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Turbulent plane jets are prototypical free shear flows of practical interest in propulsion,
combustion and environmental flows. While considerable experimental research has
been performed on planar jets, very few computational studies exist. To the authors’
knowledge, this is the first computational study of spatially evolving three-dimensional
planar turbulent jets utilizing direct numerical simulation. Jet growth rates as well
as the mean velocity, mean scalar and Reynolds stress profiles compare well with
experimental data. Coherency spectra, vorticity visualization and autospectra are
obtained to identify inferred structures. The development of the initial shear layer
instability, as well as the evolution into the jet column mode downstream is captured
well.

The large- and small-scale anisotropies in the jet are discussed in detail. It is
shown that, while the large scales in the flow field adjust slowly to variations in
the local mean velocity gradients, the small scales adjust rapidly. Near the centreline
of the jet, the small scales of turbulence are more isotropic. The mixing process
is studied through analysis of the probability density functions of a passive scalar.
Immediately after the rollup of vortical structures in the shear layers, the mixing
process is dominated by large-scale engulfing of fluid. However, small-scale mixing
dominates further downstream in the turbulent core of the self-similar region of the
jet and a change from non-marching to marching PDFs is observed. Near the jet
edges, the effects of large-scale engulfing of coflow fluid continue to influence the
PDFs and non-marching type behaviour is observed.

1. Introduction
Turbulent plane jets are prototypical free shear flows on which fundamental research

can expand the overall understanding of turbulent flows. In addition, turbulent plane
jets are of practical interest due to their presence in a broad range of engineering
applications such as combustion, propulsion, and environmental flows. A thorough
understanding of the dynamics of these flows is required in order to understand and
control the transport processes in these applications.

There have been many experimental studies of planar turbulent jets over the
years. Most of the early work concentrated on quantifying the statistical properties
of the self-similar region far downstream. Albertson et al. (1950) and Miller &
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Comings (1957) measured the mean profiles of the velocity and pressure fields in
the jet. Utilizing hot-wire anemometry, Bradbury (1965), Heskestad (1965) as well as
Gutmark & Wygnanski (1976) were later able to measure the mean and fluctuating
fields in the self-similar region of planar jets. They found that the evolution of the
fluctuating velocity fields as well as the jet spreading rate and centreline velocity
decay were strongly affected by the initial conditions at the nozzle and the external
conditions in the laboratory. In addition, Everitt & Robins (1978), Bradbury & Riley
(1967) as well as recent work of LaRue et al. (1997) showed that the presence of a
strong coflow can slow the development of the jet to a self-similar state.

While there has been a large amount of experimental work performed on planar
jets, the number of numerical studies is small. Comte et al. (1989) performed temporal
simulations of the fully developed region of a two-dimensional Bickley jet to study
the influence of initial conditions. Reichert & Biringen (1997) studied the effects of
compressibility on the spatial evolution of two-dimensional, inviscid jets with a strong
coflow. Stanley & Sarkar (1997a,b) compared two-dimensional weak and strong jets
with three-dimensional jets and found that two-dimensional simulations of strong
planar jets lead to incorrect mean velocity profiles and are therefore of little use in
the study of real jets.

Dai, Kobayashi & Taniguchi (1994) performed the first simulations of a three-
dimensional spatially evolving, subsonic, plane jet using large-eddy simulation (LES).
They obtained relatively good agreement with experimental data in their mean pro-
files; however the self-similar turbulence intensities were higher by approximately
40%. More recently, Weinberger, Rewerts & Janicka (1997) showed self-similar fluc-
tuation intensities which were 15% higher than nominal values in their large-eddy
simulation using the Smagorinsky model. However, neither of these studies analysed
the influence of the LES model. Le Ribault, Sarkar & Stanley (1999) performed an
extensive comparison of the Smagorinsky, dynamic Smagorinsky and dynamic mixed
LES models in simulations of the near-field region of planar turbulent jets and found
that the latter two models resulted in good agreement both with direct numerical
simulation (DNS) and higher Reynolds number laboratory experiments.

There is great interest in the transport and mixing processes of scalars in tur-
bulent shear flows due to their importance in the propagation of contaminants in
environmental flows, as well as the wide range of applications involving turbulent
combustion. The evolution of the probability density function (PDF) of a passive
scalar has been utilized to study the mixing process in planar turbulent shear layers
(Batt 1977; Koochesfahani & Dimotakis 1986; Rogers & Moser 1994; Karasso &
Mungal 1996), as well as in round jets, for example, Dahm & Dimotakis 1990. How-
ever, there remains considerable debate on the final downstream state of the mixing
process in self-similar shear layers.

The intention of this work is twofold. First, to develop an accurate computational
model for a spatially evolving turbulent plane jet that has been rigorously validated
against experimental data. Then, to utilize this model to provide thorough documen-
tation of a particular planar jet which can be utilized in the design and evaluation
of models for large-eddy simulation. Not only are mean velocity and turbulence
intensity profiles provided, but also the development of shear layer structures into
jet flow structures is documented by vorticity visualization and coherence spectra. It
is recognized that the inflow conditions can have a long-lived downstream effect on
the development of turbulent flowfields. George (1989) suggested a coupling between
the initial conditions in a flow field and the resulting self-similar state through the
evolution of large-scale coherent structures. Likewise, Rogers & Moser (1994) as well
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as Moser, Rogers & Ewing (1998) observed an influence of the initial conditions
in direct numerical simulation of a temporally evolving mixing layer on the final
self-preserving state. This coupling, be it strong or weak, is present in experimental as
well as numerical studies of turbulent flows. By providing thorough documentation
of a planar jet for which the initial conditions are well defined and reproducible, this
simulation serves as a baseline for the evaluation of turbulence models. This numeri-
cal model has already been utilized (Le Ribault et al. 1999, 2001) for the evaluation
of several existing ‘standard’ subgrid-scale models for large-eddy simulation.

Secondly, this computational model has been utilized to study two physical prop-
erties of turbulent planar jets which have not been previously documented: the
small-scale anisotropy and the evolution of the mixing properties of the jet. While
the large-scale anisotropy has been well documented through experimental studies,
the relative level of isotropy of the small scales of the turbulent motion in planar
jets has been less studied. In general, evaluating the spatial derivatives in all three
directions of the three components of the fluctuating velocity field is difficult to do
experimentally. Similarly, while mixing has been studied in round jets as well as shear
layers, the mixing process in planar jets has not been documented.

To the authors’ knowledge, this work represents the first study of spatially evolving
turbulent plane jets utilizing DNS. The DNS approach has been utilized in the study
of free turbulent shear flows which are homogeneous in one or more directions,
that is, temporal simulations. However, relatively few direct numerical simulations of
spatially evolving turbulent flows have been performed.

2. Governing equations
The governing equations applicable in the study of compressible, turbulent shear

flows consist of the conservation equations for mass, momentum and energy. In this
study we assume an ideal gas with a Newtonian relationship between fluid stress
and rate of strain. The non-dimensional conservation equations are summarized as
follows:
mass conservation

∂ρ

∂t
+
∂(ρuk)

∂xk
= 0; (2.1)

momentum conservation

∂(ρui)

∂t
+
∂(ρuiuk)

∂xk
= − ∂p

∂xi
+

1

Re

∂τij

∂xj
, (2.2)

where the viscous stress tensor, τij , is given by

τij =

(
∂ui

∂xj
+
∂uj

∂xi

)
− 2

3

∂uk

∂xk
δij; (2.3)

energy conservation

∂p

∂t
+ uk

∂p

∂xk
= −γp∂uk
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+

γ

P rRe

∂2T
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k

+
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Re
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where Φ is the viscous dissipation function,

Φ = τij
∂ui

∂xj
. (2.5)



380 S. A. Stanley, S. Sarkar and J. P. Mellado

The values of the fluid thermodynamic quantities are related through the equation of
state for an ideal gas,

p = ρRT . (2.6)

Additionally, a scalar equation is included which expresses the conservation of a
passive property, ξ:

∂(ρξ)

∂t
+
∂(ρukξ)

∂xk
=

1

ReSc

∂

∂xk

(
ρ
∂ξ

∂xk

)
. (2.7)

The property ξ is passive in that it is influenced by the flow without itself having any
influence on the flow. This type of scalar equation is commonly used to study mixing
in turbulent shear flows and is applicable to chemical systems under the assumption
of infinitely fast chemistry, a useful simplification (Williams 1985) in combustion
studies.

