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e-mail: dmota@umich.mx

Key words: Numerical grid generation, discrete generation method, variational grid
generation, convex area functional.

Abstract. In this work we present a new area functional that help us improve the cell area
distribution in structured grids over plane irregular regions, which avoids very small and
very large cell areas as much as possible. We present some results and an implementation
of this functional in a preliminary version of the latest UNAMalla system.

1 Introduction

One of the main problems in numerical grid generation is to improve grid quality. In
many practical cases, this is equivalent to modify the grid geometry in such a way that
the cell area values are as less spread around the mean as possible.

Before producing quality grids, a central issue that needed to be solved was the varia-
tional generation of convex grids. An important contribution on this direction is due to
S. Ivanenko, who proposed an ad hoc modification of Winslow’s functional for generating
convex grids [10]; it was improved later by Barrera et al in [5] by adding a general initial-
ization procedure. A review on smoothness and convex functionals which have a strong
control over the cell areas is presented in [3].

A discussion about the properties of the area functionals which are useful for generating
convex grids can be found in [1] and [4]; however, all this functionals focus on controlling
only the minimum cell area. A functional which controls both the minimum and maximum
area cell values to produce quality grids was proposed in [2]. In this paper, we introduce
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a new area functional which also controls the minimum and maximum area cell values
but focusing only on those grid cells whose area values lie ouside a control interval and,
in consequence, improving the overall performance of the optimization process.

2 Problem formulation

In this section we describe briefly the main concepts required to present the new func-
tional.

2.1 Basic theory for continuous mappings

Given a simply connected polygonal region Ω, it is possible to define a bijective mapping
from the boundary of the unit square B = [0, 1] × [0, 1] onto the boundary of Ω. If this
mapping is bijectively extended from B onto Ω, then a grid on B defines naturally a grid
on Ω.

Figure 1: Image by Google maps on Habana bay.

For modelling purpouses, we are mainly interested in simply connected domains Ω defined
by irregular boundaries; an example is shown in figure 1. For such domains, a fundamental
aspect is to avoid grid folding in the optimization process; in other words, we require
homeomorphic mappings as described in the following theorem:
Theorem. If x is a 2D mapping such that

• x : B �→ Ω

• x|∂B = ∂Ω

• J(ξ, η) > 0, ∀(ξ, η) ∈ B
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then x(ξ, η) is a homeomorphism from B onto Ω. For a proof of this theorem you can see
Bobylev [7].

Figure 2: Mapping from a simple region onto a domain of interest.

Given a uniform mesh on B, the following theorem poses the conditions under which
x defines and unfolded grid for Ω as well as the guidelines for the selection of adequate
mappings for meshing Ω.

Theorem. Let the unit square B be subdivided into nc simple regions Bi such that

1. B = ∪nc
i=1Bi, Int(Bi) ∩ Int(Bj) = φ.

2. x : B �→ Ω is continuous.

3. xi is smooth on Bi,

4. xi = x|Bi
,

5. x : ∂B �→ ∂Ω is a homemorphism,

6. Ji(ξ, η) > 0, ∀(ξ, η) ∈ Bi, ∀i = 1, . . . , nc,

Then x is a homeomorphism from B onto Ω.

2.2 Discrete formulation

Let B be the unit square and U(m,n) the uniform mesh of size m× n on B given by

U(m,n) =

{(
i

m
,
j

n

)
| 0 ≤ i ≤ m, 0 ≤ j ≤ n

}

where
∂U(m,n) = ∂B ∩ U(m,n).

A discrete grid G of size m× n on Ω is a mapping

G : U(m,n) �→ R2
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such that
G(∂U) ⊂ ∂Ω

and
∂G = G(∂U) ⊂ ∂Ω.

By considering a positive orientation on the boundary of Ω, we get an induced orien-
tation on the boundaries of the cells cij = G(Bij), and also on the four triangles defined
by the cell vertices.

P PQ Q

R RS S

∆

∆ ∆

∆
(1) (2)

(3) (4)

Figure 3: The four triangles defined by the vertices of a quadrilateral cell.

