) [89][90], we 
used multiple regression imputation (5 imputations) to as-
sign values to the missing cases [91]. Then, we calculated 
the sampling adequacy of the dataset (KMO= .662) and ran 
an exploratory factorial analysis (EFA) to confirm that the 
components in the final model were exactly those hypoth-
esized. This was done with a principal component method 
of extraction and a varimax method of rotation. The EFA 
showed satisfying factor loadings for all indicators. We 
found three factors (see table 6). Factor 1 (i.e., participation) 
included SMA AccM, SMA AccS, and attention. Factor 2 (i.e., 
tonic EDA) included STD EDA, SUM H EDA, and MEAN 

EDA. Last, factor 3 (i.e., phasic EDA) included SMA EDA 
and NPR EDA. Valence was not grouped under any of 
these factors. Then, we calculated the Cronbach’s alpha co-
efficients for each of the factors highlighted by the EFA. All 
factors achieved an alpha higher than .70, which is the cut-
off score for reliability (see table 6).  

We ran the model of engagement using SEM. To keep a 
good sampling adequacy, we performed the test of the 
model using data from both activities. The model proved 
to be an excellent fit for the data (X2(24, N= 84)= 30.793, p= 
.160; RMSEA= .058; NFI= .937; CFI= .985; RFI= .906, PNFI= 
.625) and all the regression paths leading to the observed 
variables were significant (see table 7). With regards to the 
relationships between components: 

1. Participation was significantly positively correlated 
with arousal (r(82) = .405, p=.025) 

2. Participation was not significantly correlated with va-
lence (r(82) = .099, p=.386) 

3. Valence was significantly positively correlated with 
arousal (r(82) = .388, p=.031) 

5.5.3 Discussion of the Model 

In summary, the EFA confirmed that the components of 
engagement were those we hypothesized: participation, va-
lence, and arousal. The test of the model through SEM ena-
bled us to prove that the ELICSE, EDA, and QoMov were 
suitable tools to assess the components of engagement. In-
deed, the factor loadings in the model were all significant 
and, with the exception of attention, quite strong. Also, 
SEM allowed us to define the relationships between the 
three components of engagement in the two activities, 
GBCS and RBFP. These were in line with our main vision 
of the functioning of engagement (see section 3). In conclu-
sion, we can give a positive answer to RQ2. Indeed, our 
assumptions on the relationships between the different 
components of engagement were supported by the test of 
the model.  

TABLE 7 
PATH ESTIMATES OF THE ENGAGE-DEM 

REGRESSION PATH EST. S.E. C.R. p 

PARTICIPATION → SMA ACCM .976 .008 39.06 ***<.001 

PARTICIPATION  → SMA ACCS †1.000 / / / 

PARTICIPATION→ ATTENTION .225 56.74 2.026 *=.043 

AROUSAL → PHASIC EDA †.694 / / / 

AROUSAL → TONIC EDA .536 94.90 2.184 *=.029 

PHASIC EDA → SMA EDA †.875 / / / 

PHASIC EDA → NPR EDA .787 1174.13 4.149 ***<.001 

TONIC EDA →  MEAN EDA .840 .255 8.674 ***<.001 

TONIC EDA →  STD EDA †.846 / / / 

TONIC EDA →  SUM H. EDA .886 .158 9.112 ***<.001 

COVARIANCE PATH EST. S.E. C.R. p 

AROUSAL ↔  PARTICIPATION .405 .000 2.238 *=.025 

PARTICIPATION ↔ VALENCE .099 .010 .866 =.386 

VALENCE ↔ AROUSAL .388 .000 2.126 *=.031 

Est.= Estimation; S.E.= Standard Error; C.R.= Critical Ratio; † fixed factor, *< .05, **< 
.01, ***< .001 

TABLE 6 
FACTOR LOADINGS AND CRONBACH’S ALPHA 

FEATURE/SCORE FACTOR LOADINGS* 

 1 2 3 

SMA AccM .959 .103 .141 

SMA AccS .959 .147 .104 

ATTENTION .422 .073 -.364 

Cronbach’s α based on standardized item= .725 

STD EDA -.050 .882 .190 

SUM H. EDA .061 .858 .310 

MEAN EDA .145 .885 .068 

Cronbach’s α based on standardized item= .894 

SMA EDA .094 .119 .893 

NPR EDA .149 . 047 .881 

Cronbach’s α based on standardized item= .815 

VALENCE .044 .376 .213 

In bold, factor loadings >.400 
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With regards to the low factor loading of the regression 
path leading to attention, this might be due to the fact that 
SMA AccM and SMA AccS are continuous variables, while 
attention is a ratio variable. Also, while QoMov exclusively 
refers to the active participation in the activity, attention in-
corporates both passive observation (i.e., gaze and pos-
tures) and active participation in the activity.  

