
Designing and implementing a

monitoring solution for Web

APIs

Bachelor Thesis

Author: Dragos Fotescu

Director: Jordi Marco Gómez

Co-Director: Marc Oriol Hilari

Designing and implementing a monitoring solution for Web APIs

1

Designing and implementing a monitoring solution for Web APIs

Abstract

The number of APIs is growing consistently as more and more businesses integrate

them and use them in their core business. That means that any degradation or

downtime in their API could be crucial as could impact their customers or revenues.

As the API ecosystem has been growing, it is still missing better tooling for API

developers, maintainers and operators. One of the missing things that would increase

the overall quality of APIs is monitoring and observability.

This project showcases how the market still needs better tools for monitoring APIs and

a proposal to make a language-agnostic with minimal integration effort possible

solution.

2

Designing and implementing a monitoring solution for Web APIs

Table of contents

Abstract 2

Table of contents 3

1. Introduction 6

1.1. Context 6

1.1.1. GENESIS Project 6

1.1.2. APIs 7

1.1.3. Web APIs 7

1.1.4. Problem 8

2. Stakeholders 9

3. State of the art 10

4. Objectives and requirements 12

5. Working methodology 14

5.1. Tools 15

6.Time Planning 16

6.1. Tasks description 16

6.1.1. Initial Phase (Project Management) 16

6.1.2. Design 17

6.1.3. Development 17

6.1.4. Final Phase 19

6.2. Risks and possible obstacles 19

6.3. Gantt Diagram 21

3

Designing and implementing a monitoring solution for Web APIs

7. Resources 22

7.1. Human Resources 22

7.2. Material Resources 22

7.2.1. Hardware Resources 22

7.2.2. Software Resources 23

8. Budget estimation 24

8.1. Direct costs 24

8.1.1. Human resources 24

8.1.2. Material resources 25

8.2. Indirect costs 27

8.3. Unexpected costs 27

8.4. Total costs 27

8.5. Budget management control 28

9. Sustainability and social commitment 30

9.1. Environmental dimension 30

9.2. Economical dimension 31

9.3. Social dimension 31

9.4. Legal dimension 31

10. Proposed solution 33

10.1. Architecture overview 33

10.2. Detailed architecture 35

10.2.1. Kafka 35

4

Designing and implementing a monitoring solution for Web APIs

10.2.2. Proxy component 37

10.2.3. Stream processor component 37

10.2.4. Visualization component 39

10.2.5. Detailed architecture chart 42

10.2.6. Kubernetes 43

11. Obstacles 45

11.1. Time 45

11.2. Technical challenges 45

11. Conclusion 47

11.1. Objectives completion 47

11.2. Technical skills 48

11.3. Future work 48

11.4. Personal conclusions 49

12. Bibliography 50

5

Designing and implementing a monitoring solution for Web APIs

1. Introduction

This bachelor thesis consists of implementing a programming language-agnostic

solution for monitoring exposed Web APIs. For example, understanding how the users

interact with the APIs, measuring the Quality of Service or helping to mitigate failures or

service disruptions.

1.1. Context

In this section we are going to explain the context of the project, the problem and why it

is important.

1.1.1. GENESIS Project

This thesis is framed inside one of the tasks to complete in the GENESIS project.

GENESIS (Generation and Evolution of Smart APIs) is a project formed by two research

groups from the UPC: GESSI (Software and Service Engineering Group) and DTIM

(Database Technologies and Information Management Group).

GENESIS is a project funded by the National Spanish Program for Research Aimed at

the Challenges of Society 2016. The objective of this project is to provide techniques

and tools to monitor, improve and evolutionate APIs. [1]

I’m going to be contributing to one of the main objectives of GENESIS, which is to

collect information, metadata, and behavior of the functionality to expose provided by

API providers. I will develop a solution to monitor exposed APIs. This data will also be

used to generate complete and accurate documentation, including non-functional

requirements that will facilitate the adoption of the APIs by third parties.

6

Designing and implementing a monitoring solution for Web APIs

1.1.2. APIs

An application programming interface (API) is an interface or communication protocol

between a client and a server intended to simplify the building of client-side software. It

has been described as a “contract” between the client and the server, such that if the

client makes a request in a specific format, it will always get a response in a specific

format or initiate a defined action. APIs simplifies the development efforts by abstracting

the underlying implementation and only exposing objects or methods the developer

needs.

There are different types of APIs (e.g. operating system, computer hardware, software

library, browser, etc.) but we are going to focus on HTTP server-side web APIs.

Today, with the rise of REST and web services over HTTP, the term is often assumed

to refer to APIs of such services when given no other context (Web APIs). [2]

1.1.3. Web APIs

A server-side web API publicly exposes one or more endpoints to a defined

request-response message system, typically expressed in JSON or XML, which is

exposed via the web most commonly via an HTTP-based web server.

The number of available web APIs has grown consistently over the past years, as

businesses realize the growth opportunities associated with running an open platform

that any developer can interact with. There are numerous businesses that their main

service is to provide APIs.

The API directory of the ProgrammableWeb directory, a massive searchable directory of

web APIs, reached the 22,000-APIs mark in June 2019, up to 2,000-APIs from 2010 [3].

7

Designing and implementing a monitoring solution for Web APIs

This number is only accounting for some part of Public APIs but it’s not taking into

consideration Partner APIs (exposed to business partners, customers, premium users,

etc.) or Private APIs (exposed to internal systems, usually just for consumption inside

the company).