Besides, will also say that G is convex if each one of the triangles has positive area and
non degenerate except, possibly in the corners cells, see [3]. In the other hand, we are
interested on controlling the convexity, smoothness and orthogonality of the grid cells by
minimizing a suitable functional defined on the set of all the discrete grids on Ω.

Minimization is the basis of the variational grid generation method, which is one of the
few methods that can be succesfully applied to produce a structured convex grid when
the boundary of the domain Ω is an irregular curve; the standard functionals have the
form

F (G) =
N

∑

q=1

f(�q), (1)

where f(�q) depends on the vertives if the triangle �q, and N is four times the total
number of grid cells since the four triangles defined by the four vertices of every grid cell
are considered by Barrera et. al [1, 3, 4, 5, 6], and Ivanenko et. al. [8, 9, 10].

When f is a function only of the areas of the triangles in the cells, F is referred to as
an area functional. Its standard expression is given by

F (G) =
N

∑

q=1

f(αq), (2)

where G represents the grid where the functional is evaluated and αq is the oriented area
of the q-th grid triangle. As mentioned, there are four triangles in every grid cell defined
by its vertices, as it can be seen in figure 3.
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2.3 Variational setting

The variational grid generation problem can be posed as the minimization problem

G∗ = arg min
G∈M(Ω)

N
∑

q=1

f(�q)

defined on the set of admissible grids M(Ω) for Ω
To solve this problem numerically, some quantities must be defined first. For the

generic grid cell triangle A,B,C ∈ R2 we define the the lenght measure as

λ(�(A,B,C)) = ‖A− B‖2 + ‖C − B‖2,

the area measure

α(�(A,B,C)) = (B − A)tJ2(B − C) = 2 · area(�(A,B,C)),

where

J2 =

[

0 1
−1 0

]

,

and the orthogonality is measured with

o(�(A,B,C)) = (B − C)t(B − C).

These quantities on the triangles define the classic area functional

FA(G) =
N

∑

q=1

α(�q)
2,

the classic length functional

FL(G) =
N

∑

q=1

λ(�q),

and the classic orthogonality functional

FO(G) =
N

∑

q=1

o(�q)
2.

There are also some useful linear combinations. For instance, the area-orthogonality
functional [11]:

FAO(G) =
N

∑

q=1

[

α(�q)
2

2
+

o(�q)
2

2

]

,
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and the area-length functional

FAL(G) =
N∑
q=1

[
σα(�q)

2 + (1− σ)λ(�q)
]

Some other functionals are continuous extensions of Winslow’s functional [10], like the
smoothness functional

FH(G) =
N∑
q=1

λ(�q)

α(�q)
,

and the quasi-harmonic functional

FHω(G) =
N∑
q=1

λ(�q)− 2α(�q)

ω + α(�q)
,

which was designed with a flexible barrier to approximate the harmonic functional.
There is a existence theorem for optimal convex grids. In [1] , it is proven that if f : R → R
is a convex ans decreasing positive function, then there exists ω > 0 large enough, such
that the minimizers of

Sw(G) =
N∑
q=1

f(w · αq), (3)

are convex grids.
For the implementation of an optimization process, we can even use a C1 function

fw(α) such that f ≡ 0 for α ≥ αl and f ′
l (α) < 0, for α < αl.

A function f which turned out to be very useful is given by

f(α) =

{
1/α, α ≥ 1
(α− 1)(α− 2) + 1, α < 1;

(4)

a thourough discussion on the functional Sω defined by (4) can be found in [4]; it features
a “mobile” barrier which is the main tool to generate convex grids (See fig. 4).

2.4 Combination of functionals

In order to combine different geometrical properties in the optimal grids, it is convenient
to minimize linear convex combinations of Sω with a classic functional Fc, where the latter
is either the length, orthogonality of area-orthogonality functional:

F (G) = σSω(G) + (1− σ)Fc(G).

6

1315



Barrera Sánchez P., Domı́nguez-Mota F. J and González Flores G.

Figure 4: The functional Sω for different values of ω.

Figure 5: A grid of Blue Lagoon and its area distribution.

