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Abstract. A monolithic approach to fluid-structure interactions based on the space-time
finite element method (STFEM) is presented. The method is applied to the investigation
of stress states in silos filled with granular material during discharge. The thin-walled silo-
shell is modeled in a continuum approach as elastic solid material, whereas the flowing
granular material is described by an enhanced viscoplastic non-Newtonian fluid model.
The weak forms of the governing equations are discretized by STFEM for both solid and
fluid domain. To adapt the matching mesh nodes of the fluid domain to the structural
deformations, a mesh-moving scheme using a neo-Hookean pseudo-solid is applied. The
finite element approximation of non-smooth solution characteristics is enhanced by the
extended finite element method (XFEM). The proposed methodology is applied to the
4D (space-time) investigation of deformation-dependent loading conditions during silo
discharge.

1 MOTIVATION

While the civil engineer of a silo-shell is interested in the pressure affecting the struc-
ture, the process engineer must ensure that the granular material discharges as a mass
flow. If the funnel-shaped discharge zone is not well-suited for mass flow, consolidated
granulars may build inner slots and so-called “dead zones” may occur. In case of kernel
flow, which is also provided by an excentric discharge opening, the stress states inside the
silo are unknown. If inner slots appear close to the silo wall, the structure is not loaded
symmetrically anymore, which may lead to overload and failure.
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2 INTRODUCTION

This contribution discusses recent developments in simultaneous (monolithic) analysis
of fluid-structure interaction based on the space-time finite element method. A weighted
residual-based approach to numerical analysis of fluid flow along flexible thin-walled struc-
tures, enabling the investigation of flow-induced vibrations of strongly coupled systems,
is presented. Within the simultaneous solution procedure, velocity variables are used for
both fluid and solid, and the whole set of model equations is discretized by a stabilized
time-discontinuous space-time finite element method (TD-STFEM). The flexible structure
is modeled using a three-dimensional continuum approach in a total Lagrangian setting
considering large displacements. In the flow domain the incompressible Navier-Stokes
equations describe the characteristics of flowing granular material as non-Newtonian fluid.
A continuous finite element mesh is applied to the entire spatial domain, and the dis-
cretized model equations are assembled in a single set of algebraic equations, considering
the two-field problem as a whole. The continuous fluid-structure mesh with identical
orders of approximation for both solid and fluid in space and time automatically yields
conservation of mass and momentum at the fluid-structure interface. A mesh-moving
scheme is used to adapt the nodal coordinates of the fluid space-time finite element mesh
to the structural deformation.

3 STRONG FORM OF MODEL EQUATIONS

3.1 Elasto-dynamics of the continuum-based structural model

The state of motion of deformable continua is characterized by displacements u and
velocities v = u̇. The rate of deformation is described by the nonlinear Green-Lagrangian
strain rate tensor Ė = 1

2
(Ḟ TF + F T Ḟ ), where F = I + ∇0u denotes the deformation

gradient. The balance equation of momentum

ρ0 (v̇ − b)−∇0 ·(FS) = 0 (1)

has to be fulfilled in the reference space-time domain Q0 = Ω0 × [0, T ] (subscript 0). ρ0
indicates structural density and ρ0 b the body forces. The material behavior is assumed
to be elastic and is described by the second Piola-Kirchhoff stress tensor S, the Green
Lagrange strain tensor and the tensor C of elasticity, which is deduced from the strain-
energy function Ψ

Ṡ = C : Ė with C =
∂2Ψ

∂2E
(2)

shown in rate formulation. Close to critical loads, the thin-walled shell structure may be
subjected to large deformations at small strains. Therefore, the elasticity tensor of the
St. Venant-Kirchhoff model can be applied, which is defined by the strain-energy function
Ψ = 1

2
λ(trE)2+µE : E depending on the Lamé coefficients λ and µ as model parameters.

2
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3.2 Fluid dynamics

The motion of viscous and incompressible fluids is governed by momentum balance
and continuity equation

ρ

(

∂v

∂t
+ v · ∇v − b

)

−∇·σ = 0 (3)

∇·v = 0 (4)

which are defined in the deforming space-time domain Q = Ω × [0, T ] of the current
configuration. The flow characteristics of the granular material is described by a phe-
nomenological material model for incompressible viscoplastic fluids applying a power law
as a first approach, where

σ = −p I+ φD with φ =
p · sin(ϕ) + c

√

JD
2 + ε

+ 2 η
(

4 JD
2

)
ν−1
2 (5)

denotes the Cauchy stress tensor [4]. The viscosity φ depends on the pressure p and
the second invariant JD

2 of the strain rate tensor D = 1
2

(

∇v + (∇v)T
)