1.1.4. Problem

As web APIs are becoming more critical to more business, it’s also critical to make sure

that the APIs you are exposing are running smoothly. API failures or disruptions can

drastically affect customers or end-users. It’s hard to quantify how much downtime

affects, but Gartner released a study in 2014 which estimated that businesses lose an

average of $300,000 per hour of downtime [4]. Hence it’s more important than ever to

have a reliable monitoring system for the provided APIs to help ensure the highest

quality of service and minimize the risks of downtimes or failures.

Even though web APIs have experienced such a steep growth, solutions for monitoring

exposed APIs lagged behind in the market compared to solutions for monitoring other

kinds of systems (e.g. Google Analytics or Cloudflare).

8

Designing and implementing a monitoring solution for Web APIs

2. Stakeholders

Now that the project was introduced. In this part are defined the stakeholders, which

means all the people that are related to the project.

● Director and co-director of the project: The director, Jordi Marco Gómez is

part of the UPC Computer Science Department, and the co-director Marc Oriol

Hilari is part of the UPC Department of Service and Information System

Engineering (ESSI). Both the director and co-director are also members of the

Generation and Evolution of Smart APIs (GENESIS) project. They will be in

charge of guiding and supervising the project and also propose changes or

improvements to the project if they see it convenient.

● Product and tech team: This team will design and implement the solution for

the project and assure its correct behavior. As this is a bachelor thesis, I will be

the one doing all the tasks related to the product and tech team roles (Software

Engineer, Product Manager, Designer, Infrastructure, Tester, etc.).

● API providers: Those will be the ones adopting the monitoring solution for APIs

built in this project. Although it was proposed to be used with APIs exposed from

the University, the solution should be adaptable and open-sourced so that

everyone would be able to use it.

● API users: Those are the final users and consumers of the API provided by the

API providers. They will be affected indirectly due to the consequences of

monitoring the service they are somehow consuming or using.

9

Designing and implementing a monitoring solution for Web APIs

3. State of the art

Nowadays there are already some solutions on the market that people are using to

monitor their APIs. The main alternatives are commercial software that would get

expensive to use and usually, they are not open-source. Here I’m going to list and

analyze the main ones:

● Apigee. Apigee is an API management company that was acquired by Google.

Besides other features, it offers API monitoring. The downsides of Apigee are

that it’s targeted at enterprise customers, which means that is cost-prohibitive for

smaller companies, and it’s not open source. That would make it impossible to

use in the UPC context. [5]

● Datadog. It is a commercial monitoring service for applications, providing

monitoring of servers, databases, and services. It’s not specifically targeted at

APIs, but it could be used for monitoring those as well. It works with small agents

for different frameworks, programming languages or infrastructures hence that

would not fulfill our requirements of being programming language agnostic. [6]

● Elastic Uptime. It is a commercial product where you can define your API

endpoints, a request type, the expected response, and a time interval. Elastic

Uptime will try the specified request in the time interval and monitor its results.

It’s a nice solution but you lose flexibility because you have to set up and

maintain every endpoint. Furthermore, this solution is not monitoring all the

requests/responses coming from the users, just the ones initiated by

ElasticSearch Uptime. It has a cloud and a self-hosted version. [7]

10

Designing and implementing a monitoring solution for Web APIs

● Manual monitoring. This is the most customizable solution but it’s also very

expensive and time-consuming to implement. It consists of in-house software

solutions tailored to its needs. Usually, only bigger companies are able to

implement and deploy such solutions.

11

Designing and implementing a monitoring solution for Web APIs

4. Objectives and requirements

The main objective of this project is to design and implement a system that allows API

providers to monitor metrics and usage from the exposed APIs and a dashboard to

visualize those results.

An important requirement for this project is that it must be language-agnostic, which

means that the solution must work independently of the programming language the

Web API was developed in and facilitate an easy integration with the monitored server.

Important metrics that we would like to monitor and visualize:

● Response time: the time it takes to the monitored server to respond to a

request.

● Availability: it determines if the monitored server is running, serving the requests

or returning a response.

● HTTP Errors: it will capture responses in which their status codes are greater

than 399. Status codes greater than 399 represent failed requests or some other

kind of error. Usually 4XX errors are reserved for errors caused by the client and

5XX are codes reserved for errors caused by the server.

● Throughput: number of requests served by the monitored system in a period of

time. It is usually measured in requests per second.

If we are well on time, it would be nice to have:

● An alerting system such that the maintainers of the monitored systems could be

notified when certain events happen (e.g. no availability or latency >300ms).

12

Designing and implementing a monitoring solution for Web APIs

● Mean Time To Repair metric, which is the mean transcurred time between the

unavailability or disruption of a service and its normal behavior.

We decided that the final solution would be to have a proxy that intercepts and forwards

all the requests and responses. That would allow us to analyze, measure and calculate

the different metrics explained in this section.

Besides that, we have to consider several important non-functional requirements for the

system:

● Performance: using this system should not compromise the response time of the

API significantly.

● Availability: the system should be highly-available. It shouldn’t impact the

availability of the monitored APIs.

● Security: the solution should be secure. Compromising the monitoring system

may lead to compromising the exposed API’s security.

● Usability: the solution should be easy to set up and use.