3. Numerical techniques
The techniques used in this study to numerically solve the governing equations § 2,

are summarized here. Further details may be found in Stanley & Sarkar (2000). The
general requirements for any study of turbulence using direct numerical simulation is
that the numerical techniques provide high accuracy in both space and time as well
as be computationally efficient. During the development of the numerical algorithm
described below a balance between accuracy and efficiency was sought.

The Euler terms in the governing equations discussed in § 2 are marched in time
using the low-storage, fourth-order Runge–Kutta integration scheme of Carpenter
& Kennedy (1994). The viscous and conduction terms are marched in time using
a first-order integration scheme leading to a 20% reduction in computational time
without significant loss of accuracy. This is implemented by advancing the Euler
terms in time using the Runge–Kutta scheme described above and then evaluating
and advancing the viscous terms using a first-order scheme.

A non-uniform sixth-order compact derivative scheme based on the uniform scheme
of Lele (1992) is utilized to evaluating the spatial derivatives. This central-derivative
scheme is closed at the boundaries using internal-biased, non-uniform, third-order
compact derivatives based on the uniform derivatives of Carpenter, Gottlieb & Abar-
banel (1993). This 3-6-3 scheme allows the simulation of problems on an open,
non-periodic domain while maintaining at least an overall fourth-order spatial ac-
curacy in the physical coordinate ∆x of the non-uniform grid. In order to eliminate
high-wavenumber errors resulting from numerical boundary closures, a non-uniform
fourth-order compact filter is utilized to damp the high-wavenumber modes. As with
the compact derivatives, this non-uniform compact filter generalizes the uniform filter
of Lele (1992) to non-uniform meshes providing fourth-order accuracy in ∆x. Only
modes between the highest wavenumber, of frequency fx∆x = 0.5, and fx∆x = 0.43
are significantly affected by the filter. The jet Reynolds number and grid resolution
are chosen such that the dissipation due to filtering is less than 1% of the viscous
dissipation.

At the subsonic inflow boundary, the governing equations are essentially solved in
a characteristic form. The time variations of the incoming characteristic variables are
specified while the equation for the outgoing characteristic variable is solved using
internal biased derivatives. Through the solution of the equation for the outgoing
acoustics, the actual values of the variables at the inflow plane are allowed to
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float around the specified ‘target’ values thus avoiding sharp changes during the
downstream evolution as well as avoiding the introduction of excessive dilatation,
∇ · u, into the flow.

For the downstream boundary and the two sidewall boundaries, the non-reflecting
boundary conditions of Thompson (1987, 1990) are used. The form of these conditions
is allowed to switch between that for non-reflecting inflow and outflow at each point
on the boundary depending on the instantaneous local normal velocity. The two
corner points on the outflow boundary are treated as non-reflecting at an angle 45◦
from the two adjacent boundaries, and the two corner points on the inflow boundary
are calculated using the characteristic inflow conditions. At all outflow points on the
downstream and sidewall boundaries, the pressure correction term originally proposed
by Rudy & Strikwerda (1980) and later discussed by Poinsot & Lele (1992) is utilized.

It should be noted that these characteristic-based local boundary conditions were
derived based on linearized waves propagating normal to the boundary and, thus, are
not strictly non-reflecting in a multi-dimensional nonlinear flow. When the direction
of wave propagation at the boundaries deviates from normal incidence, the amount
of spurious reflection increases, necessitating the use of filters for long-time stability
of the turbulent jet simulations. In addition, a perfectly matched layer (PML) buffer
zone based on that of Hu (1996) was utilized on the downstream and sidewall
boundaries in order to further isolate the interior of the domain from the effects of
the boundary conditions. In Stanley & Sarkar (1997b) it was demonstrated that this
boundary condition scheme is effective at allowing large-scale structures to pass out
of the computational domain through the outflow boundary. The influence of the
outflow is limited to the region of the domain very near this boundary. Since there is
a possible influence of the boundary on the region of the domain near the outflow,
data from this region will not be utilized in the statistical analysis of the jet.

The computational grid used in this study was generated using a simple geometric
progression, ∆yj+1 = Aj∆yj . Further details are provided later regarding the specific
grid used in each of the simulations.

4. Inflow conditions
The longitudinal velocity in the shear layer on either side of the jet at the inflow is

given by a hyperbolic tangent profile,

u =
U1 +U2

2
+

∆Uo

2
tanh

(
y

2θo

)
, (4.1)

where θo is the shear layer momentum thickness, U1 and U2 are the velocities of
the jet and the coflow respectively and ∆Uo = U1 −U2. The subscript on ∆U and θ
indicates inflow values. This profile is mirrored about the jet centreline to obtain a
top-hat mean jet profile with smooth edges. The mean lateral and spanwise velocities
are zero at the inflow. The mean pressure and density at the inflow are initially
uniform, although a slight variation across the jet is generated due to the outgoing
acoustic waves.

The mean profile for the passive scalar at the inflow is given by a hyperbolic
tangent profile

ξ =
ξ1 + ξ2

2
+
ξ1 − ξ2

2
tanh

(
y

2θo

)
, (4.2)
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Figure 1. Reynolds stress profiles and one-dimensional autospectra of the broadband fields utilized
to force the three-dimensional jet simulations. (a) Reynolds stress profiles. ——, Ruu; − − −, Rvv;· · · · · ·, Rww . (b) One-dimensional autospectra. ——, Eu(κx); −−−, Ew(κz).

with ξ1 = 1.0 and ξ2 = 0 in the jet and ambient, respectively. The value of θo used for
the passive scalar is the same as that used for the mean longitudinal velocity profile.

A broadband inflow forcing is utilized with a three-dimensional energy spectrum
specified by

E(κ) =
4K

κo

(
κ

κo

)2

exp

(
−2

κ

κo

)
, (4.3)

K being the turbulent kinetic energy. The peak wavenumber, κo, is specified to be the
fundamental mode for the hyperbolic tangent shear layer given by foθo/Uc = 0.033
(Michalke 1965; Monkewitz & Huerre 1982) where Uc = (U1+U2)/2 is the convection
velocity and fo is the temporal frequency (κo = 2πfo/Uc). This forcing is designed to
provide energy to the flow field in a range of scales characteristic of that present in an
actual turbulent flow in order to increase the rate at which the jet develops from the
top-hat profile present at the inflow plane to the self-similar profiles downstream. This
broadband forcing of the inflow plane is performed by generating a three-dimensional
volume containing fluctuating solenoidal velocity, pressure and density fields which is
then convected past the inflow plane, as the simulation is integrated in time, using a
constant convection velocity, Uc. Figure 1(a) shows the profiles of the Favre-averaged

Reynolds stresses, Rij = ũ′′i u′′j = ρu′′i u′′j /ρ̄, for the broadband fields used to force the
inflow plane in the simulation discussed in § 5. The strong peaks in the shear layers
on either side of the jet are clear, as well as the strong drop in intensity towards the
jet centreline. While there are fluctuations present in the pressure and density at the
inflow, their magnitude is small. The root-mean-square pressure fluctuations have a
peak intensity of p′rms/ρ∆U2

o = 2.7× 10−2 while the peak in the density fluctuations is
ρ′rms/ρ = 2.8× 10−3. Figure 1(b) shows the one-dimensional autospectra in the x- and
z-directions of the longitudinal and spanwise components of velocity, respectively,
inside the lower shear layer. The autospectra are defined to yield

Ruu =

∫ ∞
0

Eu(κx) dκx (4.4)
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and similarly for Rww . The energy contained in these fluctuating fields is spread over
a broad spectrum in both time (streamwise) and the spanwise direction.

