
Drawing robot

Ferran Alet and Maria Bauza

Tutor: Vicente Jimenez
Projectes d’Enginyeria Fisica 2

(Dated: May 28, 2015)

Teachers spend a great part of the class writing and drawing on the chalkboard: a time-consuming
and error-prone task. We construct a system that takes a picture (for instance, the teacher’s notes)
and writes it on the board. Being cheaper than a projector, it is also portable and adaptable to
any blackboard. Moreover, the teacher can later draw on top of the drawing, still having all the
advantages that the chalkboard has over the projector.

I. PHYSICAL SYSTEM

We considered two possibilities for the implementation:

1. Two bars, one horizontal and one vertical. A motor
moves the vertical bar along the horizontal one and
then another moves the pen along the vertical bar.

2. Two motors that move two chords attached to a
gondola with the pen. The length of the chords de-
termine the exact point in the plane (the intersec-
tion of two circles is two points, but gravity guar-
antees that we are drawing below both motors).

We decided that the second option was simpler, more el-
egant and probably cheaper. Moreover, it is also smaller
and can be transported easily.

When we went online to see if someone had already
thought of a similar idea we found that indeed the Po-
largraph project sold a whole system or some of its parts.
Being a complicated project, having no prior experience
and few weeks to do it, we decided that it was too risky
to try to do everything from scratch; since, in case some-
thing didn’t work, we would have to buy another op-
tion, loosing a considerable amount of time. Therefore,
we decided to buy directly some components from the
Polargraph project.

Our system consists on:

• Beaded chord, beads provide more resistance so
that chord does not slip.
• A gondola, bought in pieces at Polargraph, it sup-

ports the pen and has connections for the chords.
• 2 bipolar stepper motors with a pair of 26Ncm,

close to what we estimated we needed.
• 2 aluminum supports for our motors, molded

by our tutor Vicente Jimenez.
• 2 counterweights, home-made; we set their

weights through trial and error.
• 2 sprockets, 3-D printed by polargraph, to con-

nect the motors with the chords.
• wires and solding instruments
• Servo, which moves a lever that, when put against

the blackboard, separates the gondola and avoids
drawing.
• Arduino UNO to send orders to the motors.
• Motor driver done by our tutor to convert the 5V

Arduino signal to the 9-12V needed by the motors.
• Matlab to analyze the images.

Notice that our system does not include a blackboard,
since it is designed to work in (almost) all of them. The
user can set any possible size up to 5 meters in length;
only limited by the blackboard’s height. Since the length
gondola-counterweight is constant, the distance from the
motor to the floor has to be at least as large as the diag-
onal of the drawing (the range in length for the gondola
has to be the same for counterweight).

Different motor supports were considered. Our first
trials were done with velcro both on the motors and on
top of the blackboard; which worked well, but we finally
set for aluminum frames that can be set to two different
positions depending on the thickness of the blackboard.

II. DESIGN AND CALCULATIONS

To do all our calculations we used the values we em-
ployed in most of our drawings, though we also tried
other values.
• Distance between motors d = 750mm.
• Height (range for y): between 100 and 750mm.
• Mass of the gondola mg = 160g.
• Mass of each counterweight ma = mb = 110g.

In practice, we can easily adjust every parameter ex-
cept for the mass of the gondola, which, as we will see,
establishes a small range of reasonable values for ma,mb,
but since the dimensions of the drawings always appear
in ratios in equations, our design is easily scalable.

A. Forces

First of all, note that the main specification for the
motors is pair, not force; however, as sprockets radius
are fixed at 5cm, it is equivalent to about forces. We can
make a sketch of the static problem as follows:

FIG. 1: Diagram of forces

2

From it, imposing that we have equilibrium and thus
the total forces must be 0 we have:

Fx = Fb
d− x

r
− Fa

x

R
= 0

Fy = mg · g − Fb
y

r
− Fa

y

R
= 0

From the first equation we have: Fa = Fb
d−x
x

R
r . Sub-

stituting in the second equation we get:

Fb =
g ·mg · r

y

x

d
, Fa =

g ·mg ·R
y

d− x

d

However, to obtain the real forces done by each motor
we have to subtract their counterweights:

FMotorA = Fa − g ·ma = g(
mg ·R

y

d− x

d
−ma)

FMotorB = Fb − g ·mb = g(
mg · r

y

x

d
−mb)

Notice that the masses of the counterweights essen-
tially shift the range of Fa, Fb. Thus, we have to chose
them so that the ranges are approximately centered at 0
to minimize the maximum force the motor has to do. We
settled for masses slightly less than that of the gondola.

Calculating the force for the 2 motors at all possible
points (for y > 10cm, since it diverges for y = 0) results
in figure 2. It can be seen how a motor does most effort
when the gondola is on top (since the angle is very small)
and does no work when the gondola is just below the
other motor.

