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Abstract. In a previous paper [1] we have studied the coexistence of coupled 2DEG
and 3DEG in the proximity of a silicon-oxide interface in a MOSFET devising a hydro-
dynamical model obtained by taking the moment of the kinetic transport equation and
by resorting to the maximum entropy principle for the closure relations. Here we classify
the model from the point of view of PDEs by showing that it is hyperbolic in the relevant
physical region of density, energy, velocity and energy fluxes in each subband and bulk
electrons.

1 Introduction

In [1] we have presented a subband transport model for the description of charge
transport in a MOSFET. Under the gate oxide, in the channel of the device, there is a
quantization in the transversal direction forming a 2D electron gas but far from such a
region electrons are 3D. Therefore one has to include the coexistence of both 2D and 3D
electron gas inside the channel and only 3D electrons in the remaining part.

Starting from the Boltzmann equations, corresponding moment equations have been
written and the closure problem, typical of such a kind of balance equations, has been
solved by resorting to the maximum entropy principle. The obtained complete model is
constituted by a set of balance equations for average density, velocity, energy and energy
flux in each subband and for bulk electrons, coupled with the Schrödinger-Poisson system.

A crucial point has been how to take into account the transition of electrons from the
3DEG to the 2DEG. We have solved the problem inspired by the procedure used in [2].
If an electron belonging to the 2DEG gains an energy above a threshold value after a

1

515



V. D. Camiola, V. Romano

x

Source

n+

Gate

n+

Drain

z

Si

z

Continuous energy 
spectrum

spectrum
Discrete energy

Confinig potential

threshold energy

SiO2

Figure 1: Simulated MOSFET (left). Energy spectrum along the transversal direction (right).

scattering, it is considered as 3D and vice versa if a 3D electron gets an energy below a
threshold value after an emission process it is considered into the 2DEG.

Here we show how the range of variation of the threshold energy influences the math-
ematical structure of the balance equations.

2 Confinement effects in nanoscale MOSFET

In a MOSFET (fig.1-left), in the proximity of the silicon-oxide (Si/SiO2) interface a
two dimensional electron gas (2DEG) is created with a discrete energy spectrum along the
z-direction (fig.1-right). Above a fixed energy level, the energy spectrum is continuous and
a three dimensional electron gas (3DEG) coexists with the 2DEG. To describe the whole
system, we define a spatial quantum region RQ where the 2DEG is confined, associated
with an energy quantum region RE in the wave-vector space. Outside RQ electrons are
only belonging to the 3DEG.

In the quasi-static approximation, the 2D-charges in RQ are described by the steady
wave function ψν(k, r) = ψν(kx, ky, kz, x, y, z) =

1√
A
φν(r||, z)e

ik||·r|| with k|| = (kx, ky) and

r|| = (x, y) denoting the longitudinal components of the wave-vector k and the position
vector r, respectively, and A symbolizing the area of the xy cross-section of RQ.

φν(r||, z) is called envelope function and, under the scaling where the ratio between
transversal and longitudinal characteristic lengths is small, it is solution of the Schrödinger

equation
[
− �2

2m∗
d2

dz2
− q(VC + V )

]
φν(r||, z) = ενφν(r||, z) in the effective mass approxima-

tion. � is the reduced Planck constant, m∗ is the effective electron mass, VC is the
confining potential and V is the self-consistent electrostatic potential which solves the
Poisson equation. Note that r|| enters as a parameters.

Under the assumption that the confining potential gives rise to an infinite barrier at
the oxide-silicon interface (z=0) and that a fictitious boundary is posed at z = tQ, we
solve the Schrödinger equation only inside the RQ region by setting φ = 0 at z = 0 and
z = tQ, the boundary of RQ. The problem is a self-adjoint problem posed on a limited
domain. So one finds a countable set of normalized eigen-pairs (subbands) (φν , εν).

In each subband the energy Eν is the sum of a transversal contribution εν(r||) and a
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longitudinal (kinetic) contribution ε|| =
�2
2m∗ (k

2
x+ k2

y), that is Eν(r||,k||) = εν(r||) + ε||(k||)

and the corresponding longitudinal velocity is v|| =
1
�∇k||

ε|| =
�k||

m∗ .
We assume that above a threshold energy ET electrons are 3D and therefore only the

subbands with Eν < ET are retained. We will denote by νT the threshold subband index.