● Open source: the solution should be open source so the community can benefit

from it and help to improve it.

13

Designing and implementing a monitoring solution for Web APIs

5. Working methodology

Since this will be a project where the tasks will be dynamically evolving as we move

within the development phase, it would be great to follow an agile methodology. In this

case, I will follow the Kanban methodology.

Kanban is a popular framework used to implement agile software development. It

requires full transparency of work and real-time communication. Work items are

represented visually on a kanban board, allowing team members to see the state of

every piece of work at any time. [8]

Using Kanban, we will have the following columns on the board. The different

development tasks will pass through the following workflow:

1. Backlog. Are all the identified tasks that need to be done within the project. We

will be adding tasks to the backlog as soon as we identify them.

2. Analysis. This phase is used to analyze and design the identified tasks from a

software engineering perspective.

3. In progress. The actual implementation of the tasks.

4. Testing. Validating and testing that the task matches the expected behavior and

complies with its requirements. In case it doesn’t, the task will go back to the

previous phase.

5. Done. The task is considered as finished.

14

Designing and implementing a monitoring solution for Web APIs

I will also use unit testing, a software testing method that tests individual units of code,

to validate the critical features of the project.

As the tasks are completed, we will run all the changes through the Continuous

Integration pipelines to identify other possible defects in the software as we iterate it and

that we don’t break any piece from the previous work we’ve done. Continuous

Integration is a development practice that requires developers to automatically integrate

and test the shared code each time this is modified, in our case, we will be running our

unit tests and building all the components to see that everything is still fine after each

change.

5.1. Tools

To stick to the working methodology described earlier, I will be using the following tools:

● Trello.com. Trello is a simple service for creating virtual boards. I will use Trello

to create and maintain the Kanban board previously described.

● GitHub. GitHub is a service that provides hosting for software development

version control using Git. It will host all the code related to the project.

● CircleCI. It is a Continuous Integration platform. It will listen to all changes

pushed to GitHub and will run all the checks needed to validate the new

changes.

15

Designing and implementing a monitoring solution for Web APIs

6.Time Planning

Next, it will describe the time planning. This project has an estimated duration of 5

months, from early September to early February. The equivalent workload is equivalent

to around 500 hours, covering all the necessary tasks for its realization, from the final

memory to the actual implementation and the oral defense.

This workload will be assigned to a sole person that will do all the required roles to

accomplish the task. That means that it will not be possible to fully parallelize most of

the tasks and a delay in a task will directly affect the planning of all the subsequent

tasks.

It should be noted that the time planning presented below may be changed or not

strictly followed because an Agile methodology is being used. New or changed tasks or

dates may appear, even so, I will try to adjust to the planning as much as possible.

6.1. Tasks description

The project will have 4 parts, each one with its own tasks and it’s estimated duration in

hours.

6.1.1. Initial Phase (Project Management)

The main objective of this section is to determine the basic aspects of this project: the

objectives, the requirements, the planning, the working methodology, the definition and

the viability of the project. This phase will take around a month and it will consist of the

following tasks:

16

Designing and implementing a monitoring solution for Web APIs

● PM1. Research about monitoring web-servers and APIs technologies. (10h)

● PM2. Meetings with stakeholders. (1h)

● PM3. Contextualization and scope definition. (10h)

● PM4. Temporal planning and the tasks needed for the project. (8h)

● PM5. Budget and sustainability management. (6h)

6.1.2. Design

In this phase, it will be mainly to design the software architecture from a high-level

perspective. It will also be the stage to decide the specific components of the

applications, which programming languages to use, which databases or other

specifications. It will consist of the following tasks:

● D1. Design the software architecture of the monitoring system. (15h)

● D2. Define the environment, technologies, and infrastructure used for the project.

(15h)

● D3. Document all the advancements from this phase. (10h)

6.1.3. Development

In the stage, I will implement and develop the multiple components of the application

designed and planned from the previous stages. The tasks of the development phase

will be:

17

Designing and implementing a monitoring solution for Web APIs

● DEV1. Implement and set up the infrastructure and environments (development

and production) to support the application. (15h)

● DEV2. Develop the proxy component allowed to intercept and forward network

requests and responses. (25h)

● DEV3. Develop and integrate a persistence system to store all the events. (40h)

● DEV4. Create deployment scripts to enable an easy deploy of the application to a

new environment. (10h)

● DEV5. Implement the software that should calculate metrics from the events.

(25h)

● DEV6. Implement SSL certificate handling. The proxy should support the HTTPS

protocol. (35h)

● DEV7. Create and expose an API to be able to access the persisted data. (30h)

● DEV8. Implement a dashboard to visualize the metrics. This task will take longer

than usual because it would need to implement the whole user interface,

implement all the front-end logic and connect it to the internal API. (50h)

● DEV9. Implement authentication and authorization to the application. (20h)

● DEV10. Add integration tests to ensure correct functionality and maintainability.

(20h)

● DEV11. Extension of the application, depending on the needs and temporal

availability. (20h)

18

Designing and implementing a monitoring solution for Web APIs

● DEV12. Document all the advancements from this phase in the final memory.

(20h)

6.1.4. Final Phase

Finally, we identify the final phase where we should have already finished the

development of the platform. I will ensure the correct functionality and polish the final

details of it. I should also complete and conclude the final documentation and

presentation of the final defense.