, describing the
kinematics. The limit state between material at rest and flow is characterized by the
angle of friction ϕ and cohesion c as model parameters. In case of increasing strain rates
the mechanical behaviour is further described by a power law, depending on the viscosity
η and ν. The regularisation parameter ε � 1 ensures the evaluation of stress states for
disappearing strain rates, see Figure 1 .
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Figure 1: Stress-strain-relation [4]
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4 SPACE-TIME WEAK FORM AND DISCRETIZATION

A monolithic approach to fluid-structure interaction is chosen in order to develop an ac-
curate and uniform solution procedure for coupled systems exhibiting strong interactions
[3]. The governing equations for both solid and fluid are formulated in terms of velocity
variables and are discretized with the TD-STFEM [1]. A continuous finite element mesh
is applied to the entire spatial domain, and the discretized model equations are assembled
into a single set of algebraic equations, considering the multi-field problem as a whole.

The space-time finite element method provides a consistent discretization of both space
and time, avoiding semi-discrete formulations. For the sake of efficiency, the space-time
domain Q is subdivided into a sequence of space-time slabs Qn = Ω× [tn, tn+1] which are
solved successively.

4.1 Space-time finite element formulation of geometric nonlinear elastic solids

The TD-STFEM formulation of the geometric nonlinear elastic solid within the time
slab Q0,n reads

∫

Q0,n

δv · ρ0 (v̇ − b) dQ0 +

∫

Q0,n

Ė(δv,u) : S dQ0 (6)

+
∑

e

∫

Q0,n

δS :
(

C−1 : Ṡ − Ė(v,u)
)

dQ0 (7)

+

∫

Ω0

δvT (t+n ) · ρ0 (v(t+n )− v(t−n )) dΩ0 (8)

+
∑

e

∫

Ω0

δS(t+n ) : C−1 : (S(t+n )− S(t−n )) dΩ0 (9)

+
∑

e

∫

Ω0

τ S · δv̇ · (ρ0 (v̇ − b)−∇0 ·(FS)) dQ0 = 0 (10)

where e runs over all elements.

The resulting displacement field u determined by time integration of the velocities and
continuous in both space and time, is needed for computing the Green-Lagrange rate of
strain tensor Ė(u,v) respectively the deformation gradient F (u). In the finite element
formulation above, line (6) represents the weak form of momentum balance, line (7) fulfills
the constitutive law for the state of thermodynamic equilibrium in weighted residual form
at element level. The jump terms for velocities in (8) and equilibrium stress in (9) satisfy

4
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the initial conditions of the time slab in integral form. The line (10) represents a Petrov-
Galerkin stabilization of the momentum equation with the stabilization parameter

τSij =







0 i �= j
1√

( 2
∆t)

2
+
(

2 cp
∆xi

)2
i = j (11)

following Hughes and Hulbert [1] depending on the time slab width ∆t, the velocity

cp =
√

λ+2µ
ρ

of compression waves and the characteristic element length ∆xi in the i-th

direction.

The Dirichlet boundary condition is fulfilled exactly by the approximation space for
the velocity field. While homogenous Neumann boundary condition are fulfilled in weak
form, surface loads can be included into the formulation by the integral

∫

δv h0 dP
N
0 over

the Neumann boundary PN
0 .

To represent the curvature of thin-walled shell-structures, second order polynomials of
the serendipity family are used for geometry description of the finite elements. The same
approximation is used for the velocities, which are continuous in space and discontinuous
and piecewise linear in time.

In contrast, the ansatz functions for the stresses are discontinuous in both space and
time, leading to a mixed-hybrid formulation in which stress variables are defined only
inside finite elements. The approximation of the normal stresses is chosen with respect to
the constitutive equation, assuming linear kinematics and Poisson’s ratio equal to zero.
In this case the normal stresses are proportional to the velocity gradient in the appropri-
ate direction (σii ≈ vi,i). Thus the approximation is trilinear in the particular direction
of the stress component and perpendicular quadratic. To fulfill the LBB condition and
suppress numerical phenomena like shear locking the shear stresses are approximated by
lower order shape functions. To improve the performance of distorted finite elements, the
locally defined functions for the stresses (Fig. 2) are mapped into the global coordinate
system by the Jacobi matrix, evaluated at the center of the element (Fig. 3).

The balanced shape functions for the stresses according to a quadratic approach are de-
duced from the divergence-free shape functions for linear mixed finite elements developed
by Pian [5]. Comparisons have shown, that already a linear approximation of geometry
and physics allow analysis of the structural behaviour of thin-walled shells.

