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Abstract. This work describes the application of a novel meshless numerical technique, based 
on local collocation with radial basis functions (RBFs), to the solution of steady poroelastic 
problems. Its formulation allows scalability to large problem sizes, in contrast to traditional 
full-domain RBF collocation methods which are restricted to small datasets due to issues with 
numerical conditioning and computational cost. The proposed method is validated using a 
benchmark linear elasticity numerical example and a coupled steady poroelastic deformation 
problem, for which analytical solutions are known. Highly accurate solutions are obtained in 
each case, and convergence rates in excess of sixth-order are observed. 
 
1 INTRODUCTION 
 

The interaction between fluid flow and porous matrix deformation is known as 
hydromechanical coupling, where the porous matrix can deform as a result of either changes 
in external loads, or internal pore pressures. Poroelasticity describes the governing equation 
for porous matrix deformation in terms of a non-homogeneous Navier system of equations for 
linear elasticity, with the non-homogeneous term given by the gradient of the fluid pressure. 
Similarly, the stress tensor constitutive equation is given by the linear elastic stress tensor 
minus the fluid pressure. The fluid mass balance equation occupying the void space must also 
account for the motion due to the solid deformation, resulting in a set of coupled partial 
differential equations. By neglecting the compressibility of the pore fluid and soil matrix, and 
considering steady state conditions, the doubly-coupled problem reduces to a one way 
coupling with a forcing term proportional to the pressure gradient in the solid deformation 
governing equation. 

In this work we implement a novel local RBF collocation method (RBF-FC approach), 
recently developed in [1], to solve the coupled problem of flow and solid matrix deformation 
in poroelasticity. The basic RBF collocation method for the solution of PDEs was originally 
described by Kansa [2, 3], and has been successfully applied to a wide range of PDEs. RBF 
collocation methods are attractive due to their meshless formulation, ease of implementation, 
high convergence rates, and flexibility to enforce arbitrary boundary conditions. However the 
use of globally supported basis functions leads to fully-populated collocation matrices, which 
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become increasingly ill-conditioned and computationally expensive with increasing dataset 
size. These limitations motivate the development of alternate methods to mitigate the 
computational cost and numerical conditioning issues, while maintaining the performance and 
flexibility of the full-domain formulation. 
 

One of the most efficient ways to overcome the ill-conditioning problem is the use of a 
generalised finite difference method based on RBF collocation (RBF-FD method), where a 
small interpolation stencil is constructed around each data point within the domain, which 
connects the point to its neighbours. In this way a large number of highly overlapping local 
collocation systems are formed. In analogy to traditional finite difference methods, the local 
RBF systems collocate the unknown solution value at each internal node included within the 
system, with the governing PDE enforced by reconstruction to form a sparse global linear 
system that expresses the governing PDE operator in terms of surrounding nodal values. 
Unlike traditional polynomial-based FD methods, RBF-FD methods can operate effectively 
on irregular datasets. For more information on RBF-FD methods see, for example, [4, 5, 6, 7].  

In [1] an alternative RBF localisation is proposed for the meshless solution of PDEs, which 
is referred to as the RBF finite collocation approach (RBF-FC). As with the RBF-FD 
approach, small overlapping collocation stencils are formed around each internal node. 
However, the proposed method does not use the finite difference principle to drive the 
solution of the PDE; the PDE and boundary operators are enforced only within the local 
collocation systems, and are not used to generate the sparse global system. The global system 
is instead obtained by reconstructing the (Dirichlet) value of the field-variable, thereby 
describing the solution at the system centrepoint in terms of the unknown solution values at 
surrounding nodes. In this way the enforcement of the governing PDE and boundary operators 
is handled entirely within the local systems; the solution is driven by collocation and not by 
finite difference reconstruction. 
 
