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Abstract. In the scope of this contribution a model for the Fluid Structure Interaction
(FSI) is presented, where absorptive structures can be considered. A special focus is layed
on the interface coupling modes between absorber and fluid. For the simulation of the
spatial resolution of the sound field within acoustic cavities techniques based on Finite
Element formulations are used. To reduce the number of degrees of freedom a model
reduction method, based on a Component Mode Synthesis (CMS), is applied. The cavity
boundary conditions, e.g. compound absorbers made of homogenous plates and porous
foams, are modeled using Integral Transform Methods (ITM) and appropriate material
formulations. Wavenumber dependent impedances are computed for the absorptive struc-
ture and used for the coupling with the acoustic cavity adding interface coupling modes
for the fluid and applying Hamilton’s principle.

1 INTRODUCTION

Due to increasing requirements of comfort, acoustic design has become more important
during the last years, especially in the field of civil engineering and automotive design.
The sound field within rooms or vehicles has to be predicted in the scope of the design
process for the specific use.

The calculation of the sound pressure level inside of acoustic cavities is usually done
with the help of the Statistical Energy Analysis (SEA). This method is robust for systems
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with a high modal density and it is based on an averaging over frequency bands, points of
excitation and points of observation. However, its performance is limited if a description
of the spatial resolution of the response is necessary and if the influence of boundary
conditions has to be described in detail.

In the scope of the acoustic design of rooms or vehicles elements like reflectors or
absorbers are placed into the sound field. Therefore a robust method for the phase
correct modeling of interior sound fields with sufficient spatial resolution is needed for
the relevant mechanisms of excitation, where the absorptive behavior of the delimiting
surfaces can be considered. Methods, based on Finite Element formulations are used for
this purpose.

Finite Element models for absorptive boundary conditions in acoustical calculations
lead to a huge number of degrees of freedom. In order to reduce this number of unknowns
an impedance approach considering a wavenumber dependent impedance is used for plate-
like compound absorbers to introduce varying angles of incidence for the sound wave. The
coupling modes used for the FSI of acoustic fluid and absorber are discussed in detail,
where a method for the estimation of the number of modes, which have to be considered,
is presented. Finally a numerical example for the coupled system is presented.

2 FLUID STRUCTURE INTERACTION

The derivation of the FSI method is carried out in the frequency domain. Therefore
only excitations, harmonically oscillating in time, with the circular frequency of excitation
Ω are considered. Consequently the steady state solution for both state variables pressure
pA and sound velocity vA is harmonic in time.

2.1 Hamilton’s Principle and Ritz Approach

For the vibro-acoustical problem discussed in this contribution a description of Hamil-
ton’s principle, which is based on velocities, is applied. The structure is divided into
substructures (see figure 1), where the acoustic fluid and the boundary conditions are de-
fined as subsystems respectively. According to Hamilton’s principle equilibrium is fulfilled
by the velocity field, which meets the kinematic boundary conditions, the conditions at
t = t1 and t = t2 and, in addition to that, satisfies

t2∫

t1

δ
(
LA(t) + LBC(t, Z) +RTλ(t)

)
+ δW nc

BC(t, Z) + δW nc
Load(t) dt = 0. (1)

The Lagrangian function LA for the acoustic fluid results from the kinetic energy TA and
the potential energy UA

LA(t) = TA(t) − UA(t), (2)
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Figure 1: Subsystem definition

where the energies are computed out of

TA(t) =
ρA

2

∫

V

|vA(x, t)|2dV and UA(t) =
1

2ρAc2A

∫

V

|pA(x, t)|2dV

respectively. Harmonically oscillating loads or excitations via surfaces are considered in
Hamilton’s Principle as a non conservative forces by their virtual work δW nc

Load

δW nc
Load(t) =

∫

ALoad

pLoad(x, t)nLoad(x) δw(x, t) dA. (3)

The formulation of LBC and δW nc
BC will be given for a wavenumber-dependent impedance

in the following section. In the scope of a Ritz approach a linear equation system is
obtained to compute the unknown coefficients.