5
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Figure 2: Locally defined ansatz functions
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Figure 3: Evaluation of the Jacobian

4.2 Space-time finite element formulation of incompressible fluids

The time-discontinuous, stabilized space-time finite element formulation of the non-
Newtonian fluid model within the time slab Qn reads

∫

δv ρ

(

∂v

∂t
+ v · ∇v − b

)

dQ (12)

+

∫

D(δv) : φ(p,v)D(v) dQ−
∫

∇·δv p dQ (13)

+

∫

δp ∇·v dQ (14)

+

∫

δv(t+n ) · ρ
(

v(t+n )− v(t−n )
)

dΩ (15)

+
∑

e

∫

Qe

τM
1

ρ
L (δv, δp) · (L (v, p)− ρ b) dQ (16)

+
∑

e

∫

Qe

τC ρ ∇·δv ∇·v dQ = 0, (17)

where line (12) and (13) represents the weak form of momentum balance and line (14)
the incompressibility constraint of the continuity equation. The velocity jump term of

6



843
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the time-discontinuous formulation is shown in line (15). The GLS-stabilization of the
momentum equation (16) contains the residual of the momentum balance in strong form,
defined as

L (v, p) = ρ

(

∂v

∂t
+ v · ∇v

)

−∇·(−p I + φD) .

The appropriate stabilization parameter

τM =
1

√

(

2
∆t

)2
+
(

2|ṽe|
h

)2

+
(

4 ν
h2

)2

(18)

derived by Tezduyar et al. [7], depends on the characteristic element length h, the
time slab width ∆t, the kinematic viscosity ν = µ/ρ and the velocities ṽe = ve − vN,e

between the fluid and its moving mesh. The GLS-stabilization of the continuity equation
in line (17), containing the stabilization parameter

τC = h |ṽe| ζ (Ree) with ζ =

{

Ree/3 Ree < 3

1 Ree ≥ 3
and Ree =

|ṽe|h
2ν

(19)

completes the setup of the finite element formulation.

Finite elements with linear and quadratic approximation of the velocities in space
have been investigated. The pressure is described linear in both cases, such that the
stabilization of the pressure-field is needed only if an equal order (linear) interpolation of
the velocities is used. The evolution of the variables v and p in time is described by linear
functions independently of the discretization in space.

4.3 Mesh motion approach based on a neo-Hooke pseudo-structure

The continuous fluid-structure mesh with identical orders of approximation for both
solid and fluid in space and time automatically yields integral conservation of mass and
momentum at the fluid-structure interface.

For large structural displacements updated coordinates have to be found for the mesh
nodes inside the fluid domain. In order to avoid overlapping nodes and to reduce distor-
tions of extremely stretched elements a pseudo-elastic continuum following a neo-Hookean
material law is used as a mesh-moving scheme.

7
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The elasticity tensor associated to the neo-Hookean material can be specified by

C = λC−1 ⊗C−1 + 2 (µ− λ ln(J ))C−1 �C−1, (20)

where C = F TF is the right Cauchy-Green tensor and J2 its third invariant.

5 LEVEL-SET-METHOD AND EXTENDED SPACE-TIME FINITE ELE-
MENT METHOD

In order to describe the motion of the free surface of the discharging granular mate-
rial the level-set-method is applied [8]. The level-set-method implies the solution of the
transport equation

Lφ =
∂φ

∂t
+ v · ∇φ = 0 (21)

for the distance function φ moved by the velocities within the fluid domain. The distance
function defines the position of a material point in space and time to an interface sepa-
rating two domains at zero level (φ = 0). To evaluate the current position of the interface
in a space-time slab Qn = Ωt × [tn, tn+1], the transport equation is transferred into a
time-discontinuous space-time finite element formulation with GLS-stabilization for the
convective part of the material derivative as follows

∫

Q

δφ

(

∂φ

∂t
+ v · ∇φ

)

dQ (22)

+

∫

Ω

δφ(t+n )
(

φ(t+n )− φ(t−n )
)

dΩ (23)

+
∑

e

∫

Q

Lφ(δφ) τL Lφ (φ) dQ = 0. (24)

In convection dominated problems the solution of the level-set-equation loses accuracy
during the transport process, in particular in the vicinity of inflow-boundaries. To im-
prove the solution of subsequent time-slabs, the level-set-function needs to be reinitialized.
Therefore, the fast-marching-method [6] is used as time-efficient algorithm.