5. Evolution of the velocity field
This section discusses the evolution of a spatially evolving jet with Reynolds number

Reh = ρ̄∆Uoh/µ = 3000 and turbulent inflow. Here h is the jet nozzle width and ∆Uo

is the difference between the centreline velocity and the coflow velocity. The Reynolds
number based on the jet width increases to approximately 4800 at the outflow. The
Taylor microscale Reynolds number, Reλ = ρ̄λq/µ, on the jet centreline at the outflow
is 143, where λ2 = 5µq2/(ρ̄ε) is the three-dimensional Taylor microscale and q2 =
u′u′+v′v′+w′w′. The Schmidt number, Sc = µ/ρ̄Dξ , and Prandtl number, Pr = Cpµ/k,
are 1.0 and 0.72, respectively, for this simulation. The mean jet velocity at the inflow
is given by equation (4.1) with a velocity ratio, η = ∆Uo/(U1 +U2) = 0.83. With this
velocity ratio the coflow velocity in this jet is small compared to the velocity difference,
U2/∆Uo = 0.1. Although this simulation is performed using the compressible Navier–
Stokes equations, the convective Mach number, Mc = ∆Uo/(c1 + c2) = 0.16, is such
that the flow field is essentially incompressible. This is demonstrated by the fact that

the density fluctuation is small, going through a local peak of ρ′2/ρ̄2 = 5.9×10−5 in the

shear layers at x/h = 6.4 and approaching ρ′2/ρ̄2 = 1.8×10−5 at x/h = 12.0. Down the

centreline of the jet the maximum density fluctuation intensity is ρ′2/ρ̄2 = 2.7× 10−5.
The momentum thickness of the shear layers at the inflow is θo/h = 0.05. The inflow
forcing for this jet has the spectrum given by equation (4.3), while its cross-stream
profile is set to have a maximum intensity of qo/∆Uo = 0.10 in the shear layers,
decaying down to qo/∆Uo = 1.9 × 10−2 at the centreline of the jet. This simulation
was performed on a 390× 390× 130 computational grid with a physical domain size
of Lx/h = 13.5 + 1.5, Ly/h = 13.0 + 3.0, Lz/h = 4.3 and a grid spacing in the domain
interior of ∆x = ∆y = ∆z = 0.033h. At the outflow of the computational domain,
the grid spacing relative to the Kolmogorov scale, η = µ3/4/(ερ̄3)1/4, is ∆x/η = 3.2,
while the maximum value is ∆x/η = 3.4, at x/h = 7.9. The designation, L/h = a+ b,
for the domain dimensions indicates that the interior of the domain has size a while
there is a buffer zone of size b. The simulation is performed for 3 flow time units,
t(U1 + U2)/2Lx = 3, to obtain converged statistics. Such a time is required so as to
average over the flapping of the jet. The CPU time is 21665 Cray T3E hours.

In the course of the discussion below, comparisons of the current results against
experimental data are made. The studies of Thomas & Chu (1989); Thomas & Prakash
(1991) and Browne et al. (1983) are used for comparison of the downstream evol-
ution of the jet width, centreline velocity decay, and centreline fluctuation intensities
because they document the near field of the jet well. However, these studies do not
provide complete measurements of the fully developed region of the jet. The data
in the fully developed region of Gutmark & Wygnanski (1976) and Ramaprian &
Chandrasekhara (1985) are used for evaluating the self-similar behaviour. The physi-
cal conditions for these experimental studies are outlined in table 1 for comparison
with the physical conditions of the current study. Note that, despite the relatively
short streamwise domain length in the DNS, the mean and turbulence profiles near
the outflow approach the expected self-similar values because of the turbulent inflow
conditions.

The fundamental mode observed experimentally in the fully developed region of
planar jets is S = f∗jtδU/∆Uc = 0.11 where δU is the jet half-width and ∆Uc is the
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Source Reh h/θ [q/∆U]sl [q/∆U]cl

DNS results 3000 20 0.100 0.019
Ramaprian & Chandrasekhara (1985) 1600 29† – –
Browne et al. (1983) 7620 54 – 0.0035
Thomas & Prakash (1991) 8000 67 – 6 0.0042
Thomas & Chu (1989) 8300 67 – 6 0.0043
Gutmark & Wygnanski (1976) 30 000 – – 0.0035
Hussain & Clark (1997) 32 550 182 0.071 0.021

†Momentum thickness, θ, estimated based on laminar flow in the nozzle.
The DNS parameters are also given.

Table 1. Physical parameters of the experimental results used for comparison.
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Figure 2. Instantaneous spanwise vorticity, ωz , contours on an (x, y)-plane located at z/h = 2.15.

velocity difference between the local centreline value and the local coflow velocity. In
terms of the jet scaling, the fundamental mode for the shear layers at the inflow of
this jet is f∗slδU/∆Uc = 0.197 and is therefore not a harmonic of the jet mode.

5.1. Structural development of the jet

Figure 2 shows instantaneous contours of the spanwise vorticity, ωz , on an (x, y)-plane
through the domain at z/h = 2.15. In the region 0 6 x/h 6 4.0 there is clear indication
of the presence of vortex rollup in both the upper and lower shear layers. In the lower
shear layer, peaks in the magnitude of the spanwise vorticity are present at x/h = 4.0
and x/h = 2.0. The streamwise wavelength of the spanwise vortices is consistent with
the expected wavelength of the shear layer instability of λ∗sl/h = (Uc/f

∗
sl)/h = 1.52,

taking into account that the broadening of the shear layers increases this value. A
large engulfing of outer irrotational fluid is present downstream, and the same process
is observed in the middle of the domain, involving this time the potential core of
the jet immediately after the nozzle. This mechanism is responsible for the presence
of irrotational parcels of fluid inside the turbulent region, as shown by figure 4 and
figure 5.

Figure 3 shows the coherency spectra of the lateral velocity at two points in the
shear layers on opposite sides of the jet, y/δU = ±1.0. It is calculated by the Fourier
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Figure 4. Instantaneous spanwise vorticity, ωz , contours on an (x, z)-plane in the
lower shear layer, y/h = −0.50.

transform

Cohvv(f) = |Evv(f)| =
∣∣∣∣∫ ∞−∞ Cvv(τ)e−2πifτdτ

∣∣∣∣ , (5.1)

where Cvv is the two-time correlation v′A(t)v′B(t+ τ) corresponding to two spatial
points A and B. The use of the coherency spectra reduces the influence of the
broadband background energy and accentuates the discrete frequencies which are
present on each side of the jet. Also shown in the figure is the most unstable
frequency for the shear layer based on the scaling at x/h = 0, f∗sl(0), as well as based
on the scaling at x/h = 1.0, f∗sl(1). The most unstable frequency is defined using the
fundamental mode for the hyperbolic tangent shear layer, S = f∗slθ/Uc = 0.033, so
that f∗sl(x) = 0.033Uc(x)/θ(x). It is clear from the coherency spectra that in this region,
the strongest growing mode is at a frequency between f∗sl(0) and f∗sl(1). It seems likely
that the strong growth of this mode is a result of the shear layer instability. However,
the spreading of the shear layer in this region results in this mode appearing at
a frequency in between f∗sl(0) and f∗sl(1). There is also a strong peak which almost
coincides with the most unstable mode for the shear layer at the inflow, f∗sl(0).

Figure 4 shows an instantaneous (x, z)-plane of the spanwise vorticity through the
lower shear layer, y/h = −0.50. While there is some spanwise variation of ωz in the
shear layer for 0 6 x/h 6 2.0, in general the structures appear to be relatively two-
dimensional. The spanwise variations present in this region are small and of relatively
long wavelength. However, downstream of x/h = 2.0 there is a rapid increase in the
three-dimensionality of the structures present in the shear layer. This breakdown of the
spanwise Kelvin–Helmholtz rollers coincides with a strong growth in the magnitude
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Figure 5. Instantaneous streamwise vorticity, ωx, contours on an (x, y)-plane in the
lower shear layer, y/h = −0.50.
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Figure 6. Instantaneous streamwise vorticity, ωx, contours on an (x, y)-plane, z/h = 2.15.

of the streamwise vorticity, figure 5. While there is streamwise vorticity present in
the shear layers at the inflow, only downstream of x/h = 2.0 is the magnitude of the
streamwise vorticity comparable with that of the spanwise vorticity.

Figure 6 shows an (x, y)-plane of the streamwise vorticity, ωx, at the spanwise
station, z/h = 2.15. From figures 5 and 6 it is clear that the structures present in the
streamwise vorticity for 0 6 x/h 6 4.0 are elongated in the streamwise direction and
have an inclination inwards towards the centreline of the jet suggesting stretching
by the mean strain of the jet. The behaviour of the structures in the spanwise and
streamwise vorticity for 0 6 x/h 6 4.0 is consistent with the rollup and pairing
of spanwise vortices, generation of streamwise vortices, and eventual breakdown to
strong three-dimensional turbulence which is observed in shear layers (for example
Lasheras & Choi 1988). It is clear that the beginning of the breakdown to strongly
three-dimensional turbulence occurs before the merging of the shear layers for the jet
simulated here.

The strong vorticity patches in the two shear layers near the inflow show signs of
interacting in the region 4.0 6 x/h 6 6.0. A few small patches of streamwise and
spanwise vorticity begin to appear near the jet centreline in this range, figures 2
and 6. However, only downstream of x/h = 6.0 are there structures present in the
vorticity field near the centreline of a magnitude similar to that present in the high-
shear region. In the downstream region of the domain, x/h > 8.0, the distribution of
vorticity across the jet is relatively uniform from the upper shear region across the
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centreline to the lower shear region. However, there are occasional regions devoid of
strong vorticity near the jet edges, such as the engulfing previously noted, due to the
intermittent nature of the turbulence near the jet edges.