(a) Left Motor (b) Right Motor

FIG. 2: Forces done by each motor

Adding the counterweights helps to reduce the work
necessary on top, but can also cause problems if the mo-
tor did not need to do much force, since now it has to
do it in the other direction. To measure that we calcu-
lated for every point the maximum effort of one of the 2
motors, regardless of the direction, obtaining figure 3.

FIG. 3: Maximum tension

Notice that on top the tension is too big and at the
sides the tension for one of the motors is too small; thus,
we can only work at the central region. We confirmed
that when we did the experiments. With a reasonable
height (> 10cm) all tensions are at most 2N . Given that
we use sprockets of radius 5cm that translates to 10Ncm,
comfortably below the 26Ncm in specifications.

B. Precision

Not all parts of the drawing are equally precise because
taking a step will have more effects in some parts of the
drawing than in others. To calculate this, we did the
following for every possible point (x,y):

1. Easily calculate the length of the chords R, r
2. Take one step more and one less for R: R+s, R−s
3. Using the formula of the intersection of 2 circles

from [1] we calculate (x+, y+) for lengths (R+ s, r)
and (x−, y−) for (R − s, r) and then take dR =
||(x+−x−, y+−y−)||: the change in position when
moving a step up and down in motor A.

4. Similarly we calculate dr for motor B.
5. precision(x, y) =

√
dR(x, y) · dr(x, y) as a charac-

teristic measure of precision; less is better.

FIG. 4: Precision

We can see that we have a good precision roughly ev-
erywhere except for the top region. However, this region
was already discouraged because we had too much ten-
sion on it.

C. Velocity

We use the wave drive mode to control each motor
and in our setup each step requires a minimum time of
10ms. Given that every step (following specifications) is
0.475mm we have a velocity of 4.75cm/s. This only gives
an order of magnitude because both motors can move at
the same time (thus moving more distance).

This velocity allows a fine velocity, completing a draw-
ing in the order of 2 minutes.

3

III. CODING

A. Drawing accurately the image

The first challenge in drawing is choosing what lines
to color to achieve an accurate, or at least recognizable,
drawing of the picture. We decided to do the following:

1. Convert the image to black and white.
2. Set a threshold for the gray level and convert it to

an image of 1s and 0s.
3. Using this binary image, find its borders.

Most simple images we wanted to draw, mostly text,
have few colors and lose little information in the first
2 steps, converting each pixel either to black or white.
Notice that the gray threshold has to be adjusted for
every image, since some images are darker than others.

Then, we also found that a common and useful way to
represent an image is using its borders (lines that sepa-
rate connected regions of the same type of pixels). After
obtaining them using Matlab’s tools, we process them.
First we eliminate the very short ones since they are
generally small mistakes and unimportant. Then we try
to solve a big problem derived from using the borders:
when we analyze the image of a text every letter/digit
has a border that goes around it, thus essentially du-
plicating the letter, which we don’t want. We therefore
implemented an algorithm that carefully tries to erase
the duplicates by trying not to draw near where it has
already drawn. This is not trivial because it is not easy
to separate those points that are close to the place you
want to draw but belong to a different border and so you
do not want modify them.

(a) Double(bad) (b) Original (c) Single(good)

FIG. 5: Correction of double drawing

Finally, another thing that has to be taken into account
is that lines in a picture do not correspond to lines in the
’motor space’: for example, if position A corresponds to
lengths 10, 20 and position B corresponds to positions
20, 40 then the point corresponding to lengths 15, 30 is
no on the line AB. Thus, we had to change our algorithm
to work with curves instead of segments.

B. Correcting some problems

When one combines programming with a physical sys-
tem many issues can arise; we will comment the two most
significant examples.

An important fact we needed to take into account is
that we cannot approximate anything. For example, we

FIG. 6: Accumulation of small errors

noticed that several drawings started to look worse at the
end. We first thought that motors were losing steps, but
the reality is that microerrors done by rounding to inte-
ger steps, started to accumulate resulting in noticeable
errors at the end. Figure 6 is the comparison between 5
rectangles with the microerror, successively accumulated,
and 5 rectangles one on top of the other in the case with
rounding errors carefully solved.

Another important issue that must be considered is
the small computing capacity of Arduino. Because of
that, most computations had to be done in Matlab. We
just passed to Arduino movement instruction (moving
a motor or the servo) and the time to wait until the
next instruction. We calculated that the communication
would be much faster than drawing and thus, we could
send all the instructions one by one without worrying
about it taking too long.

However, after several experiments we observed that
the contrary was happening: because Arduino was busy
doing the picture it couldn’t read all the instructions as
they came and some were lost because the channel was
saturated. Therefore, we instructed Matlab to also han-
dle the time and just send an instruction to Arduino ev-
ery time one needed to be done.

