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Abstract. It is presented a new approach for dry friction modeling under conditions of 
combined kinematics. The main distinguish feature of this approach is building of friction 
models which are suitable for using in differential equations of motion. Under the proposed 
models of friction are understudied the interrelations between friction force components, 
torques and velocities which are represented be the analytical functions. The procedure of the 
models constructing consists of the two parts. In the first part, the exact integral expressions 
for the net vector and torque are formed with the assumption that Coulomb's friction law in 
classical forms or generalized differential forms is valid at each point of the contact area. In 
addition, in process of the exact integral models construction there are is used well known 
results from the theory of elasticity that tangent stresses lead to shift in the symmetric 
diagram of the normal contact stresses in the direction of the instantaneous sliding velocity. 
To use the theory of elasticity results in the dynamics problems, it is proposed the simple 
asymptotic representations for the contact stresses distributions based on their general 
properties known from the theoretical results of the theory of elasticity. In the second part the 
exact integral models are replaced by appropriate Pade expansions. The approximate models 
preserve all properties of the models based on the exact integral expressions and correctly 
describe the behaviour of the net vector and torque of the friction forces and their first 
derivatives at zero and infinity. Moreover, one does not have even to calculate the integrals to 
determine the coefficients of the Pade approximations. The corresponded coefficients can be 
identified from experiments. Consequently, the models based on Pade expansions may be 
considered as phenomenological models of combined dry friction.  

1 INTRODUCTION 
One of the first models describing the relation between the sliding friction and the 

whirling friction in the case of nonpoint contact between the moving bodies was proposed 
by in [1]. A principally new development of the theory was given by in [2], where exact 
analytic expressions for the resultant vector and the frictional moment for circular contact 
sites were obtained under the assumption that the distribution of contact stresses in the 
contact spot obeys the Hertz law. In [2], to apply the obtained dependencies to problems 
of dynamics, the linear-fractional Pade approximations of these dependencies were 
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constructed. The developed in [2] theory was used in [3] to study the dynamics of a 
homogeneous circular disk sliding with rotation on a plane. Under the assumption that the 
distribution of contact stresses obeys the Galin law, exact analytic expressions for the 
resultant vector and the frictional moment were obtained and their linear-fractional Pade´ 
approximations were constructed.

The convenience in the use of the Pade approximations, which permit describing the 
effects of combined dry frictions for the entire range of angular and linear velocities, 
allowed one to construct principally new the two-dimensional coupled models of the 
sliding and spinning friction on the basis of these approximations [4].  

The two-dimensional friction model was constructed under supposition that the 
classical Coulomb law in differential form is validated for an infinitesimal area inside of 
contact spot. Its generalizing for the case of more realistic dry friction characteristic 
(validity of Coulomb law in generalized differential form) was given in [5]. It was shown 
that in the case of combined kinematics using of the Coulomb law in generalized 
differential form leads to new qualitative properties of the friction force dependence on 
the sliding and spinning velocities, but does not change the model dimension. All these 
models of the sliding and spinning friction were constructed in the assumption that, in the 
case of circular contact sites, the distributions of normal contact stresses depend only on the 
position vector with origin at the contact spot center. But, it is known [6] that in the case 
of the rigid solids sliding it is appears tangent stresses that leads to shifting in the 
symmetric diagram of the normal contact stresses in the direction of the instantaneous 
sliding velocity. Investigations carried out in [7] shown this shifting even for uniform 
distribution of the normal contact stresses cause, in the case of combined kinematics, the 
dynamics coupling between components defining the force state of rubbed solids.  

Proposed below the dry friction models generalizing permits to take into account, 
simultaneously, both the dynamics coupling of the components defining force state and the 
more realistic representations about dry friction characteristics and the normal contact 
stresses distributions in the case of combined kinematics.  

2 COUPLED MODELS OF THE SLIDING AND SPINNING FRICTION 

2.1 Basic relationships 
The combined model of sliding and rolling friction is constructed for circular contact 

sites under the assumption that the Coulomb law in differential form holds for the small 
surface element in the interior of the contact spot, according to which the differentials 
of the resultant vector and the moment of friction with respect to the disk center 
are determined by the formulas: 
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where f is the coefficient of friction, ( , )x yr is the position vector of an elemental area 
in the interior of the contact spot with respect to its center (Fig. 1),  is the angular 
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velocity of rotation of the contact spot center, but 1  and 2  are the coefficients which 
can be defined in practice from experiments. 