Then k|| = (kx, ky) ∈ Bν
2 , where Bν

2 =
{
(kx, ky) ∈ R2 : 0 ≤ �2

2m∗ (k
2
x + k2

y) ≤ ET − εν

}
is

the selected Brillouin zone for 2D electrons in the ν-th subband.
The Brillouin zone for the 3D electrons is B∗

3 = {(kx, ky, kz) ∈ R3 : E(k) ≥ ET} where

we are assuming a Kane dispersion relation E(k) [1 + αE(k)] = �2k2
2m∗ in order to take into

account the effetcs of nonparabolicity at high energies.
Under the assumption that the channel length is no shorter than few tents of nanome-

ters, the transport of the carriers is assumed to be well described by semiclassical Boltz-
mann equations. 2D electrons in each subband are considered as different populations
and for each subband it is introduced a distribution function fν(x||,k||, t) obeying the
Boltzmann equation

∂fν(x||,k||, t)

∂t
+ v|| · ∇rfν(x||,k||, t)−

q

�
Eeff

ν · ∇kfν(x||,k||, t) = C2D
ν , k ∈ Bν

2 (1)

where Eeff
ν = 1

q
∇rε(r||) and C2D

ν describes the scattering with phonons, including the
mechanisms pushing 2D electrons into the 3DEG.

The 3DEG in the region RQ is described by the Boltzmann equation

∂f(x,k, t)

∂t
+ v · ∇rf(x,k, t)−

q

�
E · ∇kf(x,k, t) = C3D, k ∈ B∗

3 (2)

where v = 1
�∇kE = 1

m∗
�k

1+2αE
is the electron group velocity.

C3D represents the scattering of 3D electrons with phonons, including the mechanisms
pushing 3D electrons into the 2DEG. E = −∇rV is the self-consistent electric field which
is related to the electron distributions function through Poisson’s equation ∇ (ǫ∇V ) =
−q (nd(r)− nT (r)), with ǫ the relative permittivity, nd(r) the doping concentration and
nT (r) the total charge density given by nT (r, t) = n(r, t) +

∑νT
ν=1 ρν(x, y, t)|φν(z, t)|

2 with
n(r, t) =

∫
B∗

3

f(x,k, t)d3k the density of the bulk electrons, and ρν
(
r||, t

)
=

∫
Bν

2

fν(r||,k||, t)d
2k||

the areal density of electrons in the ν-th subband.
All the main scattering processes have been considered, that is those due to acoustic

phonons in the elastic approximation and non polar optical phonons, that cause the
particles exchange between 2DEG and 3DEG. The reader is referred to [1] for the details.

3 The moment system and its closure by the MEP

We now write a system of moment equations deduced from Boltzmann transport equa-
tions under suitable closure relations. Let us define the generic moment associated with
electrons in the subband ν with respect to a weight function a(k||) as

Ma

(
r||, t)

)
=

∫
a(k||)f(r,k||, t)d

2k||.

3
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In particular we take as basic moments for the 2DEG the following ones

areal density ρν
�
r||, t)

�
=

�

Bν
2

fν(r||,k||, t)d
2k||

longitudinal mean velocity Vν
�
r||, t)

�
=

1

ρν
�
r||, t

�
�

Bν
2

v||fν(r||,k||, t)d
2k||

longitudinal mean energy W ν
�
r||, t)

�
=

1

ρν
�
r||, t

�
�

Bν
2

ε||fν(r||,k||, t)d
2k||

longitudinal mean energy flux Sν
�
r||, t)

�
=

1

ρν
�
r||, t

�
�

Bν
2

ε||v||fν(r||,k||, t)d
2k||

The corresponding moment system is obtained by multiplying the Boltzmann equation
by the weight functions entering into the definition of the fundamental moments and by
integrating with respect to k||. Explicitly we get

∂ρν

∂t
+∇r||

· (ρνVν) + ρνLν
0 = ρνC(ac)

ρν
+ ρνC(no)

ρν
+ ρνC(no),3D

ρν
(3)

∂

∂t
(ρνVν) +∇r||

· (ρνF(0)ν) + (ρνG(0)ν) · ∇r||
εν = ρνC

(ac)
V

ν + ρνC
(no)
V

ν + ρνC
(no),3D
V

ν (4)

∂

∂t
(ρνW ν) +∇r||

· (ρνSν) + (ρνVν) · ∇r||
εν + ρνLν

1 = ρνC
(ac)
W + ρνC

(no)
W + ρνC

(no),3D
W (5)