C. Traveling Salesman Problem

Once we had found the lines we wanted to color we
had to figure out in what order we had to draw them, as
different orders would lead to very different trajectories
and therefore, very different drawing times. We want to
minimize the overall drawing time as much as possible,
consequently, our measure of time is the euclidean dis-
tance between points traveled plus an extra penalty if we
had to put the chalk up between the points (when the
distance between endpoints is very small we don’t put
the servo up since there is no gain in resolution).

Finding such order is a famous NP-hard ([2]) problem,
for which there is no polynomial (and hence fast) exact
algorithm. Thus, one must restrict to approximation al-
gorithms that can also find good results. Our problem
of joining curves with the fewest possible time is fun-
damentally different from joining points; thus, we could
not use prewritten algorithms and had to code a tailored
adaptation of one of them: 2-opt.

2-opt is an algorithm that finds local optimum paths
in the TSP between points. We first describe the original
2-opt and then the changes we did.

4

1. Start with a random order
2. While we haven’t arrived to a local opti-

mum, randomly choose a subpath pi...pj
and try to reverse it, thus changing the
order p1...pi−1pipi+1...pj−1pjpj+1...pn to
p1...pjpj−1...pi+1pi...pn.

3. Regardless of its length , for every subpath changed
we are only changing two edges: pi−1−pi to pi−1pj
and pj − pj+1 to pi − pj+1. Thus, we can easily
evaluate if reversing the path improves it. If it does;
keep it reversed and restart the search for other
subpaths.

4. If we have tried all possible subpaths and none im-
proves the current path, the algorithm terminates.

Since it is a randomized algorithm, we may get different
results in every simulation; thus, it is advisable to repeat
it several times trying to find good local optima.

We tailored the algorithm to handle curves instead of
points. From our curves we are only interested in their
endpoints. The algorithm handles 2 things: the order
between the curves and the sense in which we travel every
curve. Let us enumerate the curves from 1 to n, let their
order be o1, ..., on and the endpoints from curve oi be
pi,1 and pi,2. Finally, let the sense of curve oi be si,
describing the first point of the curve. Then poi,si will
be the starting point of curve oi and poi,2−si will be its
final point.

Since the sense in which we travel a path internally
doesn’t change the time to walk through it, we may only
care about the time spent going between curves, but not
along the curves. Therefore the total distance is:

n−1∑
i=1

dist(poi,2−si , poi+1,si+1
)

Then, we run the algorithm with some adaptations:
• When we reverse a subpath of curves we are also

changing the sense in which we walk all the curves,
thus we set si...j to 2− si...j .
• The edges changed are still 2, but they are now

between endpoint of curves.
• In the original algorithm there was no point in

choosing to reverse a subpath of length 1 since it
would not change anything. On the contrary, now
choosing a subpath of length 1 is reversing the sense
in which we traverse the curve.

As figure 7 shows, this algorithm greatly reduces draw-
ing time. Red thin lines represent movements without
drawing; one can observe that after this improvement
only a few short red lines are done.

IV. RESULTS AND CONCLUSIONS

We were able to construct an end-to-end system that
given an image can draw a good representation of it on
a blackboard with great level of precision. The order of

(a) Wihout TSP (b) With TSP

FIG. 7: Improvement using TSP algorithm

magnitude in time is under 5 seconds in computation and
1-5 minutes of drawing, depending on the size.

The system can paint very complex pictures such as the
Mona Lisa (figure 9) with reasonable detail, being clearly
recognizable. In the domain we wanted to specialize (text
that could be written in a class) the system performed
almost perfectly; as can be seen in figure 8.

FIG. 8: Euler equation (without lifting the pen)

FIG. 9: Drawing of da Vinci’s Mona Lisa

FIG. 10: Robot drawing Enginyeria Fisica logo

To improve this system we suggest increasing its ve-
locity (mainly limited by the power of the motors, and
therefore their cost). We would also like to explore possi-
ble applications that try to help a teacher in giving class,
such as being able to talk directions to the robot or being
able to write functions to Matlab and have them plotted
on the blackboard.

5

[1] Mathworld Wolfram on Circle-Circle Intersection. http://
mathworld.wolfram.com/Circle-CircleIntersection.

html

[2] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C.
(2001), ”35.2: The traveling-salesman problem”, Introduc-
tion to Algorithms (2nd ed.), MIT Press and McGraw-Hill,

pp. 10271033, ISBN 0-262-03293-7.
[3] G. A. CROES (1958). A method for solving traveling sales-

man problems. Operations Res. 6 (1958) , pp., 791-812.
[4] S. Lin and B.W. Kernighan An Effective Euristic Algo-

rithm for the Traveling-Salesman Problem , Operations
Research Vol. 21, No. 2 (Mar-Apr. 1973) 498-516