Even though is is possible to generate convex grids by minimizing Sω, numerical ex-
perimentation has shown that in very irregular regions, the minimum value of α in the
convex grids is very close to zero, an example of this phenomenon is sketched in figure 5.

Since this values of α are closely related to the accuracy of the numerical solution of
partial differential equations using these convex grids, small values should be avoided if
possible. This can be done using a convex function f which focuses only on those cells
whose minimum value of α is less that a threshold αl. In this way, the global values of
smoothness and orthogonality are kept, whereas the area values are corrected (See fig. 6).
This leads to propose the functional

fl(α) = A
[

(αl − α)+
]2

(5)

where A > 0 is a relatively large coefficient.

3 Two-sided area functional

Next, the idea presented in the previous section can be extended to avoid relatively
large α values in some cells, i.e., we can impose an upper bound αr for these values (See
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Figure 6: Quadratic truncated function.

Figure 7: Optimal grid of Blue Lagoon and its area distribution.

fig. 8).
fb(α) = Al[(αl − α)+]

2 + Ar[(α− αr)+]
2

The new functional Fb defined by fb can be used in two ways:

1) As a convex grid generator first giving a larger weight to a classic functional to
reflect its properties and controlling the α values at the end.

2) As a cell corrector for those cell whose α values lie outside of [αl, αr].

In other words, Fb can be used either as a grid preprocessor or prostprocessor.

4 Combination of Fb with classic functionals

Fb can also be combined with the classic functionals Fc of area, length and orthogonality

F (ωG)) = σFb(ωG) + (1− σ)Fc(G)
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Figure 8: Sketch of fb.

using an adequate normalization to reflect the properties of both functionals.
The optimization process produces a sequence of grids which converges to a convex

grid. However, a large set of runs has provided enough empirical evidence to assert
that the convergence rate is decreased in the last iterations due to the fact that Fl(ωG)
becomes notably smaller that Fc(G) since the former is positive only on small cells. Thus,
to improve the convergence rate, an extra parameter σeq is added to reduce the value of
the classic functional. This yields the functional

F (ωG) = σFb(ωG) + (1− σ)σeqFc(G);

initially, we set σeq = 1000.0 and in the optimization process σeq is updated accordingly
to

σeq = λ · σeq

where 0 < λ < 1. Therefore, when σeq is close to one, the optimal grids of F (ωG) are close
to the optimal grids of the classis functionals; as σeq decreases, Fb becomes the important
component in the combination.

It must be noted than F (ωG) can also be used either as a pre or postprocesor, in both
bases with very satisfactory results.

The functional F (ωG) is implemented in UNAMALLA [12], and it has proven to be a
useful tool for generating and improving convex grids.

4.1 Examples

An important technical issue in UNAMALLA is the fact that the optimal grids gener-
ated satisfy the condition that their minimum value of α is larger than a preset critical
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Figure 9: Optimal bilateral grid for Blue lagoon.

value ε; in [4] this kind of optimal grids are referrd to as ε-convex grid. The algorithm
used for their generation is described in detail in [4].

Three examples of the grids generated by minimizing and the correspondig area distri-
butions Fb are shown in figures 9, 10 and 11.

5 Conclusions

The proposed functional, used as a pre or post grid processor, is a powerful for the
generation of convex grids having area control: if a nearly-convex grid with strong area,
smoothness of area-orthogonality properties, Fb can modify the grid to force the α values
to lie within the interval [αl, αr] without losing the global properties we are looking for.
The α histogram provides very useful information to decide how to select αl and αr.

An important aspect is the adequate selection of the four boundary segments which
represent the geometrical sides of Ω, since this selection affects directly the properties of
the grids and their cells.
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Figure 10: Optimal bilateral grid for Aral Seal on 1985.
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and Tinoco-Rúız J.G., Generating quality structured convex grids on irregular
regions, on Electronic Transactions on Numerical Analysis, vol. 34. pp. 76–89 (2009).

[5] Barrera-Sánchez, P., Castellanos, J.L., Doḿınguez-Mota, F.J.,
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Figure 11: Optimal bilateral grid for the Upper Arkansas subbasins.
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