Figure 1. Kinematics inside the contact spot letters 

To use the theory of elasticity results in the dynamics problems, a simple linear 
approximation of the normal contact stresses distribution is proposed: 

 0( , ) 1x y kx   R (2)

where 0 0 ( )r   - distribution of normal contact stresses at absence of motion having the 
properties of central symmetry,  - radius of contact spot, R x  - axe of the restangular 
coordination systems with origin in the center of contact circle (Fig. 1) which is directed 
parallelly to vector of the instantenious sliding.

To calculate coefficient  in the formula (1) it is used the condition of equality of the 
external force 

k
F  torque to the normal reaction force  torque which is appears from the 

shifting of the center of gravity of the contact spot in the direction of sliding on the value 
N

s :
Fh Ns (3)

where  - distance from the moving solid center mass to the plane of sliding. On the other 
hand the shifting 

h
s  of the gravity center relatively of the contact spot center can be defined by 

the following formula: 
2 2 2( , ) ( , ) , {( , ) : }

G G

x x y dxdy x y dxdy G x y y R      x (4)s

Substitution of the representation (2) to the (4) yields: 

3
0

0

( )
Rks r r dr

R
  

(5)

Equalization values s  calculated from the formulas (3) and (5) allows to calculate 
coefficient  which is characterized the dynamical coupling of the components defining the 
force state inside of contact spot.

k
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If the distribution of normal contact stresses 0 ( )r  at the moving absence are obeyed by the 

Hertz 2 2 2
0 3 1 / (2N r R R   )  or Galin  2 2 2

0 2 1 r RN R   laws then 5 (k Fh NR )  or 

3 (k Fh NR ) , correspondently. 

2.1 Integral model 
To obtain the resultant vector and the moment of friction, it is necessary to integrate the 

expressions (1) over the contact spot. The obtained dependencies, where F  and F denote
the respective components of the resultant vector directed along the tangent and the normal to 
the trajectory of motion, present an exact combined integral model of sliding and spinning 
friction
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After introducing dimensionless variables: ˆ ,x xR y yR   and 2ˆ ˆ ˆ ˆ ˆ( , ) ( , )x y x y N  R  it is 
convenient to calculate the modulus of integrals (6) in the polar coordinates: 

cos , sin , [0,1], [0,2 ]x r y r r        (Fig. 1) in which the functions (6) take the form 
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(7)

where the “hat” symbol is omitted for brevity 
If , then model (7) is fully agree to the model, investigated in [3] and can be 

considered as the first approximation, but presented in this investigation as the second 
approximation. Thus, we have substantial approximation to the real situation in dependence 
on the general properties of the normal contact stresses distribution. At the supposition that 
external forces are absence, the coefficient  in formula (1), (5), (6), (7) is defined by the 
friction force component 

0k 

k
F  from the first expressions in the relations (6-8) and, 

consequently, the dynamically coupled integral friction model is 
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where coefficients of polynomials terms in formulas (3) are the first moments of the normal 

contact stresses distribution: 
1

1 0
0

( )I r r dr   - moment of the first order, 
1

3
3 0

0

( )I r r d  r  - moment of the third order and 
1

5
0

5
0 ( )I r r d r   - moment of the fifth order. 

They can be calculated in elementary functions for the most used functions of the normal 
contact stresses distributions [5].

If the distribution of normal contact stresses is obeyed to the Hertz law: 2( ) 3 1 (2 )r r  

then: 1 3 51 2 , 1 5 , 4 35I I I     .
If the distribution of normal contact stresses is obeyed to the Galin law: 2 1( ) (2 1 )r r   

then: 1 3 51 2 , 1 3 , 4 15I I I     .
In the case of thin circle, the distribution of normal contact stresses can be described by the 

following function: ( ) ( 1) (2 )r r    , where ( 1)r   - Dirac delta function in the point 1r 
and 1 3 5 1 4I I I    .

Plots of the tangent F  (left figure) and normal F  (right figure) friction force 
components normalized on the their maximum values as function of velocity of sliding v  at 
the constant velocity of whirling 1u   are presented on the Fig. 2. As concerned friction 
torque then, qualitatively, its behavior is the same as case of using classical form Coulomb 
law: there are only small quantitative distinctions. 