∂

∂t
(ρνSν) +∇r||

· (ρνF
(1)ν) + (ρνG

(1)ν) · ∇r||
ǫν = ρνC

(ac)
S
ν + ρνC

(no)
S
ν + ρνC

(no),3D
S
ν (6)

where
�

F(0)ν

F(1)ν

�
=

1

ρν

�

Bν
2

�
1

ε||

�
v|| ⊗ v|| fν(r||,k||, t) d

2k||,

�
G(0)ν

G(1)ν

�
= −

1

ρν

�

Bν
2




1

�
v||∇k||

1

�
ε||v||∇k||


 fν(r||,k||, t) d

2k||,

�
Cρν

CWν

�
=

1

ρν

�

Bν
2

�
1

ε||

��
Sµν(k

′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

�
d2k′

|| d
2k||,

�
CVν

CSν

�
=

1

ρν

�

Bν
2

�
v||

ε||v||

��
Sµν(k

′
||,k||) f

′
µ − Sνµ(k||,k

′
||) fν

�
d2k′

|| d
2k||

Lν
0 = −

1

�ρν
∇r||

εν

�

Bν
2

∇k||
fνd

2k||, Lν
1 = −

1

�ρν
∇r||

εν

�

Bν
2

∇k||
(ε||fν)d

2k||.

It is worth to underline here that the two last drift terms (Lν
0 and Lν

1) are due to the
anisotropy of the distribution function. Usually they do not appear in the constitutive
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equations of the carriers transport because the boundary of the first Brillouin zone is
moved to infinity or the distribution function is symmetric on this boundary.

In a similar way, the basic moments we take for 3D electrons are the following ones

density n(r, t) =

∫

B∗
3

f(r,k, t)d3k

mean velocity V(r, t) =
1

n(r, t)

∫

B∗
3

v(k)f(r,k, t)d3k

mean energy W (r, t) =
1

n(r, t)

∫

B∗
3

ε(k)f(r,k, t)d3k

mean energy flux S(r, t) =
1

n(r, t)

∫

B∗
3

ε(k)v(k)f(r,k, t)d3k.

and the corrisponding moments system reads

∂n

∂t
+∇r

(
n(r, t)v(n, t)

)
= nC(ac)

n + nC(no)
n + nC(no),2D

n (7)

∂

∂t
(nv) +∇r

(
nF(0)

)
+ qE

(
nG(0)

)
= nC

(ac)
V

+ nC
(no)
V

+ nC
(no),2D
V

(8)

∂

∂t
(nW ) +∇r

(
nS

)
+ qE

(
nV

)
= nC

(ac)
W + nC

(no)
W + nC

(no),2D
W (9)

∂

∂t
(nS) +∇r(nF

(1)) + qE(nG(1)) = nC
(ac)
S

+ nC
(no)
S

+ nC
(no),2D
S

(10)

with analogous definition to the previous ones for F(0),F(1),G(0),G(1) and the production
terms.

The above written moment systems are not closed because there are more unknowns
than equations. Therefore, constitutive relations in terms of the fundamentals variables
are needed for extra fluxes and production terms. The maximum entropy principle leads
to a systematic way for obtaining constitutive relations on the basis of information theory
and has been widely used for semiconductor modeling (see for example[3, 4, 5, 6]).

According to the MEP, if a given number of moments of fν

Mν
aA

(
r||,k||, t)

)
, A = 1, ....., Nν and ν = 1, 2 . . .

are known along with a given number of moments of f

MbB (r,k, t) B = 1, 2, . . .N

the distribution functions f (r,k, t), fν
(
r||,k||, t)

)
, ν = 1, 2 . . . , can be estimated by the

extremal (fMEP , fMEP
1 , fMEP

2 , ...) of the entropy functional under the constrains∫

Bν
2

aA(k||)f
MEP
ν

(
r||,k||, t)

)
dk = Mν

aA

(
r||, t)

)
A = 1, ..., Nν , ν = 1, 2, . . .

∫

B∗
3

bB(k) f
MEP (r,k, t)d3k = MbB (r, t) B = 1, 2, . . .N.