Figure 7 shows the downstream variation of the three root-mean-square fluctuating
vorticity components as well as the mean spanwise vorticity in the lower high-shear
region, y/δU ≈ −1.0. In the region 0 < x/h < 3.0 the mean spanwise vorticity decays
while the vorticity fluctuations grow strongly. Downstream of x/h = 2.5 all three
components of the root-mean-square vorticity are greater than the mean vorticity.
This coincides with the rapid increase in three-dimensionality of the vorticity contours
observed in figure 4.

The root-mean-square of the centreline fluctuating vorticity (not shown) does not
begin to grow until x/h ≈ 4.0 after which there is strong growth in the region
4.0 < x/h < 7.0. The spanwise vorticity fluctuation intensity begins to grow slightly
earlier than the streamwise and lateral components, although, the centreline values
for the three components are generally of the same magnitude. While all three
components of the root-mean-square vorticity are of about the same magnitude on
the jet centreline, in the high-shear region the streamwise vorticity fluctuations are
consistently larger than the spanwise and lateral components.

In the region of strong vorticity growth and interaction between the two shear
layers, 2.0 6 x/h 6 6.0, there is a strong reorganization of the large-scale coherent
structures present in the jet. Figure 8 shows the coherency spectra of the lateral
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velocity at points on opposite sides of the jet at the stations x/h = 1.0, 3.0 and 5.0
with the frequency normalized using the local jet scaling. The coherency spectra are
scaled using the inflow parameters to show the absolute growth of individual peaks.
While the shear layer mode grows strongly between x/h = 0 and x/h = 1.0, as was
shown in figure 3, downstream it is clear that the jet mode, S = fδU/∆Uc = 0.11,
becomes dominant. At x/h = 5.0 a strong peak has formed at frequencies near
S = fδU/∆Uc = 0.10.

5.2. Statistical description

The statistics for the DNS were calculated by averaging in time as well as across the
homogeneous z-direction in the jet. In addition, the symmetry of the jet was utilized
to double the averaging sample.

Figure 9(a) shows profiles of the mean streamwise velocity excess, Ue = U − U2,
at several downstream stations. The mean profile at x/h = 0 clearly shows the
sharp shear layer at the edge of the jet. The streamwise velocity profiles from the
three downstream stations shown, x/h > 4.0, collapse to a self-similar profile which
compares well with the experimental data.

Figure 9(b) shows the mean profiles of the lateral velocity component at three
stations in the jet. In a jet, the free-stream value of the mean cross-stream velocity,
V , is equivalent to the entrainment velocity, Ve. The most upstream station shown,
x/h = 5.0, is the first station at which the entrainment velocity, Ve, has approached the
magnitude of the self-similar value. Although the mean lateral profiles do not collapse
as well using similarity scaling as the mean longitudinal profiles, they compare well
with experimental data.

Figure 10 shows the downstream growth in the jet half-width based on the longitu-
dinal velocity and the decay in the centreline velocity excess. The width of the jet is
expressed as the half-width, δU , defined as the distance from the jet centreline to the
point at which the mean streamwise velocity excess is half of the centreline velocity
excess. It can be seen that the jet growth and centreline velocity decay compare well
with the experimental results. Analysis of the self-similar region of planar jets predicts
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Source K1u K2u C1u C2u

DNS results 0.092 2.63 0.201 1.23
Ramaprian & Chandrasekhara (1985) 0.110 −1.00 0.093 −1.60
Browne et al. (1983) 0.104 −5.00 0.143 −9.00
Thomas & Prakash (1991) 0.110 0.14 0.220 −1.20
Thomas & Chu (1989) 0.110 0.14 0.220 −1.19
Gutmark & Wygnanski (1976) 0.100 −2.00 0.189 −4.72
Hussain & Clark (1977) 0.118 2.15 0.123 4.47

Table 2. Jet growth rates and centreline velocity decay rates for the current results and several
experimental studies.
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Figure 10. Downstream growth of the jet half-width and centreline mean velocity excess decay.
——, Current results; �, Thomas & Chu (1989); �, Browne et al. (1983). (a) Jet half-width. −−−,
δU/h = 0.092(x/h+2.63); (b) Centreline mean velocity excess.−−−, (∆Uo/∆Uc)

2 = 0.201(x/h+1.23).

a linear relationship between the jet width and the streamwise coordinate, x,

δU

h
= K1u

[x
h

+K2u

]
. (5.2)

The current results give the values K1u = 0.092 and K2u = 2.63 for the region from
x/h = 6.0 to 12.0. As shown in table 2, the thickness growth rate for the current results
compares generally well with the experimental results, although they are somewhat
lower. While the Reynolds numbers for these experimental studies vary, the self-
similar growth rates are relatively consistent. There is a large variation in the virtual
origins K2u of the experimental studies which makes a comparison difficult. Since the
virtual origins of the plane jet are strongly affected by the conditions at the nozzle
(see Stanley & Sarkar 2000) it is expected that these values will vary.

The analysis of planar jets predicts an inverse-squared relationship between the
mean centreline velocity excess and the downstream coordinate, x,(

∆Uo

∆Uc

)2

= C1u

[x
h

+ C2u

]
, (5.3)

where ∆Uo is the centreline mean velocity excess at the jet nozzle and ∆Uc is the
centreline mean velocity excess at the specific x/h station. The current results predict
values for the coefficients of C1u = 0.201 and C2u = 1.23. Table 2 shows a comparison
of these values with results from several experimental studies. It is clear that there
is a broad variation in the values of the centreline velocity decay rate as well as
the virtual origins among the different studies. However, the current results are well
within the range of values from the experimental data.
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Figure 11. Growth of the normal Reynolds stresses on the jet centreline. ——, Current results;
�, Thomas & Chu (1989); ., Thomas & Prakash (1991); �, Browne et al. (1983). (a) Longitudinal
Reynolds stress. (b) Lateral Reynolds stress. (c) Spanwise Reynolds stress.

The turbulent planar jet is a flow in which the mean Reynolds number, ReδU =
2ρ̄δU∆Uc/µ, grows downstream in the self-similar region as ReδU ∝ x1/2. In the
current simulation the mean Reynolds number remains nearly constant at the inflow
Reynolds number of Reh = 3000 up to x/h = 1.5. However, downstream of x/h = 2.0,
the mean Reynolds number grows strongly with the expected variation of x1/2. At
x/h = 12.0, the mean Reynolds number has grown to a value of ReδU = 4838.

Figure 11 shows the downstream evolution of the Reynolds stresses Ruu, Rvv , and Rww
on the jet centreline. The fluctuation intensities on the jet centreline grow strongly in
the region 2.0 < x/h < 10.0. While the longitudinal and spanwise centreline intensities
appear to asymptote to their self-similar values by x/h = 12.0, the lateral intensity
seems to be decaying towards its equilibrium in the final region.

It should be noted that the initial fluctuation intensities in the shear layers of the
DNS case discussed here are somewhat high. The typical approach in experimental
studies is to report the fluctuation intensity at the centreline of the nozzle, rather than
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Source u′u′/q2 v′v′/q2 w′w′/q2 |u′v′|/q2

DNS Results 0.42 0.27 0.31 0.20
Wygnanski & Fiedler (1970) 0.43 0.26 0.31 0.13
Spencer & Jones (1971) 0.53 0.23 0.23 0.20
Bell & Mehta (1990) 0.44 0.27 0.29 0.14

Table 3. Comparison of the shear-layer turbulence intensities at x/h = 4.0 with experimentally
measured values for fully developed turbulent shear layers.

in the shear layers. Since the fluctuation intensities peak in the boundary layers on the
nozzle lips, the centreline intensity is not sufficient to quantify the inflow conditions
of the jet. In the studies of Thomas & Chu, Thomas & Prakash and Browne et al. the
centreline fluctuation intensity is on the order of 0.35%, table 1. However, the peak
intensity in the shear layers from these studies is unknown. Likewise, the spectral
content of the inflow fluctuations from these experiments is unknown. The centreline
fluctuation intensity for the current study is 1.9% while the peak intensity in the shear
layers is approximately 10% of the jet nozzle velocity.