Concerning the significant positive correlation between 
valence and arousal, this points to the fact that, in these ac-
tivities, when participation had positive valence, it grew 
together with arousal. With regards to the lack of a signif-
icant correlation between participation and valence, this 
seems to refute the positive correlations between the single 
and global scores of attention drawn from the ELICSE and 
the items of valence in the OME and OERS, and between 
the features of QoMov and the items of valence in the OME 
and OERS. However, we need to take into account that 
participation does not overlap with the single and global 
scores of attention nor with QoMov, but incorporates both, 
and that in the two activities under study the measures of 
attention and valence in the model partially overlapped 
(see section 5.4).  

We call the model of engagement that we deployed in 
this paper ENGAGE-DEM. The ENGAGE-DEM is a model 
that outlines the components of engagement, describes 
how these can be measured and formalizes their relation-
ships. In agreement with the findings of this paper, we 
would like to present a new definition of engagement. En-
gagement is the degree of participation in a playful activity 
that can take different hedonic tones (negative to positive 
valence) and achieve different levels of energy mobilization 
(low to high arousal). 

The ENGAGE-DEM can be thought of as a support to 
develop affective computing frameworks for the automatic 
detection of engagement in people with dementia. In fact, 
the behaviors in the ELICSE can be collected via sensing 
technologies as much as the features of EDA and QoMov 
[92]. Gaze behaviors can be tracked with remote eye-track-
ers, action units accounting for emotional facial expres-
sions can be recorded with Intel RealSense RGB-D cam-
eras, and postures can be estimated with Microsoft Kinect 
sensors. Further research is needed to apply the model to 
real-world settings. Nevertheless, despite being developed 
for people with dementia, thanks to its comprehensiveness 
and scalability, the ENGAGE-DEM can be used with other 
user groups (e.g., children with autism) and envision dif-
ferent assessment techniques for its components.  

5.6 Limitations and Future Work 

The main limitations of this study reside in the small 
sample size, its geographical uniformity, and the presence 
of missing data. Future work should attempt to include a 
higher number of participants coming from diverse geo-
graphic backgrounds. Given the amount of structuring 
that the collection of multimodal data entails, one of the 
possible solutions to this problem is to work in transna-
tional networks and collect data using common proce-
dures. Another limitation of this research lies in the narrow 
range of activities and dementia groups used to test the 
model. Future work should validate the model and test our 

hypotheses on the relationships between its components 
on more activities and multiple dementia groups (e.g., 
MCI). Also, we encourage replication with healthy subjects 
to verify the scope of application of the model. We also 
need to underline that, while considering the two activities 
together guaranteed a good sample size for SEM, it might 
have caused the cancellation of some of the dynamics char-
acterizing engagement in the single activities. 

Further limitations regard the OME and OERS. These 
were filled out by the same facilitators who conducted the 
activities rather than by external observers. The first-per-
son involvement of facilitators in the activity might have 
hindered their capability to carefully observe participants’ 
target behavior.  

The measures of engagement we employed in this pa-
per have limitations as well. For instance, EDA is ex-
tremely prone to noise and artifacts. This might be caused 
by participants touching the E4 wristband during activities 
and provoking the detachment of electrodes from the skin 
surface. Regarding QoMov, more work is needed to spec-
ify which thresholds define proactive engagement in dif-
ferent activities. Future work should also focus on translat-
ing the lengthy scoring of behavior in the ELICSE into au-
tomatic tracking. As a side note, the use of wearables with 
people with dementia is not straightforward and poses 
questions of acceptance and adoption that go beyond the 
scope of this paper, but need to be further studied. 

As already mentioned, the ENGAGE-DEM cannot be 
applied to all activities, but only to those that entail proac-
tive participation, do not involve physical effort, and re-
quires tangible artifacts. This makes it particularly suited 
to HCI and HRI but excludes from its scope of application 
other activities, such as dance therapy and music therapy. 

6. CONCLUSIONS 

In this paper, we described and tested a model of en-
gagement that identifies the components of engagement 
(participation, valence, and arousal), describes how these 
can be measured with existing assessment tools (ELICSE, 
EDA, and QoMov), and defines (and partially validates) 
the relationships that they entertain with each other. The 
model we propose, which we call the ENGAGE-DEM, rep-
resents the first formalization of the internal functioning of 
engagement for people with dementia and could be used 
to support the development of affective computing frame-
works for HCI and HRI. 
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