5
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Following the approach in [3, 4, 5], we assume the following definition

Definition 1 We define the entropies of the two subsystems, 2DEG and 3DEG, as

S2D = −kB

+∞∑
ν=1

|φν(z, t)|
2

∫

Bν
2

(
fν log

fν

y
− fν

)
d2k||, y =

2

(2π)2,

S3D = −kB

∫

B∗
3

f(k) [log f(k)− 1] d3k

The total entropy is of course S = S2D + S3D. Therefore, according to MEP and our
choice of the basic moments in the case we are dealing with, f and the fν ’s are estimated
with the distributions fMEP and fMEP

ν ’s that solve the problem:
maximize S under the constraints
∫

B∗
3

fMEP (r,k, t)d3k = n(r, t),

∫

B∗
3

v(k)fMEP (r,k, t)d3k = n(r, t)V(r, t) (11)

∫

B∗
3

ε(k)fMEP (r,k, t)d3k = n(r, t)W (r, t),

∫

B∗
3

εvfMEP (r,k, t)d3k = n(r, t)S(r, t) (12)

and for ν = 1, 2, . . .
∫

Bν
2

fν(r||,k||, t)d
2k|| = ρν

(
r||, t

)
,

∫

Bν
2

v||fν(r||,k||, t)d
2k|| = ρν

(
r||, t

)
Vν

(
r||, t)

)
(13)

∫

Bν
2

ε||fν(r||,k||, t)d
2k|| = ρν

(
r||, t

)
W ν

(
r||, t

)
, (14)

∫

Bν
2

ε||v||fν(r||,k||, t)d
2k|| = ρν

(
r||, t

)
Sν

(
r||, t

)
(15)

One has

fMEP
ν = exp

[
−
(
λν + λν

V
· v|| +

(
λν
W + λν

S
· v||

)
ε||
)]

ν = 1, 2, . . . (16)

fMEP = exp [−(λ+ λV · v + (λW + λS · v)ε)] (17)

Now, following the same approach as in [4, 5], we assume a small anisotropy of the
distribution functions and expand them up to first order with respect to the lagrangian
multipliers relative to velocity and energy-flux

fMEP
ν ≈ exp

(
−λν − λν

W ε||
) [

1−
(
λν
V
· v|| + λν

S
· v||ε||

)]
, (18)

fMEP ≈ exp(−λB − λB
Wε)[1− (λB

V
· v+ λB

S
· vε)] (19)

Inserting the above-written expansions into the constraints (11)-(15), it is possible to get
analytical explicit expressions of the lagrangian multipliers and in turn to get the closure
relations for the moment system.

6
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4 Closure relations for the 2DEG

The Lagrange’s multipliers of the subbands into the 2DEG are

ρν =
2πm∗

�2
e−λν

Iν0 , W ν =
1

λν
W

[
1 +

λν
W (ET − εν)

1− eλ
ν

W
(ET−εν)

]
, (20)

λν
V

= b11(W
ν)Vν + b12(W

ν)Sν , λν
S
= b21(W

ν)Vν + b22(W
ν)Sν (21)

where

b11 = −
m∗Iν

0

∆ν

Iν
3 , b22 = −

m∗Iν
0

∆ν

Iν
1 , b12 = b21 =

m∗Iν
0

∆ν

Iν
2 , ∆ν = Iν

1I
ν
3 − (Iν

2 )
2

with

Iν
0 =

1− e−λν

W
(ET−εν)

λν
W

, Iν
n = (−1)n

dn

d(λν
W )n

Iν
0 , n = 0, 1, 2, ....

Once the lagrangian multipliers have been obtained, we can calculate the extra fluxes and
the drift and production terms. The fluxes read

F(0)ν =
Iν
1

m∗Iν
0

I, F(1)ν =
Iν
2

m∗Iν
0

I, (22)

for the other expressions the reader is referred to [1]. A crucial point is that there exists

[1] the critical values W ν
c =

ET − εν

2
such that λν

W (W ν
c ) = 0. Therefore the allowed values

of the longitudinal average energy are kBTL < W ν < W ν
c .