The initial rate of growth of the fluctuations at the jet centreline is consistent
with the experimental studies. The initial growth rate of the longitudinal fluctuation
intensity in the region 2.0 < x/h < 5.0 is a little low, figure 11(a). As discussed in
Stanley & Sarkar (2000), the initial growth of turbulence intensities is weaker for
thicker shear layers and therefore the slower growth in the simulation may be related
to the smaller h/θ = 20 in the DNS relative to experimental values, see table 1. In
the experiments, the longitudinal fluctuations grow more rapidly near the inflow than
the lateral or spanwise components. In the current results, longitudinal and spanwise
components of the fluctuating velocity field grow at approximately the same rate on
the jet centreline, while the growth of the lateral Reynolds stress is stronger. This
behaviour is probably due to the difference in the inflow fluctuation intensities and
spectra between the current study and the experimental results. The forcing at the
inlet can accentuate anisotropies that remain for a certain distance downstream. In
shear flows, the longitudinal fluctuation intensities grow due to the production by the
mean shear before the transfer of energy to the lateral and spanwise components can
occur. The redistribution of energy is larger in nonlinearly evolving turbulent flows
than in transitional or rapidly distorted flows. Therefore the transfer of energy from
the longitudinal component to the lateral and spanwise components occurs more
rapidly in the DNS where there is initially energy in all three velocity components at
a level which is larger than that in experiments.

The direct production of energy by the mean shear into the Ruu component in the
sharp shear layers, y/δU = ±1.0, for x/h 6 2.0 leads to a strong anisotropy in
the fluctuating fields in this region of the jet. At the station x/h = 2.0 (not shown),
the longitudinal component is about three times the lateral component and more than
two times the spanwise component, leading to anisotropy in the normal components
which is far greater than is present in the fully developed region of turbulent shear
layers. However the shear component of the anisotropy u′v′/q2 = ±0.20 agrees quite
well with experimentally measured values in turbulent shear layers.

In the region 2.0 6 x/h 6 4.0 the anisotropy in the shear layers relaxes to values
which are more characteristic of those present in turbulent shear layers. Table 3
shows the anisotropy values in the shear layers at the station x/h = 4.0 along with
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Figure 13. (a) Spanwise Reynolds stress and (b) Reynolds shear stress profiles downstream in
the jet. ——, x/h = 10.5; − -−, x/h = 12.0; �, Gutmark & Wygnanski (1976); ◦, Ramaprian &
Chandrasekhara (1985).

experimental values for fully developed turbulent shear layers. At this station there is
still an imbalance between the lateral and spanwise components; however, they have
both become more comparable with the longitudinal component of the Reynolds
stress. The ordering of the intensities is as would be expected, for a turbulent shear
flow with the mean shear in the y-direction, with u′u′/q2 > w′w′/q2 > v′v′/q2.

Figures 12 and 13 show the profiles of the Reynolds stress components downstream
in the jet near the outflow of the domain. From the collapse of the profiles from the
current results it can be seen that the Reynolds stress components are close to self-
similarity near the outflow of the domain. Except for the lateral component, the other
two fluctuation intensities as well as the Reynolds shear stress compare reasonably
well with the experimental results. As can be seen, there is considerable scatter in the
available experimental data. The downstream stations at which these experimental
data were collected varies: x/h = 14 for Thomas & Prakash, x/h = 40 for Ramaprian
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& Chandrasekhara and x/h = 140 for Gutmark & Wygnanski. For all three exper-
imental studies the profiles at adjacent stations collapsed indicating a measure of
self-similarity (even for Thomas & Prakash at the downstream station of x/h = 14.0).
The lateral Reynolds stress is about 20% higher, and this is a consequence of the
particular inflow forcing conditions, which happen to induce high two-dimensionality
in the development region. The apparent sensitivity of the downstream fluctuation
intensities to inflow conditions has been observed previously. For temporally evolving
shear layers, Rogers & Moser (1994) observed a strong increase in the lateral fluctu-
ation intensity at long times due to the addition of a strong two-dimensional forcing.
With weak forcing, the influence on the self-similar fluctuation intensities was more
moderate. In temporally evolving plane wakes, however, Moser et al. (1998) observed
a strong influence on the self-similar longitudinal and lateral fluctuation intensities
due to weak forcing.

Figure 14 shows the balance of the terms in the turbulent-kinetic-energy equation
in the fully developed region of the jet. Profiles in the range 9.5 6 x/h 6 11.0
are obtained using similarity variables and averaged to obtain this balance. The
trace of the pressure–strain term, Π∗ = p′∂ku′k , also called the pressure–dilatation,
is insignificant. Here, a star as super-index denotes normalization by ∆U and δU .
The strong production, P ∗ = −Rjk∂kũj , of turbulent energy in the regions of peak
shear, y/δU ≈ ±0.8, as well as the more uniform strong viscous dissipation of

energy, ε∗ = τ′jk∂ku′j/(Reρ̄), can be seen in the core of the jet, y/δU 6 1. The
advection term in the turbulent-kinetic-energy equation acts to transport energy from
the edges of the jet in towards the centreline while the turbulent transport term,
∂jT

∗
j = ∂j(ρu

′′
ku
′′
ku
′′
j /2 + u′kp′δkj − u′kτ′jk/Re), acts to transport fluctuating energy away

from the region of peak production towards the jet centreline as well as the jet edges.
It is clear from the fact that the production term is zero at the jet centreline that the
action of the advection and turbulent transport terms are the sole means by which
fluctuating energy is present at the core of the jet.

Near the outer edges of the jet, as discussed by Tennekes & Lumley (1972), the
balance is predominately between the turbulent transport term and the advection.
At this point in the jet, the turbulent transport term acts to spread turbulent energy
outwards towards the jet edges while the advection due to the entrainment velocity,
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Source u′u′/q2 v′v′/q2 w′w′/q2 |u′v′|/q2

DNS Results 0.37 0.35 0.28 0.13
Gutmark & Wygnanski (1976) 0.59 0.19 0.22 0.14
Ramaprian & Chandrasekhara (1985),
y/δU = 1.0 0.40† 0.27† – 0.15†
y/δU = −1.0 0.42† 0.24† – 0.14†

† assumes q2 = (3/2)(u′2 + v′2)

Table 4. Comparison of the jet turbulence intensities for y/δU = ±1.0 in the fully developed
region with experimentally measured values.

Source u′u′/q2 v′v′/q2 w′w′/q2

DNS Results 0.37 0.39 0.23
Gutmark & Wygnanski (1976) 0.48 0.27 0.24
Browne et al. (1983) 0.47 0.24 0.29
Ramaprian & Chandrasekhara (1985) 0.37† 0.29† –
Everitt & Robins (1978) 0.38 0.34 0.28

† assumes q2 = (3/2)(u′2 + v′2)

Table 5. Comparison of the jet turbulence intensities on the centreline in the fully developed
region with experimentally measured values.

Ve, transports energy inwards. It is the balance between these two terms which results
in the edge of the turbulent jet being stationary in the mean.

In general, the turbulent-energy balance for the current results compares well
with the energy balances shown by both Ramaprian & Chandrasekhara (1985)
and Gutmark & Wygnanski (1976). However, a strong advantage of the current
results in the study of the energy balance is that every term in the balance can be
calculated. In experimental studies in the past, it has been necessary to make various
approximations regarding the terms in the turbulent-kinetic-energy equation in order
to estimate their balance. Ramaprian & Chandrasekhara did not measure the spanwise
velocity component, therefore they were forced to use an estimate of the turbulent
kinetic energy based on the lateral and streamwise velocities only. Also, rather than
measuring the dissipation directly, they estimated dissipation using the energy spectra
of u′2. Gutmark & Wygnanski, on the other hand, estimated the dissipation using the

isotropic assumption, ε = 15ν(∂u′/∂x)2. In general, all of the studies have restricted the
form of the turbulent-kinetic-energy equation using the boundary-layer approximation
for the mean velocity profiles to drop terms. While it is recognized that these are
likely good and necessary approximations, in some cases the higher-order effects may
be significant.

The Reynolds stress anisotropy levels for y/δU = ±1.0 in the self-similar region
of the jet are shown in table 4 compared to available experimental data. The results
from this DNS show greater isotropy of the normal stress components than the
experimental data of Ramaprian & Chandrasekhara and Gutmark & Wygnanski.
The magnitudes of u′u′/q2 and v′v′/q2 are much more balanced in the self-similar
region of the jet than was the case in the shear layers near the inflow. In both the
DNS and experimental data the shear component of the isotropy, u′v′/q2, is at a level
consistent with those observed in turbulent shear layers, table 3.