2.2 Component Mode Synthesis

The Component Mode Synthesis (CMS) is a substructuring technique for large coupled
problems, which was introduced by Hurty [5] to reduce the number of unknowns while
keeping the physical characteristics of the structure. In contrast to Hurty, the CMS
is used based on a modal description in the scope of this method. In order to model
arbitrary geometries for the acoustic fluid a numerical approach based on the Spectral
Finite Element Method (SFEM) [6, 4] is used. In the frame of the CMS the superscript
N stands for normal modes and the superscript C for coupling modes. Normal modes are
the eigenmodes of the air volume enclosed by totally reflecting boundaries and coupling
modes are additionally introduced to provide the coupling to other boundary conditions,
like a deformable structure, an absorber or an open interface to another acoustic volume.
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For the velocity vA in the acoustic fluid the approach (4) is applied.

vA(x, t) =
∑
m

vN

m(x)
(
Ame

iΩt +Ame
−iΩt

)
+
∑
n

vC

n(x)
(
Bne

iΩt + Bne
−iΩt

)
(4)

Assuming an acoustic fluid, the irrotational behavior of the sound velocity allows the use
of a velocity potential ΦA(x)e

iΩt.

vA(x, t) = gradΦA(x, t)

Considering the steady state problem after applying a Fourier transformation from the
time- to the frequency-domain, the velocity potential solves the Helmholtz equation (5),
where cA denotes the constant speed of sound.

∆Φ̂A(x, ω) +
ω2

c2A
Φ̂A(x, ω) = 0 (5)

In the Fourier-transformed domain the velocity v̂A and the pressure p̂A read as follows:

v̂A(x, ω) = grad Φ̂A(x, ω) (6)

p̂A(x, ω) = −ρAc
2
A

i ω
div v̂A(x, ω)

= −ρAc
2
A

i ω
∆Φ̂A(x, ω)

(7)

The normal modes for the acoustic fluid are defined in terms of the velocity potential Φ̂N

assuming fixed interfaces, which means reflective wall conditions for all boundaries of the
fluid:

grad Φ̂N

m(x, ωm) · nBC = 0 (8)

The normal modes are supplemented by coupling modes in order to define a valid set
of trial functions for (4). These coupling modes enable velocities perpendicular to the
coupling interface and also at the location of a surface-excitation. They fulfill the reflective
boundary conditions at all surfaces of the room, except for the interface defined as xBC,
where modal trial functions g(xBC) are prescribed

grad Φ̂C

n(x,Ω) · nBC = g(xBC) (9)

leading to an inhomogeneous Helmholtz equation for each coupling mode. For the spe-
cification of the function g(xBC) a multi-index n = (n1, n2) is defined with respect to
the prescribed vibration pattern. The coupling modes are calculated as solutions of the
dynamic problem in a harmonic analysis. Thus the number of coupling modes, which is
considered in the calculation, can be chosen with respect to the physical properties of the
system for reasons of efficiency.
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In order to exemplify the influence of the wavenumber, a rectangular room with re-
flective walls [0, Lx = 6m] × [0, Ly = 3m] × [0, Lz = 2m] is considered and the coupling
modes are calculated with the Spectral Finite Element formulation.

Figure 2 shows the velocity potential ΦC of the holohedral coupling modes, which cover
the whole wall and the subregional coupling modes, when a sinusoidal vibration pattern
is prescribed at the interface with a circular frequency of excitation Ω = 459 rad

s
.

Comparing the potential-fields for different multi-indices n = (n1, n2) one observes
far-fields for small wavenumbers in the acoustic fluid, whereas with rising wavenumbers
near-field solutions are obtained. They are characterized by an exponential decaying
behavior perpendicular to the interface. The impact of the subregional modes on the
acoustic fluid is smaller than in case of holohedral coupling modes. Also concerning the
decay characteristics one observes differences.

These near-field effects can be used to reduce the number of unknowns in the CMS
approach. Focusing on the sound field in the cavity, it is sufficient to consider just the
far-field coupling modes. To define a sufficient number of coupling modes for an efficient
numerical computation, this effect has to be predicted with low numerical effort (a calcu-
lation of the coupling modes with the SFEM in advance in order to investigate the decay
characteristics would be too expensive). Applying Integral Transform Methods and fil-
tering techniques in the spatial domain one can estimate these decay characteristics with
negligible numerical effort. Starting from the wave equation in terms of displacements

∂2u(x, y, z, t)

∂x2
+

∂2u(x, y, z, t)

∂y2
+

∂2u(x, y, z, t)

∂z2
=

1

c2A

∂2u

∂t2
(10)

a Fourier transformation is applied assuming infinite dimensions of the interface. The
spatial coordinates y and z, defining the plane of the interface, are transformed in the
wavenumber domain and a transformation into the frequency domain is carried out, con-
sidering vibrations in the steady state with a circular frequency of excitation Ω:

∂2û(x, ky, kz,Ω)

∂x2
+

[(
Ω

cA

)2

− k2
y − k2

z

]
û(x, ky, kz,Ω) = 0 (11)

The ordinary differential equation (11) is solved with the exponential approach obtaining
the solution for the displacement field of the homogeneous problem:

û(x, ky, kz,Ω) =




û0(ky, kz)
(

−e−λLx

(eλLx−e−λLx )
eλx + eλLx

(eλLx−e−λLx )
e−λx

)
, λ �= 0

û0(ky, kz)
(
1− x

Lx

)
, λ = 0

(12)
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(a) ΦC

(1,1) (b) ΦC

(1,1)