5 Closure relations for the 3DEG

In the same manner as for the 2DEG, explicit formulas for the closure relations of the
3DEG part of the moment system are obtained. The lagrangian multipliers are given by
the following relationships

n =
4πm∗

√
2m∗

�3
e−λB

I(ET , λ
B
W ), W = −

d

dλB
W

lnI(ET , λ
B
W ) (23)

λB
V

= B11V+ B12S, λB
V
= B21V+ B22S (24)

with

B11 = −
3m∗

2∆
I(ET , λ

B
W )L(2)(ET , λ

B
W ), B22 = −

3m∗

2∆
I(ET , λ

B
W )L(0)(ET , λ

B
W ),

B12 = B21 =
3m∗

2∆
I(ET , λ

B
W )L(1)(ET , λ

B
W ),

∆ = L(0)(ET , λ
B
W )L(2)(ET , λ

B
W )− (L(1)(ET , λ

B
W ))2

I(x, β) =

∫ +∞

x

(1 + 2αε)
√
ε(1 + αε)e−βεdε

L(0)(x, β) =

∫ +∞

x

e−βε [ε(1 + αε)]3/2

1 + 2αε
dε, L(n)(x, β) = (−1)n

dn

d(β)n
L(0)(x, β)

7
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Once λW has been obtained via a numerical inversion, the extra fluxes and production
terms can be obtained. Here we show only the flux expressions (see [1] for others details).

F(0) =
2

3m∗I(ET , λ
B
W )

L(0)(ET , λ
B
W ), F(1) =

2

3m∗I(ET , λ
B
W )

L(1)(ET , λ
B
W )

At variance with the 2DEG, no upper limit for the energy density arises.

6 Mathematical structure of the moment system closed with MEP

We want to give a strong numerical evidence that the moment system of the subbands
and bulk electrons augmented with the MEP closure relations forms a quasilinear hyperbolic
system in the time direction in the physically relevant range of W ν . This preliminary
analysis is crucial for the development of appropriate numerical schemes.

Since the differential part of each subband and of the 3DEG is decoupled in the moment
system, we can limit our analysis to the study of a single subband and the 3DEG. Let us
consider the quasilinear system of PDEs

∂

∂t
F (0)(U) +

2�
i=1

∂

∂xi
F (i)(U) = P(U,x, t), (25)

with U(x, t) vector field belonging to a connected open set Ω ⊂ Rm, ∀ t > 0 and ∀x
belonging to a domain D ⊆ Rk with k = 2 for th 2DEG or k = 3 for the 3DEG, and
F (β) : Ω �→ Rm, β = 0, . . . , k sufficiently smooth functions. Defining the Jacobian
matrices

A(β) = ∇UF
(β), β = 0, . . . , k,

we recall that the system (25) is said to be hyperbolic in the t-direction if det
�
A(0)(U)

�
�= 0

and the eigenvalue problem

det

�
2�

i=1

niA
(i)(U)− λA(0)(U)

�
= 0 (26)

has real eigenvalues and the eigenvectors span Rm for all unit vectors n = (n1, . . . , nk) of
Rk. Will first treat the case of a generic subband and then the 3DEG case.

6.1 Iperbolicity of the generic subband subsystem

In the case under consideration, by omitting the subband index, we have

U =




ρ

V 1

V 2

W

S1

S2




, F (0) = ρ




1
V 1

V 2

W

S1

S2




, F (1) = ρ




V 1

F (0)

0
S1

F (1)

0




, F (2) = ρ




V 2

0
F (0)

S2

0
F (1)




,

8
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and the Jacobian matrices are given by

A(0)=




1 0 0 0 0 0
V 1 ρ 0 0 0 0
V 2 0 ρ 0 0 0
W 0 0 ρ 0 0
S1 0 0 0 ρ 0
S2 0 0 0 0 ρ



, A(n)=

2�
i=1

niA
(i)=




n ·V n1ρ n2ρ 0 0 0
n1F

(0) 0 0 n1ρ(F
(0))′ 0 0

n2F
(0) 0 0 n2ρ(F

(0))′ 0 0
n · S 0 0 0 n1ρ n2ρ

n1F
(1) 0 0 n1ρ(F

(1))′ 0 0
n2F

(1) 0 0 n2ρ(F
(1))′ 0 0




,

where the prime denotes partial derivation with respect to W .
The equation

det
�
A(n) − λA(0)

�
= 0

gives the eigenvalues

λ1,2 = 0, with multiplicity 2 (27)

λ3,4,5,6 = ±

�
a(W )±

�
a(W )2 − 4b(W )

2
(28)

where

a(W ) = F (0) + (F (1))′ −W (F (0))′, b(W ) = F (0)(F (1))′ − (F (0))′F (1).

In Fig. 2 the eigenvalues λ3,4,5,6 are plotted against the longitudinal mean energy W for
several values of ET − εν in the range belonging to the realizability region. Since the four
eigenvalues λ3,4,5,6 are real and distinct, each of them has a corresponding eigenspace of
dimension one.