At the jet centreline, table 5, the large-scale isotropy does not change drastically
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(∂u′/∂x)2

(ε/15ν)

(∂v′/∂y)2

(ε/15ν)

(∂w′/∂z)2

(ε/15ν)

Isotropic values 1.0 1.0 1.0
y/δU = ±1.0 0.883 1.034 1.095
Centreline 1.014 0.975 1.019

Table 6. Normal-derivative variances in the self-similar region of the jet.

(∂u′/∂y)2

(∂u′/∂x)2

(∂u′/∂z)2

(∂u′/∂x)2

(∂v′/∂x)2

(∂v′/∂y)2

(∂v′/∂z)2

(∂v′/∂y)2

(∂w′/∂x)2

(∂w′/∂z)2

(∂w′/∂y)2

(∂w′/∂z)2

Isotropic values 2.0 2.0 2.0 2.0 2.0 2.0
y/δU = ±1.0 2.36 2.30 1.58 2.07 1.61 2.20
Centreline 2.06 2.13 1.95 1.96 1.95 1.91

Table 7. Cross-derivative variances in the self-similar region of the jet.

from the levels present in the high-shear region. The lateral component is higher than
the isotropic level of 1/3 while the spanwise component is below this level. It is clear
that the large scales have not relaxed to isotropy in spite of the absence of mean
shear at the centreline. This is consistent with the experimental data shown in the
table although, as in the high-shear region, there is a large variation in the level of
anisotropy, with Gutmark & Wygnanski having the highest levels and Ramaprian &
Chandrasekhara and Everitt & Robins having more isotropic values consistent with
the DNS results.

While it is clear that the large scales of the flow relax slowly to isotropy in the
absence of mean shear at the centreline, the small scales adjust quite rapidly. Table 6
lists the normal velocity derivative variances for the centreline as well as the high-
shear regions in the self-similar region of the jet near the outflow. In the high-shear
regions, above and below the centreline, the deviation with respect to the isotropic

condition that (∂u′/∂x)2 = (∂v′/∂y)2 = (∂w′/∂z)2 is as large as 12% while at the
centreline of the jet this condition is met to within 3%. This is an indication that
the isotropic estimate for the dissipation would perform well at the centreline while a
small error of order 10% would be present at the shear zone.

As shown in table 7, to a close approximation, the cross-derivative variances

of the longitudinal velocity, (∂u′/∂y)2 and (∂u′/∂z)2, are nearly equal at both the
centreline and in the shear region. Although different from the isotropic estimate in

the shear regions, the ratio of these terms to the normal derivative variance, (∂u′/∂x)2,
approaches the isotropic value of 2.0 near the centreline. The cross-derivative variances
of the lateral and spanwise velocity components are more affected by the mean

shear than those of the longitudinal velocity, so that (∂v′/∂x)2 6= (∂v′/∂z)2 and

(∂w′/∂x)2 6= (∂w′/∂y)2 in the regions of strong shear. However, near the centreline
these conditions are met quite well and the ratios of these cross-derivative variances
to their respective normal-derivative variances match the isotropic value of 2.0 within
9%. It is clear from these data that the small scales of motion in the self-similar
region of the jet adjust rapidly, in space, to the local mean velocity profile so that
near the centreline of the jet the small scales are, to a relatively good approximation,
isotropic.

Integral length scales were calculated in the fully developed region of the jet from the
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Figure 15. One-dimensional autospectra on the centreline of the jet. (a) Longitudinal velocity
autospectra. ——, x/h = 10.0; − − −, x/h = 11.0; · · · · · ·, x/h = 12.0. (b) Lateral and spanwise
velocity autospectra at x/h = 12.0. ——, Ev(f); −−−, Ew(f).

corresponding correlations. The values obtained were Λx/δU = 0.65, Λy/δU = 0.37 and
Λz/δU = 0.22. The longitudinal integral length scale from the DNS results is a little
high compared with the experimentally measured values of Λx/δU = 0.47 by Gutmark
& Wygnanski and Λx/δU = 0.35 measured by Everitt & Robins. Nevertheless, the
ratio of the longitudinal to lateral scales, Λx/Λy = 1.75, is within the range observed
in the experiments. Gutmark & Wygnanski reported a value of 2.14 while Everitt &
Robins reported 1.59.

Figure 15(a) shows the one-dimensional autospectra in time of the longitudinal
velocity on the centreline of the jet at three stations downstream in the self-similar
region. These spectra are scaled using the local values of the jet width, centreline
velocity excess and the centreline variance of the longitudinal velocity, so that the
integral between zero and infinity of these non-dimensional quantities is unity. It can
be seen in this figure that, for the conditions of this jet, all of the spectra collapse
relatively well. The energy spectra began exhibiting signs of self-similar behaviour
in the region near x/h = 9.0. The k−5/3 law is plotted for comparison, although for
the conditions of this simulation an extended inertial subrange is not observed in
the energy spectra. However, there is clearly a dissipative region at high frequencies
where the energy spectra decay at greater than a k−5/3 rate.

Consistent with the earlier observation about the relative isotropy of the small
scales in the fully developed region of the jet, the autospectra in time of the lateral
and spanwise velocity components are very similar for the small-scale, high-frequency
motions, figure 15(b). However, as noted previously, the large-scale, low-frequency,
motions of two velocity components are not similar. A strong peak occurs in the
autospectra of the lateral velocity component near the jet mode, S = fδU/∆Uc ≈ 0.11.
Due to the symmetries associated with the isotropic turbulence assumption, the
autospectra of the lateral and spanwise velocity components would be identical if the
velocity fields were completely isotropic.

Figure 16 shows an estimate of the dissipation spectra on the jet centreline at
three downstream stations in the jet. For this figure, the dissipation spectra are
estimated as f2Eu(f) where Eu(f) is the one-dimensional autospectrum in time shown
in figure 15(a). This figure clearly indicates that there is a strong peak in the
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Figure 16. One-dimensional dissipation spectra in time of the longitudinal velocity on the
centreline in the self-similar region. ——, x/h = 10.0; −−−, x/h = 11.0; · · · · · ·, x/h = 12.0.

dissipation spectra with more than an order-of-magnitude decay at higher frequencies.
This, coupled with the three to four orders-of-magnitude decay present in both the
temporal and the spanwise autospectra, are a strong indication that the results in this
study are well resolved.

6. Scalar evolution and mixing
The evolution of the passive scalar field in a Reh = 3000 turbulent jet is discussed

in this section. The physical conditions for this simulation match those of the previous
jet except for a decrease in the inflow forcing intensity to 5% in the shear layers. The
physical conditions for the experimental studies utilized herein are given in table 1.

In the course of the discussion of the evolution of the passive scalar, comparison will
be made to the experimental data of Ramaprian & Chandrasekhara (1985), Browne
et al. (1983), Davies, Keffer & Baines (1975) and Jenkins & Goldschmidt (1973).
In these studies the evolution of the ‘scalar’ field was studied through experimental
measurements of heated jets in air and water and the temperature difference between
the jet and free-stream fluids was kept small in order to minimize the effects of
buoyancy on the evolution of the jet. Molecular effects on the evolution correspond
to those of a Pr = O(1) scalar. The Schmidt number used for the passive scalar in
this jet is Sc = 1.0.

6.1. Structural development

Figures 17 and 18 show instantaneous isocontours of the passive scalar on an
(x, y)-plane (side section) and a (x, z)-plane (top section) in the jet, respectively,
at a non-dimensional time t∆Uo/h = 89.10. The (x, z)-plane shown is at a station
y/h = 0.467 which is just below the upper shear layer at the inflow. At this lateral
station the fluid at the inflow is predominately jet fluid. In these figures, the contour
levels are defined such that white indicates pure coflow fluid, ξ̃ = 0, while black
indicates pure jet fluid, ξ̃ = 1.0. The levels of grey in between are a measure of the
mixedness of the fluid with darker indicating proportionally large quantities of jet
fluid. The dark core of pure jet fluid is clearly evident in figure 17 near the inflow
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Figure 17. Instantaneous passive scalar contours on an (x, y)-plane, z = 0.
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Figure 18. Instantaneous passive scalar contours on a (x, z)-plane just below the
upper shear layer, y/h = 0.44.

plane. In the region x/h < 4.0 there is a slight spreading of the core of the jet due
to the effects of turbulent diffusion in the shear layers. At x/h = 4.0 a large-scale
rollup is present in the upper and lower shear layers. The large-scale entrainment of
coflow fluid by the upper structure is evident in figure 18 by the sudden appearance
of a large region of white at 3.0 6 x/h 6 4.0. While not entirely two-dimensional, as
indicated by the inclination and spanwise inhomogeneity, the spanwise extent of this
structure is large. In the region 5.0 6 x/h 6 7.0 the remnants of a second structure
can be seen in figures 17 and 18. As is evidenced by the medium grey shading of
this structure in figure 18 the effects of small-scale mixing have eliminated any region
of pure coflow fluid entrained by this structure. Likewise, this structure has greater
three-dimensionality than that of the structure nearer to the inflow.