Figure 2. Tangent and normal friction force components 

5
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The expressions for the components of the resultant vector and the moment of friction 
in relations (8) have several important properties as functions of u  and .v

Property 1. The distortion in symmetric diagram of the normal contact stresses distribution 
results in the appearance of the resultant vector component F  directed along the normal to 
the trajectory of motion. The resultant vector is not directed opposite to the velocity of 
sliding.

Property 2. The distortion in the symmetric diagram of distribution of normal stresses does 
not affect to the moment CM  and the resultant vector component F  directed along the tangent 
to the trajectory.  

Property 3. The first terms of the tangent F  force component and torque CM , just as 
normal F  force component, are homogeneous functions of the variables  and  of zero 
order of homogeneity and hence are invariant under the similarity group: 

u v

Property 4. The expressions (9), for the moment and both components of the friction force 
as functions of u  and  have a singularity at the point ( ,v ) (0,0)u v  , because they do not have 
any limit at this point with respect to both of the variables  and .u v

Property 5. In the case of pure sliding 0u   or spinning 0v  , the moment CM  and the 
tangential component F  are homogeneous models corresponding to the usual Coulomb law: 

1
2

0 0 0 2 2
0

(0, ) , ( ,0) , 2 , ( )C 0F v F fN M u M M fNRI I r r dr      

Property 6. In the case of pure sliding, the normal component vanishes: , and 
hence the friction force is directed opposite to the velocity vector; in the case of pure 
spinning, it is equal to 

(0, ) 0F v 

0 3( ,0) , ( )F u F fhR I     .
Property 7. The moment CM  and both components of the friction force F  and F  have 

only one nonzero first partial derivative (the others are zero): 

00 0

0, 0, 0C

uu v

FM F
u v u



 

 
  

  


2.2 Models based on Pade expansions 
The integral models (8) give a good description of the combined sliding and spinning 

friction, but are inconvenient to be used in problems of dynamics, because it is required to 
calculate multiple integrals in the right-hand sides of the equations of motion. This difficult 
procedure can be eliminated by replacing the exact integral expressions by the corresponding 
Pade approximations. The simplest of them is the linear-fractional approximation preserving 
the value at zero and at infinity of both for the torque 

C
M  and for the tangent force 

component F . But, for the normal friction force component, corresponded Pade 
approximation, naturally, became of the second order. 

6
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(9)

The linear-fractional Pade´ approximations (9) preserve the values of the functions ( , )F u v ,
( , )F u v and ( , )CM u v at zero, as well as their behavior and the behavior of their first 

derivatives at infinity. But model of this type cannot completely preserve the values of all first 
partial derivatives of these functions at zero. To obtain a correct description of the behavior of 
the first derivatives at zero, it is required to use the second-order Pade´ approximations, and 
then the coupled model of sliding and spinning friction takes the form 
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(10)

The second-order model (10) completely satisfies all properties 1–7 of the exact integral 
models (8). But, for the majority of the problems of dynamics, it is sufficient to use the first 
order model (9). The second-order model (10) is required for a more precise qualitative 
analysis, for example, for determining the boundaries of the stagnant region and the motion 
stopping time. 

The approximations (9) and (10) hold for positive values of and . They can be easily 
generalized to the case of arbitrary (in sign) velocities and  by a formal change by 
absolute values in the denominators of the corresponding expressions. 

u v
u v

The use of the friction models based on the Pade´ expansions allows one to avoid 
calculations of multiple integrals over the contact spot, which significantly simplifies their use 
in problems of dynamics.  

The approximate models preserve all properties of the models based on the exact integral 
expressions and correctly describe the behaviour of the net vector and torque of the friction 
forces and their first derivatives at zero and infinity. Moreover, the models coefficients can be 
identified from experiments [8]. Consequently, the models based on Pade expansions may be 
considered as phenomenological models of the combined dry friction. 

CONCLUSIONS 
It is developed a dynamically coupled integral dry friction model. It is shown that the 

distortion in the symmetry of the normal contact stresses distribution in the case of circular 
contact sites results to the appearance of the friction force component directed along the 
normal to the trajectory of the mass center of the rubbed solids and, consequently, the  mass 
center trajectory is inclined from the stright line. 
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To escape the double integrals calculation in the motion equations, the exact integral 
expressions are replaced by appropriate Pade expansions. Models based on Pade expansions 
may be considered as phenomenological models of the combined dry friction because their 
coefficients can be defined from the experiments.  
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