2 LINEAR POROELASTICITY 
 

The theory of poroelasticity was essentially developed by Maurice A. Biot. In [8], he 
couples Navier’s linear elasticity equations with Darcy’s law for the flow through a porous 
medium. In the present work, steady state solutions of the Biot equations are considered for 
an isotropic material and incompressible fluid. Under these conditions, the equations 
modelling the displacement    of the material and the pressure   of the fluid can be written: 

    0)( 2 
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                                                        (1)
  

 

where the pressure distribution, p, is defined by the steady Darcy flow, with an isotropic 
permeability  xk  , fluid viscosity  , gravity acceleration g and where    is the vertical 
coordinate, taken positive upwards.  
 

The poroelastic stress-tensor is given by 
 

  ijijijkkij p  2                                                  (2) 
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where  1,0  is the Biot coefficient, ij  is the infinitesimal strain tensor 
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and  ,  , are the Lame constants which, for plane-strain, are related to the Young’s modulus 
( E ) and Poisson ratio ( ) as: 
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The stress field satisfies the momentum equation 
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Writing the stress tensor in terms of the effective stress as 
 

  ijijij p  ~
                                                          (6) 

 

and substituting into equation (5), the following non-homogeneous equation is found: 
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In the above equation, the pressure field and its gradient are computed from the solution of 
the Darcy flow equation (1), and are coupled with the elasticity equation. 
 
3 A NOVEL MESHLESS LOCAL COLLOCATION STRATEGY FOR HIGH 
CONVERGENCE SOLUTIONS OF PORO-ELASTICITY PROBLEMS 
 

To facilitate the locally-driven solution of the PDE, the RBF-FC local collocation systems 
are somewhat different from those used in RBF-FD methods. Rather than collocating the 
solution value at all nodes within the local stencil, the solution value is collocated only over 
the periphery of the stencil.  
 

                     
    a)  RBF-FD stencil (basic)     b)  RBF-FD stencil (enhanced)      c)  RBF-FC stencil 

 

Figure 1: Comparison of collocation stencils for RBF finite difference, and the finite collocation approach. 
      - Black marks represent collocation of the unknown solution value (solution centres) 
      - Red crosses represent collocation of the PDE governing operator (PDE centres) 
 

In this way the local stencils communicate only via their boundaries, and the resulting 
finite collocation method is more strongly related to traditional RBF domain decomposition 
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overlapping approaches; e.g. [9]. Within the interior of the stencils the PDE governing 
operator is collocated. In the case that the stencil lies sufficiently close to a domain boundary, 
collocation of the boundary operator replaces collocation of the solution field along the 
appropriate stencil boundary. The difference between the stencils used in RBF-FD methods 
and those of the proposed finite collocation method is outlined in Figure 1. 
 
3.1 Kansa Collocation for linear scalar problems 
 

A radial basis function depends upon the separation distances of a set of functional centres, 
exhibiting spherical symmetry around these centres. There are several commonly used radial 
basis functions (see [10]), however we will use the multiquadric RBF throughout, with 1m . 
 

     mcrr
m
222                  (8)   

 

The c  term is known as the ‘shape parameter’, and describes the relative width of the RBF 
functions about their centres. In practice, tuning of this parameter can dramatically affect the 
quality of the solution obtained, and much research has been directed towards finding 
effective methods of optimisation (see for example [11,12]). Since c  is a length scale it is 
appropriate to consider a non-dimensional alternative, ,*  cc  where   is typically related 
to the node separation distance in some way. 

The Kansa RBF collocation method [2, 3], constructs the continuous solution  xu  of the 
PDE from a distinct set of N quasi-randomly distributed functional centres d : 
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Here 1m
jP  is the jth term of an order )1( m  polynomial, under the constraint 
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Consider a typical linear boundary value problem 
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where the operators L[] and B [] are linear partial differential operators on the domain Ω and 
on the boundary Γ, describing the governing equation and boundary conditions respectively. 
Collocating the interpolation formula (9) at N  distinct locations, jx , coinciding with the 
functional centres d , leads to a system of equations  
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which is fully populated and non-symmetric. This approach, known as Kansa’s method, has 
been applied to a wide range of problems with great success (see for example [13, 14, 15]). 
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3.2 Kansa collocation for non-homogeneous linear elasticity 
 

For coupled multivariate PDEs the basic RBF collocation formulae (9), (10) must be 
modified slightly. The following demonstrates the application to linear elasticity, however the 
same principles may be used to construct a global collocation for any linear multivariate PDE. 