Downstream in the jet, x/h > 8.0, the effects of small-scale mixing due to the strong
turbulence in the jet have greatly reduced the presence of patches of pure jet and
coflow fluid in the jet. However, there are small regions which are predominantly
composed of one fluid type or the other. In figure 17 there is clearly a small black
patch composed primarily of jet fluid present near the jet centreline at x/h = 11.0.
Likewise, near the jet edges there are clearly regions where nearly pure coflow fluid
have been engulfed into the more mixed fluid present in the jet.

6.2. Statistical description

Figure 19 shows the mean profiles of the passive scalar field at several streamwise
stations normalized using the centreline mean scalar value, ξ̃c. At the inflow plane,
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x/h = 0, the sharp transition from pure coflow fluid, ξ̃ = 0, to pure jet fluid, ξ̃ = 1.0,
in the near field of the jet is evident. Downstream, the effects of strong turbulent
mixing in the shear layers act to spread this profile until self-similarity is approached
near x/h = 7.0. The mean passive scalar profiles are slightly slower to develop than
the mean velocity field. The mean longitudinal velocity becomes approximately self-
similar at x/h = 10.0 in this jet. Due to the lower fluctuation intensity at the inflow,
this jet develops slower than that discussed in § 5.

The self-similar scaling of the mean profiles in figure 19 masks the mixing and
subsequent decay in the overall scalar values downstream in the jet. The decay in the
mean value of the passive scalar on the jet centreline provides a measure of the overall
mixing in the jet. Figure 20 shows the downstream variation in the centreline scalar
values plotted using self-similar scaling. The symbols in this figure are experimental
data for the centreline temperature decay in heated jets. The current results show a
strong initial decay followed by a slower decay downstream, similar to the results of
Browne et al.

The mathematical analysis for the self-similar region of the planar jet gives a
downstream variation of the mean scalar on the centreline of ξ̃c ∝ x−1/2 similar to
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Source K1ξ K2ξ C1ξ C2ξ K1u/K1ξ C1u/C1ξ

DNS, q/∆Uo = 0.05 0.158 −1.34 0.308 −1.48 0.66 0.69
Ramaprian & Chandrasekhara (1985) 0.167 2.00 0.194 6.00 0.66 0.87
Browne et al. (1983) 0.128 5.00 0.189 7.86 0.81 0.76
Jenkins & Goldschmidt (1973) 0.123 0.090 0.261 −5.62 0.71 0.61
Davies et al. (1975) 0.115 2.05 0.258 0.920 0.87 0.61

Table 8. Jet growth rates based on the passive scalar and centreline scalar decay rates for the
current results and several experimental studies.

2

1

0 5 10 15
x/h

d U
/h

,
d ê

/h

Figure 21. Downstream growth of the jet half-widths based on the passive scalar and velocity. ——,
δξ/h; −−−, δU/h; −−, δξ/h = 0.158(x/h− 1.34); − -−, δU/h = 0.105(x/h− 0.220); �, Browne et
al. (1983); �, Davies et al. (1975).

the decay of the centreline mean velocity excess (5.3). Table 8 shows the fit of the
current data in the region x/h > 7.0 as well as the experimentally obtained fits. In
general, the centreline scalar decay rates from the DNS are high compared to the
experimental values. It is reasonable that the decrease in the slope of the DNS scalar
decay is a gradual shift into a slower more linear decay downstream.

Figure 21 shows the downstream growth in the jet half-width based on the mean
profiles of the passive scalar. The slow initial development of this jet to the linear
growth rate, δξ ∝ x, anticipated in the self-similar region is apparent. While Browne
et al. (1983) see linear growth near x/h = 3.0, for the current case linear growth is
not observed until x/h = 6.0. However, as can be seen in table 8, the linear growth
rate, K1ξ , based on the region x/h > 7.0 compares well with the experimental data
for heated jets. As with the virtual origins for the velocity field, there is a great deal
of scatter in the values for the virtual origins of the scalar field, K2ξ and C2ξ due to
variations in the jet nozzle conditions between the various studies.

The decay of the centreline mean velocity excess and the jet half-width based on
the velocity field for this case are also shown in figures 20 and 21. The constants in
the fits for the self-similar development of δU/h and (∆Uo/∆Uc)

2 are K1u = 0.105,
K2u = −0.220, C1u = 0.213 and C2u = −1.02, based on the region x/h > 7.0. The
spread rates and centreline decay rates for the scalar field are larger than those for
the velocity field, indicating that turbulent scalar transport occurs at a faster rate
than turbulent momentum transport. The ratios of scalar to velocity spread rates,
K1u/K1ξ = 0.66, and scalar to velocity centreline decay rates, C1u/C1ξ = 0.69, are in
the range of experimental values for the temperature field, table 8, and are consistent
with the turbulent Schmidt number, Sct = νt/Dt ≈ 0.7.
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Figure 22. Growth of the scalar fluctuation intensity on the jet centreline. ——, Current results;
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Figure 23. Variation of the probability density function of the passive scalar across the jet at
(a) x/h = 1.0 and �, y/δξ = 0.33; 4, y/δξ = 0.66; /, y/δξ = 1.00; �, y/δξ = 1.33; ◦, y/δξ = 1.66.
(b) x/h = 4.0 and �, y/δξ = 0; 4, y/δξ = 0.52; /, y/δξ = 1.05; �, y/δξ = 1.58; ◦, y/δξ = 2.10.

Figure 22 shows the downstream evolution of the centreline scalar fluctuation
intensity, Rξξ . Consistent with the slow initial development of this jet, the scalar
fluctuation intensities evolve slower than experimental ones. The strong growth in
the centreline intensities occurs at x/h = 5.0 for the current jet and is followed by a
slow decay downstream, x/h > 8.0. An overshoot in the velocity fluctuations is not
observed for this case.

6.3. Characterization of the mixing process

The variation of the probability density function of the passive scalar, PDF(ξ), from
the centreline of the jet outwards through the upper shear region is presented here in
order to characterize the development of the mixing process in this jet. In all of the
PDFs presented, the solid symbols across the top of the plots give the mean scalar
value for the PDF with the corresponding symbol. As can be seen in figure 23(a), very
near the jet nozzle the mixing process is dominated by the quasi-isotropic velocity
fluctuations imposed at the inflow. The variation of the probability density functions
across the jet at this station exhibit pure ‘marching’ behaviour. Note that a ‘marching’
behaviour refers to the situation where, as the jet is traversed in the cross-stream
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Figure 24. Variation of the probability density function of the passive scalar across the jet at
(a) x/h = 7.0 and �, y/δξ = 0; 4, y/δξ = 0.43; /, y/δξ = 0.87; �, y/δξ = 1.30; ◦, y/δξ = 1.74.
(b) x/h = 9.0 and �, y/δξ = 0; 4, y/δξ = 0.41; /, y/δξ = 0.78; �, y/δξ = 1.15; ◦, y/δξ = 1.56.

direction, the peak in each PDF corresponds to the mean scalar value at that lateral
location. As would be expected, the PDF at y/δξ = 1.0 is much wider than the others,
indicating stronger mixing by the high-intensity turbulent fluctuations in this region.

Near the end of the potential core at x/h = 4.0 the probability density functions
are very broad, figure 23(b). For the lateral location y/δξ = 1.05, the mean scalar

value is ξ̃ = 0.47; however there is nearly equal probability of having any scalar value
in the range 0.05 6 ξ 6 0.9. For the lateral locations y/δξ = 0.52 and 1.58, there is a
high probability of having pure jet and pure coflow fluid, respectively, although the
PDFs have a central broad region. This streamwise location is in the region where
strong vortical structures are beginning to develop, figure 17. It is likely that the
broad range of scalar values present at y/δξ = 1.05 is due to the lateral motion of
the region of sharp scalar gradient as vortical structures develop in the velocity field
coupled with the occasional strong entrainment of coflow fluid by a structure that
develops at x/h < 4.0.