● F1. Quality Assurance, testing, bugs search and validating the initial

requirements and objectives. (10h)

● F2. Fixing bugs or implementation issues. (15h)

● F3. Complete and conclude the final memory. (10h)

● F4. Prepare the final presentation and defense of the project. (15h)

6.2. Risks and possible obstacles

As in all projects, there are risks and possible obstacles that we should be aware of. I

have reserved some hours dedicated to the main risks so in case it appears an

obstacle, I could have some time to react. The main possible obstacles to keep in mind

in this project are:

● Bad decisions: it can arise problems from bad choices or decisions that may

have a big negative impact on the development phase of the project. To mitigate

that risk we must make thorough research and analyze different options before

19

Designing and implementing a monitoring solution for Web APIs

making important decisions. I have reserved 40 hours from the total workload for

mitigating this risk.

● Technical challenges: this monitoring solution can be a big technical challenge

to solve with many different parts and technologies to implement. It is important

to leverage self-learning. I have reserved 40 hours dedicated to self-learning and

researching.

● Limited time: the bachelor thesis has a fixed delivery date scheduled having a

tight timeline to develop and deliver the project. That means that we must plan

accordingly and that any unexpected problems that may arise have to be solved

as flexible and quickly as possible.

20

Designing and implementing a monitoring solution for Web APIs

6.3. Gantt Diagram

21

Designing and implementing a monitoring solution for Web APIs

7. Resources

7.1. Human Resources

Although there are different roles needed for completing the project and its tasks, I will

only dispose of a sole Software Engineer, myself, for accomplishing all the tasks. I will

also perform different roles like Product Manager, Designer, Infrastructure or Tester

engineer.

7.2. Material Resources

There will be used material resources mainly for the development equipment and

environment and the running infrastructure or software used.

7.2.1. Hardware Resources

● Development laptop. I will be using a MacBook Pro, 15-inch model from Mid

2015.

● External monitor. To facilitate the development I will use an external monitor of

24” with 1080p resolution. The monitor model is a Samsung S24D330H.

● Laptop support. I will be using a laptop support stand with the dual-screen setup

to have better ergonomics as the laptop screen will be aligned with the natural

vision.

● Keyboard and mouse. I will be using a generic keyboard and mouse because the

laptop will be lifted in the laptop support.

22

Designing and implementing a monitoring solution for Web APIs

● Standing desk. I will be using an ergonomic table in my development

environment. It’s ideal for development because it can be changed to a standing

position so I can be working both sitting and standing, ideal for ergonomics. I will

be using the Ikea Skarsta 160x80cm model.

● Office chair. I will need a comfortable adjustable and ergonomic chair for

working. I will be using the Ikea Markus model.

● Servers. I will need servers for deploying the application and its infrastructure.

7.2.2. Software Resources

● IDE. IDE stands for Integrated Development Environment, it consists of an

enhanced source code editor, debugger and other build and automation tools. It

will be used for writing and maintaining the source code of the application. I’m

going to be using WebStorm and Idea IntelliJ IDEA editors from JetBrains

company.

● Version Control System. It is where the source code is stored, and it tracks the

changes in it. I will be using git VCS hosted on GitHub.

● Development Frameworks. It is a software designed to support and facilitate the

development of applications, services or APIs.

● Google Suite. Composed by a diverse set of productivity and collaboration tools.

In particular for this project it has been used GMail, Calendar, Meet, Docs and

Slides.

23

Designing and implementing a monitoring solution for Web APIs

8. Budget estimation

Once we have done the time planning and the task definitions, we have enough

information to make a budget estimation. Budget estimation is an important tool to

analyze the project’s economic viability.

The costs will be divided into three categories: direct costs, indirect costs, and

unexpected costs.

8.1. Direct costs

In this section, there will be the costs associated and directly derived from all the

activities related to the completion of the project.

8.1.1. Human resources

The main roles needed for developing and completing this project are Software

Engineer, UI/UX Designer, and Product Manager.

To estimate the human resources cost first it’s necessary to estimate how many hours

will be needed from each role, and multiply the estimated hours by their respective

hourly market rate. Finally, we need to multiply each gross salary by a factor of 1.35 in

the concept of the cost it would take a company to maintain this employee, for example,

Social Security or training.

 Dedication per role (h)

Task Total Hours Product Manager Software Engineer UI/UX Designer

24

Designing and implementing a monitoring solution for Web APIs

Initial Phase 35h 27h 6h 2h

Design Phase 40h 6h 34h 0h

Development Phase 310h 20h 250h 40h

Final Phase 50h 25h 15h 10h

Role Hours €/Hour Total Total with company costs (x1.35)

Product Manager 78h 25€/h 1,950€ 2,632.50€

Software Engineer 305h 35€/h 10,675€ 14,411.25€

UI/UX Designer 52h 30€/h 1,560€ 2,106€

Total 435h 14,185€ 19,149.75€

8.1.2. Material resources

Here it includes material resources used for the development of the project. Includes

hardware and software used. Basically it consists of the laptop used for development,

the IDE and the cloud instances for deploying the project.