The non-homogeneous Lamé-Navier equations for linear elastic deformation, equation (7), 
in terms of displacement, iu , are given by 
           

  i
j

i

ji

j b
x
u

xx
u

 







 2

22

        (13)        

 

for a given body force    (in the case of poroelasticity             ) and material density 
 . Here   and   are the Lamé coefficients as defined in (4). For a 2D plane-stress 
approximation, the value of   should instead be changed to: 
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Boundary conditions are applied either as a fixed displacement (Dirichlet condition), i.e., 
  

ii fu                                                                                      (15) 
 

or as a prescribed surface traction (Neumann condition). The surface-traction operator at a 
surface with unit outward normal in  and an applied traction i , is given by: 
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The solution construction is similar to that of the single-variable formulation: 
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Each variable iu  is constructed using a common set of RBF functional centres j  , and the 
associated RBF weighting function ji, . The collocation system is generated by enforcing the 
governing equation (13) at each internal node, and enforcing the displacement (15) and 
surface traction (16) operators at Dirichlet and Neumann centres respectively.  The resulting 
collocation system may be expressed as follows (excluding the polynomial terms for brevity): 
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The operators     and     represent the differential operators applied to    within the     
equation of the PDE governing operator L and the surface traction operator B respectively. 
The functions     and      may therefore be expressed as: 
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An equivalent operator for a Dirichlet boundary condition would be expressed as ijijB  . 
The collocation matrix (18) represents a square and near-fully-populated linear system. When 
polynomial terms are included it is of size    NPNnNPNn  , where n  is the number of 
spatial dimensions, N  is the number of collocation points, and NP is the number of terms in 
the polynomial. To extend the collocation matrix to include the polynomial terms it is 
necessary to include them in the substitution of equation (17) into the governing and boundary 
operators (13), (15) and (16). 
 
3.1 RBF Finite Collocation Formulation 
 

By generating an RBF collocation around each of the sN  stencils, formed around strictly 
interior nodes as indicated by Figure 1c, a series of sN  RBF collocation systems are obtained:          
                                

     
s

kkk NkdA ,...,1       (21) 
 

Here )(kA  represents the collocation matrix for system k , and will be formed as described 
by equation (12) or equation (18). The data vector )(kd  contains the known boundary and PDE 
operator values, and also the unknown value of the solution field at the solution centres. 
Using the appropriate RBF reconstruction formula, i.e. equation (9) or equation (17), the 
approximate value of the field variable  xu  may be computed for any x  within the support 
domain of system k . Expressing this computation as a vector product we have 
 

           kkk xHxu          (22) 
 

where  xH k )(  is identified as a reconstruction vector for system k  at location x . By 
reconstructing the value of u  at the system centrepoint, )(k

cx ; i.e. the node around which 
system k  formed (though not necessarily the geometric centre of the stencil), we obtain: 
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Here      1)()()( 
 k

c
k

c
k AxHxW  is a stencil weights vector, expressing the value of the 

solution field u  at the system centrepoint in terms of the entries in the data vector )(kd . This 
value of u  at )(k

cx , as reconstructed by equation (23), appears as an unknown within the data 
vector of any systems which have within their stencil a solution centre located at )(k

cx ; i.e. 
any systems which have this node on their periphery. Therefore, by performing the above 
reconstruction (23) for each local system k , a series of sN  simultaneous equations are formed 
for the N  unknown values of )(ku  at the system centrepoints. Solution of this sparse global 
system therefore provides the value of u  at each of the sN  internal nodes. By feeding these 
values back into the local data vectors, )(kd , the local systems may be used to extract any 
other field values as may be required for post-process analysis (such as partial derivatives, or 
stresses in the case of linear elasticity). For more details about this highly convergent 
meshless collocation numerical scheme see [1].  