Applying the XFEM, kinks in the velocity and jumps in the pressure field between the
two fluid domains can be taken into account, extending the approximation of variables u
by additional shape functions M in Next.

uext(x, t) =
∑

k∈Nstd

Nk(x, t) ûk +
∑

j ∈Next

Mj(x, t) ũj (25)

8
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In case of linear approximation of the physics in Nstd additional shape functions

Mj = Nj(x, t)ψ
sgn
j (x, t) with

ψsgn
j (x, t) =

1

2

(

1− sgn
(

φ(x, t)
)

· sgn
(

φ(xj, tj)
)

)

(26)

based on sgn-enrichment are used to represent discontinuities in the pressure field. On
the contrary, the enrichment functions

Mj = Nj(x, t)R(x, t) with R(x, t) =
∑

j ∈N ext

|φj|Nj −
∣

∣

∣

∣

∑

j ∈N ext

φjNj

∣

∣

∣

∣

(27)

for continuous velocities contain a ridge function R for the specification of kinks. In case of
quadratic finite elements the pressure approximation is still extended by shape functions
based on sgn-enrichment, whereas for the quadratic approximation space of the velocities
N quad

std linear abs-enrichments N lin
j ψabs

j are used following the recommendation of Zilian
[9].

For the integration over the fluid domain, XFEM elements have to be subdivided into
subelements, where each subelement belongs to a single fluid domain (Fig. 4). With the
developed split-algorithm for 4D space-time finite elements, the velocitiy-field of flowing
granular material in silos with kernel flow and predefined inner slots can be investigated.
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Figure 4: Intersected 4D space-time finite element
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6 SOLUTION STRATEGY

To solve the transport equation for the interface the values of the velocities in the fluid
domain are needed. On the other hand the enriched approximation space for the physics
depends on the position of the interface, which leads to a strongly-coupled problem. To
ensure the convergence of the boundary-sensitive problem, while taking the physical and
geometrical nonlinearities into account, a staggered solution scheme is used. The outer
loop updates the solution of the transport equation with the current velocities, whereas in
the inner loop the fluid-structure-interaction problem is solved for a given approximation
space by the Newton-Raphson method.

Given the position of the interface separating the two fluid domains, the nonlinear
system of discretized model equations for solid (S), fluid (F) and fluid mesh dynamics
(M) have to be solved iteratively. To enable a computation in acceptable time steps, the
Newton-Raphson method is applied. Therefore the system of algebraic equations has to
be differentiated with respect to the unknowns x̂. The updated solution to the multi-field
problem may be established by computing

x̂i+1 = x̂i −
(

(K|x̂i)−1 r|x̂i

)

, (28)

where r is the right hand side. The structure of the linearized system of equations, assem-
bling matrix K, is shown in Fig. 5. In the present case of fluid-structure-interaction the
unknowns are given by the physical quantities v̂ and p̂ and the mesh motion d̂ affecting
the evaluation of the discretized model equations.

KS

KF

KM

rS

rF

rM

· =

∆vS

∆vF

∆p

∆d

Figure 5: Structure of the strong-coupled linearized system of equations
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Velocities as primary variable for both fluid and solid enable a direct coupling that
implicates no-slip boundary conditions in between. Slip boundary conditions can be
realized by interface elements using Lagrange multipliers to couple the velocities of the
two domains at the interface in normal direction n. The weak form of the kinematic
condition n (vF − vS) = 0 and equilibrium of the normal stress t at the boundary reads

∫

δt (vF − vS) · n dPD −
∫

δ (vF · n) t dPN +

∫

δ (vS · n) t dPN , (29)

leading to the structure of the weak-coupled system of equations shown in Fig. 6.

KS

KF

KM

KI

∆vS

∆vF

∆p

∆t

∆d

rS

rF

rM

0

· =

Figure 6: Structure of the weak-coupled linearized system of equations

7 VERIFICATION EXAMPLES

For verification the presented approach is applied to two types of 3D silo discharge. The
first example shows a silo with a funnel-shaped discharge zone and a predefined excen-
tric inner slot, streamed by granular material. The dead zone is characterized by nearly
inactive cohesive granular material around the inner slot. The velocity of the granular
material and flow direction in the inner slot is shown in Fig. 7. Furthermore, the reaction
forces around the support and symmetry plane are plotted on the superelevated deformed
configuration.

As further example a silo discharge by mass flow caused by gravitation has been com-
puted. The fluid domain inside is connected to the circumferential 3d silo structure by slip

11
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Gesamtstruktur bei exzentrischer Entleerung 
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Figure 7: Velocity-field and reaction forces on the deformed configuration

boundary conditions connecting only the velocities of the two domains along the interface
in normal direction. An extruded model of the finite element mesh showing the initial
state of the filled silo is shown in Fig. 8 on the left. The finite element mesh consists of
the shell-structure, the interface and the splitted fluid domain containing a pseudo-solid
for mesh movements. The lowering of the free surface between the granular material and
air above is depicted in Fig. 8.

Figure 8: Extruded mesh and lowering of the free surface during emptying
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