25

Designing and implementing a monitoring solution for Web APIs

Product Unit Cost Total Cost Units Lifecycle Amortization

MacBook PRO 15’, Mid

2015

1,900€ 1,900€ 1 8 years 1,900€

IntelliJ IDEA Ultimate

(IDE)

80€/year 80€ 1 1 year 0€

Google Cloud Compute

Engine standard instance

22€/month 66€ 2 instances

for 3 months

Until the

project is

finished

0€

Total 2046€ 1,900€

26

Designing and implementing a monitoring solution for Web APIs

8.2. Indirect costs

On the other hand, indirect costs are indirect expenses from the activity of completing

the project. It consists mainly of the Coworking space, which already includes electricity,

internet, and the workplace necessary to develop the project.

Product Price Units Estimated price

Coworking space 250€/month 4 months 1,000€

8.3. Unexpected costs

According to the risks and possible obstacles previously defined in the time planning

and the contextualization of the project, we may need more time to deal with

unexpected tasks. Mainly that could happen because of some estimation deviation,

wrong decisions or a more challenging task than expected.

Taking the 35€/hour rate of a Software Engineer, I will allocate 60 hours as a

worst-case scenario, which means 2,100€ for unexpected costs.

8.4. Total costs

Finally, with the previous sections from the budget estimation, we can calculate the total

costs. We will add 10% of the costs in the concept of contingency, which is the typical

percentage used in technological projects.

27

Designing and implementing a monitoring solution for Web APIs

 Price

Direct Costs 21,049.75€

Indirect Costs 1,000€

Unexpected Costs 2,100€

Subtotal 24,149.75€

Contingency (10%) 2,414.97€

Total 26,564.73€

8.5. Budget management control

To control the budget it will be needed to monitor the time used to develop the project.

Therefore, after finishing each task it will be logged the actual time spent in the task so

we will be able to calculate the real cost. This way, we can calculate 2 types of

deviations: consumption deviation and cost deviation. To get the consumption deviation,

we would need to calculate the difference between the estimated hours and actual

hours for completing the project multiplied by the estimated cost. For the cost deviation,

we need to figure out the difference between the actual and the estimated cost,

multiplied by the actual number of hours spent in the project.

28

Designing and implementing a monitoring solution for Web APIs

Consumption deviation = (estimated hours - actual hours) * estimated cost

Cost deviation = (estimated cost - actual cost) * real hours

This would allow us to know the situation of the project regarding the cost consumption

and its possible deviations, hence we could figure out if the project would be able to

handle the deviations using the contingency.

29

Designing and implementing a monitoring solution for Web APIs

9. Sustainability and social commitment

I have attempted to categorize the project’s sustainability by first making sure we

understand all the concepts involved in making a sustainable project. As such, this

analysis is based on a Survey provided by GEP.

I believe I have always had a firm understanding of the economic impact of my actions,

the carbon footprint they incur, along with making sure the project is socially sensitive,

but doing the survey helped me fill in the blanks in my knowledge by looking at the

information I was missing.

In order to categorize the sustainability of the project, we will be looking at three

different categories, the Environmental, Economical and Social aspects of our project.

9.1. Environmental dimension

This project uses very few resources for a programming project, as we only employ one

laptop, with the environmental impact that carries. We will be using a laptop that would

be employed for tasks regardless, so the most notable impact will be that of the used

electricity.

Furthermore, I will also be running the project on Google Cloud’s servers which totally

run on renewable energy and maintains a commitment to carbon neutrality (net zero

carbon footprint). [10] As the architecture was designed such that it’s possible to

upscale or downscale depending on the resources that are needed, we can minimize

the servers and computing power running and we can increase the compute power or

number of instances only when needed.

30

Designing and implementing a monitoring solution for Web APIs

9.2. Economical dimension

We have already gone over the budget of the project extensively in the previous

section.

This solution is reasonably efficient for a project of this scope, and the main expense is

in the part of the human resources, so our footprint won’t be large. The architecture was

designed such that it’s possible to upscale or downscale depending on the resources

needed, hence minimizing underspending and overspending.

As for the project itself, as stated on the introduction of this thesis, businesses incur

heavy costs for every hour of downtime or degraded performance of their APIs or web

services. Our solution will help businesses grow and save money because of the

increased quality of their exposed APIs by having an

9.3. Social dimension

It would be an open-source solution that would benefit the community, will offer other

people to learn from the code and will allow the possibility to expand it to their needs.

Everyone would be allowed to use or modify the code for free and that will help to

improve the overall quality of the different APIs from the Internet.

9.4. Legal dimension

As we wouldn’t be storing any personal identifiable information, not even the IP, we

wouldn’t need to take any special measures about data protection and privacy

regulation laws like GDPR. That may change if we serve URLs with sensitive

31

Designing and implementing a monitoring solution for Web APIs

information in it because we do store the requested URLs. That being said, serving

sensitive information in the URLs is an awful security practice that must be avoided. [9]

32

Designing and implementing a monitoring solution for Web APIs

10. Proposed solution

In this section, it will be explained the solution and architecture to solve our objectives

and requirements. First it is going to be an overview of the chosen solution and later

we’re going to see a deeper explanation of it.

10.1. Architecture overview

After analyzing all the project requirements and its objectives, it’s time to analyze and

propose a suitable solution.

Normally, the clients would just make a request directly to the API or Web service, as

we can see in the following images:

According to the specifications, the solution from the following picture has been

designed:

33

Designing and implementing a monitoring solution for Web APIs

As we can see in this diagram, the client doesn’t interact directly with the API server but

it communicates with a Proxy service that monitors the request and response metadata.