(c) ΦC

(2,1) (d) ΦC

(2,1)

(e) ΦC

(3,2) (f) ΦC

(3,2)

Figure 2: Holohedral and subregional coupling modes for the velocity potential ΦC
n(x) of the

rectangular room with reflective walls [0, Lx = 6m]× [0, Ly = 3m]× [0, Lz = 2m] for
different multi-indices n = (n1, n2) with Ω = 459 rad

s
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The ranges for the far-field, the near-field and the transition zone, where a linear decay
is observed, are listed in (13).

k2
y + k2

z





< Ω2

c2A
, far-field

> Ω2

c2A
, near-field

= Ω2

c2A
, linear decay

(13)

In the ky, kz-domain the transition zone marks a circle with the radius Ω
cA
. In the practical

problem finite absorbers with dimensions LBC
x × LBC

z have to be applied. Therefore the
infinite vibration pattern u0(y, z) is multiplied with a rectangular filter function Θ(y, z)
in the spatial domain, which is equals a convolution with a 2d sinc−function in the
wavenumber domain.

Θ(y, z) � � 4

ky kz
sin

(
LBC
y

2
ky

)
sin

(
LBC
z

2
kz

)
(14)

Applying a Fourier transformation of the velocity pattern and evaluating the results
according to condition (13) the necessary number of coupling modes can be specified. In
figure 3 the results are depicted for the holohedral and the subregional coupling modes,
where the magenta colored circle specifies the transition zone. The wavenumbers within
this circle refer to far-field solutions.

Figure 3 shows, that for the subregional coupling modes the transition to near-fields
is linked with smaller multi-index combinations than for the holohedral coupling modes,
because a fixed multi-index combination results in higher wavenumbers for the subregional
than for the holohedral modes. Also the effect caused by the spatial limitation of infinite
vibration patterns is clearly recognized. The number of normal modes, which has to be
considered, depends on the frequency of excitation Ω and on the load pattern. The number
of coupling modes can be limited efficiently selecting the far-fields in the wavenumber
domain.

In the following a rectangular geometry is considered for the absorptive boundary
condition and g(xBC) is expressed with ψn(y, z) for each mode, where y and z mark the
local coordinates in the reference coordinate system of the absorber.

Considering the procedural method in the next steps, in especially the computation
of the Lagrangian LBC for the absorber out of impedances, it is advantageous to express
ψn(y, z) with its Fourier Series.

ψ̂n(y, z) =
∑
r

∑
s

Enrs e
i(r∆ky y+ s∆kz z) (15)
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Figure 3: Near-field effects of the holohedral and subregional coupling modes
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Thus the trial function at the interface is specified for an absorptive boundary condition
as

v̂BC(y, z, t) =
∑
n

ψ̂n(y, z)
(
CneiΩt + Cne

−iΩt
)
. (16)

Carrying out the integration required in equation (1) over one period of the steady state
vibration one obtains the Lagrangian LBC and the virtual work of the non conservative
forces δWBC . In this short essay we focus on trial functions, where due to reasons of
orthogonality the off diagonal terms vanish.

T∫

0

LBC dt =
T

Ω
Ly Lz

[∑
n

CnCn

∑
r

∑
s

Im (Z (r, s,Ω)) |Enrs|2
]

(17)

T∫

0

δWBC dt = − T

iΩ
Ly Lz

∑
n

(
CnδCn − CnδCn

)∑
r

∑
s

Re (Z (r, s,Ω)) |Enrs|2 (18)

In case of sinusoidal functions also the Fourier approximation ψ̂n(y, z) can be omitted.
A detailed discussion as well as the expressions for a general definition of the trial func-
tions are presented in [2]. With the imaginary part of the impedance Im (Z (r, s,Ω)) the
flexible characteristics of the absorber can be modeled, as shown above. The absorptive
characteristics are expressed by the real part of impedance Re (Z (r, s,Ω)).

A description of porous layers based on the Theory of Porous Media [1] as well as the
formulation of the system of differential equations and the solution for the fundamental
system in the wavenumber-frequency domain for compound absorbers is presented in
detail in [2, 3].

3 COUPLING THE SUBSYSTEMS ANDASSEMBLING THE EQUATION
SYSTEM

The Normal and coupling modes, which are specified in the CMS approach in equa-
tion (4), are computed for the acoustic fluid as trial functions in the scope of a Ritz
approach and the Lagrangian of the fluid as well as the virtual work of the external loads
are computed with equations (2) and (3) respectively. The Lagrangian of the compound
absorber and the virtual work of the non-conservative damping forces are computed with
(17) and (18) for instance.