In the sparse global assembly, the PDE governing operator and the corresponding 
boundary conditions of the problem have already been imposed within the local collocation 
systems. The number of non-zero matrix entries in each row corresponds to the number of 
solution centres in the associated local system; i.e. the number of nodes on the stencil 
periphery. Since only the peripheral nodes appear in the global system, the number of non-
zero entries is smaller than for an equivalent Finite- Difference type method (see Figure 1); 
i.e. the sparse global matrix has a smaller bandwidth. With an appropriate sparse linear 
system solver the method may be scaled efficiently to very large datasets. 
 
4 NUMERICAL RESULTS 
 

Analytical results relating to rates of convergence and other numerical properties are 
extremely difficult to obtain for methods based on local RBF collocation. Therefore, in this 
work we focus on assessing the performance of the proposed finite collocation method 
qualitatively, using benchmark numerical problems with known analytical solutions. In each 
case we focus on analysing the solution accuracy and convergence rates, showing that high 
convergence rates may be reliably obtained.  

In each numerical example we use a 55  stencil configuration, with additional staggered 
PDE centres, as represented in Figure 1c. Larger stencil sizes may be used to obtain higher 
convergence rates at the expense of increased computational cost and somewhat increased 
sensitivity to basis function flatness (see [1]). The results presented below use a non-
dimensional shape parameter of value 100* c , scaled against the local node separation. 
 
4.1 Linear Elasticity Problem 
 

Performance with the linear elasticity equation is assessed for a thin plate with a circular 
hole under uniform traction. The analytical expression for displacement and stress is given by 
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[16]. Here we choose material properties of E=210GPa and  =0.3, representing mild steel, 
with a hole radius m1a  and a far-field traction of 100MPa. We exploit the symmetry of the 
problem to examine a single quadrant, constraining the solution domain to a 4m x 4m region. 
Over the hole we enforce the appropriate zero-traction condition, at the lines of symmetry we 
impose the symmetric condition, and at the far-field boundaries we enforce the analytical 
surface traction field, as defined by jij

e
i n  . 

 

  
      a)  Dataset and boundary conditions       b) Contours of stress ( 11 ) 

 

Figure 2: Dataset, boundary conditions and contours of stress, showing concentration of stresses around the hole 
 

The dataset is generated by distributing N+1 nodes over the hole, and N+1 nodes in the 
radial direction (i.e. 41  r ). A simple RBF interpolation is then performed over the domain 
to map this cylindrical distribution onto the full Cartesian problem domain (see Figure 2a). 
The resulting stresses are largely concentrated in the region around the hole, and their 
accurate prediction is a challenging task (see Figure 2b).  
 

 
 

Figure 3: Spatial convergence (plate with a circular hole) 
 

The proposed method exhibits strong spatial convergence and provides highly accurate 
solutions. Figure 3 shows the L2 relative error obtained from datasets of size N = 20, 30, 40, 
60, 80. In this log-log plot, the gradient of the curve represents the spatial convergence rate 
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between successive datasets. The approximate convergence rates, obtained by line of best fit, 
are summarised in Table 1. The convergence rates are of orders between 6.5 and 7 for 
displacement and for all stress components.  

 
|| u  11  12  22  

6.90 6.79 6.75 6.56 
 

Table 1: Approximate convergence rates (plate with a circular hole) 
 
4.1 Poroelasticity Problem 
 

To analyse the performance of the proposed RBF-FC method with a coupled poro-
elasticity problem we consider a porous cylindrical annulus subject to a large internal 
pressure. The solution is obtained in two stages; the first stage computes the pressure field and 
its Cartesian derivatives at each node within the domain, by solving Darcy’s equation (1). The 
second stage solves the inhomogeneous linear elasticity equation (7), where the 
inhomogeneous term is obtained from the computed pressure gradient. 