As an overview:

1. The client starts an HTTP request for the API to monitor but it actually points to

the Proxy monitoring server. This change could be made for example via a DNS

change or a Load-Balancer on top of the API to monitor such that the Client

doesn’t need to change anything.

2. The Proxy server intercepts and saves the necessary HTTP request metadata

like host, path, method, headers, timestamp, etc.

34

Designing and implementing a monitoring solution for Web APIs

3. The Proxy server forwards the request to the monitored API while keeping alive

the initial request initiated by the Client. Actually the Proxy server starts a new

request with the same parameters pointing to the monitored API.

4. The monitored API replies to the HTTP request that the Proxy requested. The

Proxy server saves or calculates the necessary HTTP response metadata like

status code, headers, time taken to reply, etc.

5. The Proxy server sends all the necessary data to a service that will be

consuming, processing and aggregating all the monitored requests.

6. The Proxy sends the response received by the monitored server to the Client.

Then, the data processing systems will process, compute and aggregate the data from

the requests published by the proxy. We can later have diverse visualization services

connected to the results of these data processing services such that we can easily

visualize and take action on the different metrics.

This solution allows us to easily integrate with the monitored server without a need to

change its codebase and hence it’s language-agnostic.

10.2. Detailed architecture

Now that we’ve seen the big picture of our solution, let’s dig deeper into the components

of this solution.

10.2.1. Kafka

Apache Kafka is an open-source distributed stream processing platform developed by

LinkedIn and donated to the Apache Software Foundation, written in Scala and Java.

35

Designing and implementing a monitoring solution for Web APIs

The project aims to provide a unified, high-throughput, low-latency platform for handling

real-time data feeds.

Kafka has three main capabilities: publish and subscribe to streams of records (similar

to a message queue or to a messaging system), store streams of records in a

fault-tolerant durable way and process streams of records as they occur. That makes it

perfect for building real-time streaming applications that transform or react to the

streams of data. [12]

We’re going to mainly use 3 of the core Kafka APIs in this project:

1. The Producer API allows an application to publish a stream of records to one or

more Kafka topics. We will use this API for publishing the new requests that the

proxy is receiving.

2. The Consumer API allows an application to subscribe to one or more topics and

process the stream of records produced to them. We will be using this API for

ingesting records to process or getting the output from the processed records.

3. The Streams API, that allows an application to act as a stream processor,

consuming an input stream from one or more topics and producing an output

stream to one or more output topics, effectively transforming the input streams to

new output streams.

We’re going to be using Kafka for receiving all the requests intercepted by the proxy

component and we will also use it for processing and aggregating these requests into

the metrics we want to track. Kafka would be a central and critical piece of our

architecture as all the events are going to be passing through Kafka.

36

Designing and implementing a monitoring solution for Web APIs

10.2.2. Proxy component

This component is the front-facing component to the user. The final user will directly

communicate with this server instead of the monitored server. This component is an

HTTP server that proxies all the requests that receive to another server. The host that

it’s going to be proxied is decided from the PROXY_MONITORING_TARGET environment

variable. An environment variable is a dynamic-named value that can affect the way

running processes will behave on a computer [13].

Besides proxying the HTTP requests, this server creates an event with the following

properties: target host (the server being monitored), HTTP method, URL path, query

parameters, HTTP status code response, if the request timeout or the server is offline,

and the response time (how long it took the target server to respond). This event is

published on a Kafka topic.

This component is written and running in Node.js environment mainly because of its

simplicity and its asynchronous nature which allows handling thousands of concurrent

connections with ease.

10.2.3. Stream processor component

This component will be consuming the requests published by the proxy component and

it will calculate and aggregate the different metrics we’ll need. This service is written in

Java because it’s using the Kafka Streams API which is the best way to do

stream-processing with Kafka as it already has a lot of useful operations for processing

and aggregating data.

Besides doing stateless transformations like mapping or filtering records, Kafka Streams

API also allows to easily perform stateful operations like aggregations (computing

37

Designing and implementing a monitoring solution for Web APIs

counts, sums or grouping) or windowing (which lets you group records on time-based

windows). As these later operations need state, Kafka Streams allows to store and

query data for the required state for processing.

After ingesting the requests published by the proxy service, this component will

compute and will publish to the following Kafka topics:

● REQS_COUNT_PER_MIN_BY_PATH: first it will group all the requests by the same

URL path, host and HTTP method. Then, it will count them aggregated in a 1

minute window, that means that every minute it will publish how many requests

per path have been done per route and method. This is going to be used for

calculating the throughput handled by the system. With these events we can also

understand which are the more popular requests.

● AVG_RES_TIME_PER_MIN_BY_PATH: first it will group all the requests by URL

path, host and HTTP method. Then, it will compute the average response time

for every path. This metric is also going to be aggregated in a 1 minute window.

We’re going to use this for visualizing the evolution of the response time in the

system. We could also understand which requests are slower or faster.

● REQ_WITH_ERROR: in this topic will be published the requests that had an HTTP

error status code (4XX or 5XX codes) or that the server didn’t respond to

(because it was offline or timeouted). This is a simpler operation as we will only

need to filter from the monitored requests by HTTP status code or to the

notAvailable field. The events from this topic are going to be used for

calculating the error rate of any particular path or the one from the global

38

Designing and implementing a monitoring solution for Web APIs

application. It will also be used for displaying which errors happened on the

application.