Figure 24(a) shows the scalar PDFs across the jet at the station x/h = 7.0. This
station is just downstream of the end of the potential core based on the velocity
field and is that at which the mean scalar profiles are beginning to show signs of
self-similarity. At this station, the probability density functions for y/δξ = 0.43, 0.87
and 1.30 are decidedly non-marching, indicating mixing dominated by large-scale
engulfing of fluid. While the mean scalar values, solid shaded symbols at the top of
the plot, vary strongly for 0.43 6 y/δξ 6 1.30, a stationary central peak is present
in the PDFs at scalar values ξ ≈ 0.5. At each of these lateral stations there is a
second strong peak in the probability density function corresponding to either pure
jet fluid, y/δξ = 0.43, or pure coflow fluid, y/δξ = 1.30, or both, y/δξ = 0.87. For
the three locations, the secondary peaks are as strong or stronger than the central
peak at ξ ≈ 0.5, indicating a tendency to have patches of pure jet and pure coflow
fluid, interspersed with mixed fluid. The probability density functions for y/δξ = 0
and 1.74 are quite broad and show a dominant peak of pure jet and pure coflow
fluid, respectively. For y/δξ = 0 the mean scalar value is ξ̃ = 0.79; however the PDF
has a constant value in the region 0.4 6 ξ 6 0.8.

Figure 24(b) shows the probability density functions of the passive scalar at the
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Figure 25. Variation of the probability density function of the passive scalar across the jet at
x/h = 11.5: �, y/δξ = 0; 4, y/δξ = 0.38; /, y/δξ = 0.72; �, y/δξ = 1.07; ◦, y/δξ = 1.45.

streamwise station x/h = 9.0 just before the fluctuating scalar and velocity fields
reach self-similar behaviour. The mean scalar value at the jet centreline at this station
is ξ̃ ≈ 0.65. However, even at this downstream station there is a high probability of
finding pure jet fluid on the centreline. The strong peak corresponding to pure jet
fluid in the PDF for y/δξ = 0.41 is significantly less than that present at x/h = 7.0
indicating a breakdown of the patches of pure jet fluid away from the centreline due
to the effects of small-scale mixing.

The probability density function at y/δξ = 0.78 still shows the effects of large-scale
engulfing of coflow and jet fluid. A strong central peak is present near ξ = 0.42 with
secondary peaks corresponding to pure coflow, ξ = 0, and pure jet, ξ = 1.0, fluid. For
y/δξ = 1.15 there is an almost equal probability of finding fluid with 0.1 6 ξ 6 0.5
as well as a very high probability of pure coflow fluid. The PDFs at this downstream
station are of the ‘tilted’ type (see Karasso & Mungal 1996) which is evidence of the
influence of large-scale engulfment of fluid coupled with small-scale mixing.

Figure 25 shows the probability density functions for the passive scalar field further
downstream in the jet, x/h = 11.5, after the fluctuating velocity and scalar fields
have obtained self-similar profiles. By this station, small-scale mixing has eliminated
the presence of strong patches of unmixed jet fluid even at the jet centreline. The
probability density functions at y/δξ = 0 and 0.38 exhibit ‘marching’ type behaviour
at this streamwise station, having a single peak which corresponds to the local mean
value of the passive scalar. At the lateral locations y/δξ = 0.72 and 1.07 the probability
density functions of the passive scalar still show a central peak which tends to follow
the local mean scalar value. However, at the stations in the outer half of the jet, closer
to the coflow fluid, there are strong peaks in the PDFs corresponding to pure coflow
fluid.

7. Conclusions
A computational model has been developed for a three-dimensional, spatially

evolving, turbulent plane jet using direct numerical simulation of the compressible
Navier–Stokes equations. This computational model utilizes accurate numerical tech-
niques to deal with the complex issues in unsteady flow computations arising due
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to the open computational domain. The efficiency and accuracy, both temporal and
spatial, of this computational model is suitable for performing detailed studies of
spatially evolving turbulent flows. This simulation provides detailed data on all flow-
field variables in the initial and later, approximately self-similar, regions of spatially
evolving turbulent shear flows which, being validated against laboratory experiments,
can be utilized in the evaluation and formulation of subgrid models for large-eddy
simulation.

The Reynolds number at the nozzle is Reh = 3000, which increases to Re = 4838
based on the jet half-width. The self-similar jet growth rate,K1u = 0.092, compares well
with the values K1u = 0.110 and K1u = 0.100 observed experimentally by Ramaprian
& Chandrasekhara (1985) and Gutmark & Wygnanski (1976) respectively. Likewise,
the self-similar centreline velocity decay rate, C1u = 0.201, agrees with the values
C1u = 0.220 measured by Thomas & Prakash (1991) and C1u = 0.189 measured by
Gutmark & Wygnanski (1976).

The mean longitudinal velocity profiles are self-similar at x/h = 7.0 and Reynolds
stress profiles are approximately self-similar by x/h = 10.0. The mean and Reynolds
stress profiles show good agreement with the experimental data of Ramaprian &
Chandrasekhara (1985) and Gutmark & Wygnanski (1976). The streamwise growth
of the fluctuating velocity components is in good agreement with experimental data,
although there are some differences in the initial growth rate of the centreline root-
mean-square longitudinal velocity as well as the lateral component. This, however, is
not surprising since the downstream development of planar jets is sensitive to nozzle
and external conditions. While the shear-layer momentum thickness of the current
results is somewhat larger than experimental values, the inflow fluctuation intensity
and broadband spectrum have been designed to provide a rapid breakdown of the jet
to a fully developed turbulent state.

As shown through the use of coherency spectra across the jet, the simulation
captures well the strong growth in the shear layer mode near the jet nozzle. A shift of
the dominant frequency in the coherency spectra is observed over the length of the
potential core from the shear layer mode near the inflow to that corresponding to the
jet column mode. The transition to the dominance of the jet column mode occurs at
the end of the potential core and thus coincides with the emergence of typical jet-like
mean longitudinal velocity profiles. The region in which the jet column mode becomes
dominant, 3.0 6 x/h 6 5.0, corresponds to that over which the strong breakdown to
three-dimensionality occurs in the jet. Over this range, there is a substantial decrease
of the longitudinal and spanwise correlation scales as well as a large increase in the
energy content of the intermediate-to-small length scales in the turbulence.

The turbulent-kinetic-energy balance in the self-similar region from the DNS sim-
ulation generally compares well with those of Ramaprian & Chandrasekhara (1985)
and Gutmark & Wygnanski (1976). Strong production is observed in the region of
sharp mean gradient with turbulent transport towards the jet centreline and edges.
The viscous dissipation is relatively uniform across the core of the jet, −1 6 y/δU 6 1.
The present results, however, have the advantage of allowing direct calculation of
all terms in the TKE balance. It is shown that on the centreline of the jet the small
scales of motion are substantially more isotropic than at the jet edges, and that the
isotropic approximation for the dissipation results in an error lower than 3%.

Comparisons have been made of the evolution of a passive scalar field in a planar
turbulent jet to experimental data on the temperature field in heated planar jets.
Mean scalar profiles compare well with mean temperature profiles from experimental
studies. The initial evolution of the centreline scalar decay rate and jet width based
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on the passive scalar are somewhat slower in the current results due to differences
between the inflow conditions in the DNS and experiments. However, the downstream
growth rates and centreline decay rates compare well with experimental values.

Analysis of the probability density functions for the passive scalar has been used
to characterize the evolution of the mixing process in turbulent planar jets. Near the
nozzle, prior to vortex rollup, the probability density functions are dominated by the
effects of the quasi-isotropic small-scale fluctuations imposed at the inflow. Therefore,
in this region, scalar PDFs exhibit classical marching behaviour. Downstream, after
the rollup of strong vortical structures in the shear layers on either side of the potential
core, the mixing process is dominated by large-scale engulfing of coflow fluid into
the jet by these structures. In this region after vortex rollup, the probability density
functions across the jet are non-marching.

However, when the flow field in the jet becomes more fully turbulent downstream,
the influence of large-scale engulfing of fluid on the mixing near the jet centreline
progressively decreases. In the core of the self-similar region of the jet, the mixing
process is dominated by small-scale mixing. Therefore, the probability density func-
tions of the passive scalar are of the marching type. However, near the jet edges,
the engulfing of coflow fluid by the presence of large structures remains significant.
Therefore, double peaks are present in the PDFs, one of which corresponds to pure
fluid originating in the coflow.

In summary, the present work demonstrates, through detailed comparison with
classical experimental data, that DNS with high-order space and time accuracy
and appropriate schemes to handle inflow and outflow boundaries can successfully
represent a spatially evolving plane jet. The development from interacting shear layers
near the nozzle to the self-similar jet can be captured, albeit at a moderate Reynolds
number. Such validated DNS can be useful in developing and validating improved
turbulence prediction methods as well as in refining our knowledge of mixing in
turbulent jets.
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