The unknown complex coefficients Ai and Bi refer to the normal and the coupling
modes in the acoustic volume, whereas Ci are the coefficients of the trial functions of the
compound absorber. The coupling condition of the fluid and the absorber at the interface,
which is defined in equation (1) with the help of the vector of Lagrange multipliers λ,
simply results in Bi = Ci and B̄i = C̄i, if the same velocity pattern is chosen for the
trial function of the absorber and for the boundary condition of the fluid at the absorber-
interface. Thus the vectors for the unknown coefficients x and the corresponding conjugate
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complex values x̄ read:

x =
[
A1 · · · Ammax B1 · · · Bnmax

]T

x̄ =
[
Ā1 · · · Āmmax B̄1 · · · B̄nmax

]T (19)

The solution of the variational problem is reduced to a problem of minimization because
of the Ritz approach. It is advantageous to express the conjugate complex coefficients
with real and imaginary values in order to formulate the extremal problem:

x =
[
xR + ixI

]T

x̄ =
[
xR − ixI

]T (20)

The real and imaginary parts of the complex coefficients mark the new set of unknowns

y =
[
xR xI

]T
, where the total number of real valued unknowns is 2 (mmax + nmax). Here

mmax and nmax are the maximum numbers of normal and coupling modes respectively.

xR =
[
AR

1 · · · AR
mmax

BR
1 · · · BR

nmax

]T

xI =
[
AI

1 · · · AI
mmax

BI
1 · · · BI

nmax

]T (21)

For the consideration of the virtual work a vector δy is specified analogously. Carrying out
the minimization of the Lagrangian one obtains a system of real valued linear equations

Ky = F, (22)

where the matrix of coefficients Kij reads

Kij =

∂2
T∫
0

LA dt

∂yi ∂yj
+

∂2
T∫
0

LBC(Z) dt

∂yi ∂yj
+

∂2
T∫
0

δW nc
BC(Z) dt

∂ δyi ∂yj
(23)

and the load vector F =
[
FR FI

]T
considers the external forces:

Fi = −
∂

T∫
0

δW nc
Load dt

∂ δyi
(24)

Defining submatrices Krs for the matrix of coefficients, equation (22) reads:
[
K11 K12

K21 K22

] [
xR

xI

]
=

[
FR

FI

]
(25)

In consequence of the complex property of the unknown coefficients the relations

K11 = K22 (26)

K21 = −K12 (27)

hold for the submatrices.
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4 NUMERICAL EXAMPLE

For arbitrary geometries the normal and coupling modes can be computed with the
SFEM. The only restriction, given by the application of the ITM for the Lagrangian of the
absorber, is, that the interface has to be plain. In the following a 2d acoustic volume with
an inclining rear-wall is considered. The wall containing the interface could be inclined as
well. The geometry of the system is sketched in figure 4, where L1

x = 6m, L2
x = 1.5m and

Ly = 2m. The model is set up with 192 spectral finite elements. The interface is covered
with a 7.2 cm layer of Melamine Foam. A unit point source is located at x = 1.15m and
y = 0.77m. The location is chosen under the premise of exciting nearly all modeshapes.

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

Z(kx,ky ,Ω)

Ly

L1
xdTPM L2

x

pLoad

Figure 4: 2d structure with with inclined wall and porous absorber (holohedral and subregional
coupling)

In figure 5 the steady state response for the sound pressure level is sketched. The
different interface-specifications are compared for a frequency of excitation of 163Hz.
Due to the fact, that the frequency of excitation is near to a natural frequency, primarily
one specific modeshape is excited, which would lead to very high sound pressures in case
of an undamped system. A significant reduction is achieved due to the application of the
absorptive layer at the boundary. Comparing both results in figure 5 one observes lower
sound pressure levels for the holohedral case, because here the absorptive area, which is
introduced into the system by the boundary condition, and therefore the dissipation of
energy is higher than for subregional coupling.

5 CONCLUSION

In this contribution a method is presented to compute acoustic cavities under harmon-
ically oscillating loads in order to get phase correct results with a spatial resolution for
the sound field using a CMS approach. The normal and constraint modes for the acoustic
cavity are calculated with the SFEM, where the number of necessary coupling modes is
estimated in the wavenumber domain. The SFEM formulation is implemented in order to
model arbitrary geometries for the acoustic cavity. Because of the Fourier transforms in
the scope of the ITM however the interface has to be plane. Layered boundary structures
as compound absorbers, consisting of homogeneous and porous materials, are modeled
efficiently using the Fourier transform, where the number of unknowns can be reduced
significantly.
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Figure 5: Sound-pressure p(x, y) [Pa] for a frequency of excitation of 163Hz
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