For a cylindrical annulus with inner radius a  and outer radius b , with pressure 1p  at ar   
(i.e. internal pressure) and pressure 0p  at br   (i.e. external pressure), the analytical solution 
for the pressure field is as given by equation (24). We set the inner pressure as MPa1001 P  
and the outer pressure as MPa100 P . 
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      (24)
 

 

We choose a dataset of size    11  NN  with nodes distributed radially (see Figure 4a), 
and examine solution accuracy for 80,60,40,30,20N . The Darcy flow problem is solved 
to a very high level of accuracy in each case, as shown in Figure 6. The analytical expression 
(24) is predicted to an 2L  relative error of 7104.3   on the 20N  dataset, and 11109.2   on 
the 80N  dataset. Errors found in the Cartesian gradients less than a factor of two higher.  
 

 
  

    a)  Dataset (N=20) and BCs      b)  Pressure field     c)  Cartesian gradient; 1xp   
 Fig 4:  Darcy-flow: Dataset, boundary conditions and pressure-field representation 
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Following computation of the pressure-field, the inhomogenous linear elasticity equation 
may be solved. An analytical solution for displacement and stress may be computed as: 
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At the 0x  and 0y  boundaries we enforce symmetry (i.e. zero normal displacement and 
zero tangential traction), and the appropriate pressure-traction condition is applied at the inner 
and outer surfaces (see Figure 6a). We use parameters of GPa6.27E  and 15.0 , 
representing Weber sandstone. The resulting relative errors in the displacement and stress-
fields are represented in Table 2. 
 

   
a)  Dataset (N=20) and BCs    b) Contours of σ11 (MPa)    c) Contours of σ12 (MPa) 
   

 Figure 5: Boundary conditions and stress representation for poroelastic deformation 
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 |u| L2 error |u| max error σ11 L2 error σ12 L2 error σ22 L2 error 

N = 20 4.60 x 10-5 1.45 x 10-4 2.48 x 10-5 4.01 x 10-5 2.48 x 10-5 
N = 30 7.19 x 10-7 1.66 x 10-6 6.12 x 10-7 6.49 x 10-7 6.12 x 10-7 
N = 40 9.97 x 10-8 2.52 x 10-7 7.53 x 10-8 9.50 x 10-8 7.53 x 10-8 
N = 60 8.34 x 10-9 2.00 x 10-8 4.65 x 10-9 6.08 x 10-9 4.65 x 10-9 
N = 80 1.65 x 10-9 3.41 x 10-9 7.01 x 10-10 8.90 x 10-10 7.01 x 10-10 

   

Table 2: Relative errors for stress and displacement at varying dataset density 
 

   
 

Figure 6: Spatial convergence; L2 relative errors against minimum node separation 
 

Errors are low for each examined dataset, with strong reductions in error observed as the 
dataset is refined. On the finest 80N  dataset we observe errors of order 910  to 1010 . 
Errors for the stress field are, in each case, of similar magnitude to errors observed in the 
displacement field. The maximum relative displacement error is never more than a factor of 
four larger than the average relative error taken using the L2 norm. The spatial convergence is 
represented in Figure 6; taking a line of best fit average we see that the convergence rate is 
roughly seventh order for each of the examined fields (displacement, stress, and pressure). 
   
5 CONCLUSIONS 
 

A high-resolution meshless numerical solution has been described for coupled poroelastic 
analysis, based on the RBF finite collocation (RBF-FC) approach. The poroelastic analysis 
procedure begins with the solution of Darcy’s equation, in order to obtain the fluid-pressure 
field throughout the domain. From this solution the pressure gradient is computed at each 
internal node, and is used as an inhomogeneous term for the linear elasticity equation. By 
solving this equation with appropriate pressure-traction boundary conditions, the 
displacement and stress fields may be obtained for the full poroelastic problem. 

The RBF-FC method allows highly accurate solutions to be obtained. The RBF-FC 
solution procedure has been demonstrated for a benchmark linear elasticity test case, for the 
solution of Darcy’s equation, and for a coupled poroelastic problem. In each of the cases 
examined the method is able to produce highly accurate solutions, even on relatively coarse 
datasets, and demonstrates better than sixth order convergence in each case. 
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