10.2.4. Visualization component

This service is in charge of ingesting and displaying the tracked metrics published in the

different Kafka topics. This component is composed by a Node.js application that listens

to different Kafka topics and stores the events that it is interested in its own database.

This service also exposes a HTTP REST API for querying the events on a time based

manner. We’re exposing the average response time on the system and per path, the

number of requests in the system and per path, the throughput of the system and per

path and the errors on the system and per path including the availability of the system.

All of those metrics can be queried by periods of time (last 10 minutes, last day, last

week, last month or any custom period you want).

Besides the ingestion of events and the REST API, this service also serves a

dashboard to be able to easily visualize all the exposed metrics by the REST API. Next

we can see some picture of the main screens of the dashboard.

39

Designing and implementing a monitoring solution for Web APIs

40

Designing and implementing a monitoring solution for Web APIs

This service is written in Node.js because of its simplicity and its asynchronous manner.

For the dashboard frontend it uses the React framework with Next.js. The React

framework is a declarative component-based JavaScript library for easily building user

interfaces. Next.js is a React framework that, besides other things, it allows you to

easily render React pages in your Node.js server.

For building the charts, we’re going to use an open-source JavaScript library called

apexcharts.js, that offers data visualization components for multiple libraries or

frameworks, including the React library.

This server is also going to have a WebSocket interface for notifying that new events

are published and that the front-end dashboard will use for updating its interface

accordingly.

The database that we’re going to use for ingesting and storing the Kafka events is going

to be TimescaleDB. TimescaleDB is an open-source time-series database powered by

41

Designing and implementing a monitoring solution for Web APIs

PostgreSQL. It leverages the reliability and maturity of PostgreSQL (it allows you to use

all PostgreSQL features) while offering powerful time-oriented features and important

optimizations for insertion and querying time. As our data and queries are time-based

this is an ideal fit for our needs.

The schema it is in TimescaleDB right now is:

● Table errors_per_route with fields id, method, path, query_string, host,

timestamp, response_status_code, response_time, is_unavailable.

● Table req_per_minute_per_route with fields id, method, path, query_stirng, host,

count, timestamp, resolution.

● Table windows_avg_res_time_per_route with fields id, method, path,

query_string, host, avg_response_time, timestamp, resolution.

10.2.5. Detailed architecture chart

Now that we better defined the architecture and its components in a more detailed and

specific way, we can visualize the solution with a more technical and accurate chart.

42

Designing and implementing a monitoring solution for Web APIs

10.2.6. Kubernetes

As we have very different components and this is a service oriented architecture, I’ve

opted to build and deploy this solution with Kubernetes. Kubernetes is an open-source

system for automating deployment, scaling, load-balancing, and management of

containerized applications. It groups containers that make up an application into logical

units for easy management and discovery. [14]

43

Designing and implementing a monitoring solution for Web APIs

Kubernetes makes it very easy to deploy new versions of any service from our

application without worrying about downtimes. It also handles the health of our services

so if any service crashes Kubernetes will start a new instance of it. If we need more

resources or compute power, we can very easily add more replica instances of any

service. To more extent, there are Kubernetes packages that roll out a deployment of

Kafka or TimescaleDB with a lot of things out of the box like replication, security or

backups.

It was also for the development environment a tool called Telepresence. This tool allows

you to develop and debug microservices locally while running the rest of the services in

the Kubernetes cluster. That way I don’t need to have running the whole infrastructure

in my computer but only the parts that I’m working with.

The Kubernetes cluster is going to be deployed in Google Cloud Platform using Google

Kubernetes Engine which is a managed version of Kubernetes. Using a managed

Kubernetes cluster allows us to quickly spin scalable clusters managed clusters without

the worry of fully administering them.

44

Designing and implementing a monitoring solution for Web APIs

11. Obstacles

After having defined the project with its requirements and its possible risks and

obstacles, there are going to be presented the different obstacles faced in this project.

11.1. Time

Time is a risk that was evaluated from the beginning of the project. Some tasks ended

up taking more time than expected but the main objectives were successfully achieved.

That being said, there was no time to complete the extra objectives we defined like alert

notifications and the “Mean Time To Repair” metric.

Apart from that, I had to do an unexpected work-related trip to another country for more

than one and a half months which made it impossible to continue working on the project

and presenting it on the dates planned initially. That was not that big of a problem

because I was able to continue and finish the work in the next thesis announcement in

the following quarter.

11.2. Technical challenges

Initially there were also expected risks and obstacles related with technical challenges.

In this case, it was true that it was a challenging and demanding project and I worked

with new technologies that I never worked before. In particular, Kafka had a big impact

here as it was a very different and complex technology. It was challenging to properly

set up and make Kafka work with a full stream-processing pipeline. I was trying to make

the stream-processing service in Node.js which I realized is much more difficult because

of the lack of stream-processing libraries in this language. I ended up writing this service

45

Designing and implementing a monitoring solution for Web APIs

in Java using the Kafka Streams API which was very powerful but at the same time

challenging and with an extended documentation.

I also faced that my computer didn’t had the sufficient resources to smoothly run all the

services at the same time, I solved this challenge deploying all the services into a

development Kubernetes cluster in Google Cloud Platform and using Telepresence tool

such that in my development laptop I only need to have running the service I’m writing

right now while seamlessly connecting to the other services from the Kubernetes

cluster.