Concerning the eigenvalue λ = 0, we observe that whatever n we take the first and
fourth rows of A(n) are linearly independent, the second and third rows are proportional
and similarly the last two rows since ρ > 0 and n1 and n2 cannot be both zero. We
observe that

det

�
F (0) ρ(F (0))′

F (1) ρ(F (1))′

�
= ρ b(W ).

The fact that the eigenvalues λ3,4,5,6 are real implies that b(W ) > 0 and therefore the
rank of A(n) is four which means that the eigenspace associated to λ = 0 has dimension
two, leading to the hyperbolicity of the system (25) in the physical region ρ > 0 and
kBTL < W ν < W ν

c .
In the one dimensional case one has only the eigenvalues λ3,4,5,6 and by similar compu-

tations the hyperbolicity is again guarenteed.

Remark 1 In the particular case ET �→ ∞ we explicitly have

λ3,4,5,6 = ±

��
2±

√
2
� W

m∗

which are real and distinct provided W > 0 according to [4].
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Figure 2: Plot of λ3,4,5,6 versus the longitudinal mean energy for ET −εν = 0.125 (upper left), 015 (upper
right), 02 (bottom left), 03 (bottom right) eV.

6.2 Hyperbolicity of the 3DEG subsystem

In a similar way we have for the 3DEG

U =




ρ

V 1

V 2

V 3

W

S1

S2

S3




, F (0) = n




1
V 1

V 2

V 3

W

S1

S2

S3




, F (1) = n




V 1

F (0)

0
0
S1

F (1)

0
0




,

F (2) = n




V 2

0
F (0)

0
S2

0
F (1)

0




, F (3) = n




V 3

0
0

F (0)

S3

0
0

F (1)



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and the Jacobian matrices are given by

A(0) =




1 0 0 0 0 0 0 0
V 1 n 0 0 0 0 0 0
V 2 0 n 0 0 0 0 0
V 3 0 0 n 0 0 0 0
W 0 0 0 n 0 0 0
S1 0 0 0 0 n 0 0
S2 0 0 0 0 0 n 0
S3 0 0 0 0 0 0 n




,

A(n)=

2�
i=1

niA
(i) =




n ·V n1n n2ρ n3n 0 0 0 0
n1F

(0) 0 0 0 n1n(F
(0))′ 0 0 0

n2F
(0) 0 0 0 n2n(F

(0))′ 0 0 0
n3F

(0) 0 0 0 n3n(F
(0))′ 0 0 0

n · S 0 0 0 0 n1n n2n n3n

n1F
(1) 0 0 0 n1n(F

(1))′ 0 0 0
n2F

(1) 0 0 0 n2n(F
(1))′ 0 0 0

n3F
(1) 0 0 0 n3n(F

(1))′ 0 0 0




,

where the prime denotes partial derivation respect to W . The equation

det
�
A(n) − λA(0)

�
= 0

gives the eigenvalues

λ1,2,3,4 = 0, with multiplicity 4 (29)

λ5,6,7,8 = ±

�
a(W )±

�
a(W )2 − 4b(W )

2
(30)

where, assuming the same notation of the previous case,

a(W ) = F (0) + (F (1))′ −W (F (0))′, b(W ) = F (0)(F (1))′ − (F (0))′F (1).

In Fig. 3 the eigenvalues λ5,6,7,8 are plotted against the longitudinal mean energy W for
several values of ET . Since the four eigenvalues λ5,6,7,8 are real and distinct, each of them
has a corresponding eigenspace of dimension one.

Concerning the eigenvalue λ = 0, we use arguments similar to that used previously
and, assuming n1 = 1, n2 = n3 = 0, observe that

det




nV n1n 0 0
n1F

(0) 0 n1n(F
(0))′ 0

nS 0 0 n1n

n1F
(1) 0 n1n(F

(1))′ 0


 = n3b(W ).

The fact that the eigenvalues λ5,6,7,8 are real implies that b(W ) > 0 and therefore the rank
of A(n) is four which means that the eigenspace associated to λ = 0 has dimension four,
leading to the hyperbolicity of the system (25) in the physical region n > 0.
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Figure 3: Plot of λ3,4,5,6 versus the longitudinal mean energy for ET = 0.00 (upper left), 0.10 (upper
right), 0.20 (bottom left), 0.30 (bottom right) eV.
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