46

Designing and implementing a monitoring solution for Web APIs

11. Conclusion

After explaining the important details about the design and development of this project,

in the conclusions we will analyze if we completed the defined objectives or the

technical skills defined at the start of the project. Finally, we will analyze the future of the

project and reflect on the personal learnings while working on this project. Finally, it is

going to be explained the future vision for this project.

11.1. Objectives completion

Regarding the objectives defined In the earlier sections of this thesis, we can say that

we achieved them successfully.

The main objective of this project was to build a solution for monitoring external Web

APIs in a language-agnostic way and with minimal integration difficulty. After the work of

this project we can say that this was successfully achieved.

There were also defined extra objectives to be done in case there was extra time in the

project: an alerting system and the “mean time to repair” metric. In this case, there was

no extra time so these extra objectives were not achieved. Other things that suffered

because of time were automated tests, even though most of the critical functions were

tested I would definitely like to have more automated tests in place. That being said, the

architecture was designed to be open for extension such that the implementation of

these objectives should be relatively straightforward.

47

Designing and implementing a monitoring solution for Web APIs

11.2. Technical skills

I can say that I achieved the technical skills defined at the start of the project. Given the

requirements of this project, I’ve been able to solve them developing, maintaining and

evaluating a complex distributed services architecture. I had evaluated, designed and

implemented different database architectures both with relational technologies like

TimescaleDB or other approaches like Kafka. I’ve leveraged the Kafka architecture to

create a real-time system. In the development of this project, there were performed

different tests, prototypes and configurations for ensuring a good quality following the

defined requirements and objectives while mitigating potential risks that could emerge.

11.3. Future work

I really believe the quality, reliability and observability of the APIs is an important

problem to solve and that there is still not an ideal solution on the market. That being

said I think that this project still needs a lot of work for being a full-fledged production

solution that is able to satisfy and serve the market.

Some feature I believe would be extremely valuable for this project:

● Alerting system: be able to configure notification alerts (SMS, email, Slack, etc)

when a monitored metric drops a certain threshold or it has an unexpected

behaviour.

● More metrics and more advanced visualizations. For example, from which

countries does the most of the traffic come from? Ability to correlate anomalies.

48

Designing and implementing a monitoring solution for Web APIs

● Authentication and authorization. A way to protect your metrics visualizations

with an accounts system.

● To be able to spin-up a new monitoring solution for an API automatically without

having to set-up any server.

11.4. Personal conclusions

This project was a gratifying experience to work on. Besides being able to achieve the

ambitious objectives initially stated, I’ve been able to work on a system that I really

enjoyed and was being able to extend my knowledge in fields that I was really

interested in like web APIs, networks, stream-processing, database and cloud

computing.

I also loved learning and working with systems like Kafka and being able to learn more

about different types of architectures that Kafka enables.

49

Designing and implementing a monitoring solution for Web APIs

12. Bibliography

[1] GENESIS UPC. Generation and Evolution of Smart APIs.

https://genesis.upc.edu/en [Accessed Apr. 1st 2020].

[2] Application programming interface

https://en.wikipedia.org/wiki/Application_programming_interface

[Accessed Jan. 5th 2020]

[3] Santos, W. (2019). APIs show Faster Growth Rate in 2019 than Previous

Years. ProgrammableWeb.

https://www.programmableweb.com/news/apis-show-faster-growth-rate-20

19-previous-years/research/2019/07/17 [Accessed Jan. 5th 2020].

[4] Gartner Blog Network. (2014). The Cost of Downtime.

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/

[Accessed Jan. 8th 2020].

[5] API Management, Apigee. https://cloud.google.com/apigee [Accessed

Jan. 9th 2020]

[6] Datadog APM. https://www.datadoghq.com/apm/ [Accessed Jan. 9th

2020]

[7] Elastic Uptime. https://www.elastic.co/uptime-monitoring [Accessed Jan.

9th 2020]

[8] Kanban - A brief introduction. https://www.atlassian.com/agile/kanban

[Accessed Feb. 1st 2020]

50

https://genesis.upc.edu/en
https://en.wikipedia.org/wiki/Application_programming_interface
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://cloud.google.com/apigee
https://www.datadoghq.com/apm/
https://www.elastic.co/uptime-monitoring
https://www.atlassian.com/agile/kanban

Designing and implementing a monitoring solution for Web APIs

[9] Gantt diagram. Made with https://www.teamgantt.com/

[10] Google. (2019). Google Cloud Sustainability.

https://cloud.google.com/sustainability/ [Accessed Jan. 20th 2020]

[11] CWE-598: Use of GET Request Method With Sensitive Query Strings

(4.0). https://cwe.mitre.org/data/definitions/598.html [Accessed Apr. 22th

2020]

[12] Apache Kafka introduction https://kafka.apache.org/intro [Accessed

Jan. 25th 2020]

[13] Environment variable.

https://en.wikipedia.org/wiki/Environment_variable [Accessed Jan. 24th

2020]

[14] Kubernetes. https://kubernetes.io/ [Accessed Apr. 3rd 2020]

51

https://www.teamgantt.com/
https://cloud.google.com/sustainability/
https://cwe.mitre.org/data/definitions/598.html
https://kafka.apache.org/intro
https://en.wikipedia.org/wiki/Environment_variable
https://kubernetes.io/

