
Implementation and Evaluation of Semantic

Clustering Techniques for Fog Nodes

Alhassan Aly

Master in Innovation and Research in Informatics (MIRI)

Universitat Politècnica de Catalunya (UPC)

Supervisor

Prof. Fatos Xhafa

In partial fulfillment of the requirements for the degree of

Computer Networks and Distributed Systems

April, 2020

Acknowledgements

First of all, I would like to thank Prof. Fatos Xhafa of the Barcelona

School of Informatics, at the Polytechnic University of Catalonia for

advising and providing me with the literature that aided me in my

research.

Secondly, I would also like to thank all the professors that have taught

and helped me throughout my master studies, providing me with suf-

ficient knowledge to be able to conduct this thesis. Last but not least,

I want to express my gratitude to the academic and administrative

staff of the FIB, especially Maribel Gutiérrez as she was always avail-

able and helped me with any issues that I encountered throughout my

studies.

Most importantly, I dedicate this dissertation to all my family and

friends who have always supported and motivated me. During the

entire master’s program, my parents were constantly pushing and

believing in me with great encouragement and support.

A special thanks to my friends Pritom Bora, Burak Kilic and my

beautiful girlfriend Josephine Blanc for assisting me in many

different ways.

Abstract

Growing at an extremely rapid rate, the Internet of Things (IoT) de-

vices are becoming a crucial part of our everyday lives. They are

embedded in almost everything we do on a daily basis. From sim-

ple sensors, cell phones, wearable devices to smart city technologies,

we are becoming heavily dependent on such devices. At this cur-

rent state, the Cloud paradigm is being flooded by massive amounts

of data continuously. The current amounts of data is minimal com-

pared to the amounts that we are about to witness in the near future,

mainly because of the 5G deployment expediting and the increase in

network intelligence. This increased data could lead to more network

congestion and higher latency, due to the physical distance between

the devices and the Cloud data centers. Therefore, a need for a new

model is paramount, and will be essential in realizing the Internet

of Everything (IoE) and the next stage in the digital evolution. Fog

computing is one of the promising paradigms, since it extends the

Cloud with intelligent computing units, placed closer to where the

data is being generated to offload the Cloud. This tackles the issues

of latency, mobility and network congestion. In this work we present

a conceptual Fog computing ecosystem, where we model the Cloud

to Fog (C2F) environment. Then we implement two dynamic clus-

tering techniques of Fog nodes to utilize combined resources, using

a semantic description of the Fog nodes’ resources and properties of

the edge devices. Finally, we optimize the assignment of applications

over Fog cluster resources, using Linear programming and a First Fit

Heuristic Algorithm. We evaluate our implementation by analyzing

the differences between the two clustering techniques.

We perform several experiments to evaluate our implementation, and

the results prove that the heuristic optimization of task allocation is

much faster and more consistent than the Linear programming solver,

as expected. Moreover, the results show that clustering Fog nodes is

beneficial in offloading the Cloud and reducing response times.

Contents

1 Introduction 1

1.1 State of the Art . 6

1.1.1 Semantic representation 6

1.1.2 Task placement optimization 7

1.1.3 Environment modeling and simulation 8

1.2 Research Questions . 9

1.3 Thesis Structure . 9

2 Motivation, Scope and Objectives 10

2.1 Motivation . 10

2.2 Scope . 11

2.3 Objectives . 12

3 Methodology, architecture and implementation 14

3.1 Outline . 14

3.2 Methodology . 14

3.3 Architecture . 17

3.4 Implementation . 20

3.4.1 Environment modelling . 20

3.4.1.1 Fog nodes . 20

v

CONTENTS

3.4.1.2 Edge Devices . 21

3.4.1.3 Connections . 22

3.5 System Workflow . 22

3.5.1 Discovery and selection . 22

3.5.2 Semantic reasoning and clustering 23

3.5.3 Task allocation optimization 26

4 Evaluation methodology, experiments and results 31

4.1 Outline . 31

4.2 Evaluation Methodology . 31

4.3 Experiments and results . 32

4.3.1 System performance . 34

4.3.2 Utility of Fog clustering 41

4.4 Discussion . 43

5 Conclusions and Future work 45

5.1 Conclusions . 45

5.2 Future work . 46

5.3 Abbreviations . 48

References 55

vi

List of Figures

3.1 Architecture overview . 17

3.2 Cloud architecture . 18

3.3 Fog node architecture . 19

3.4 Edge device in range of multiple Fog nodes 25

3.5 Edge device in range of a single Fog node 26

3.6 Simulation with 3 Fog nodes and 15 Edge devices 29

4.1 Simulation example of 10 Fog nodes and 250 devices 33

4.2 Response times for 5 Fogs and 100, 250, 400 devices (ILP - FFHA) 35

4.3 Response times for 10 Fogs and 100, 250, 400 devices (ILP - FFHA) 36

4.4 Response times for 20 Fogs and 100, 250, 400 devices (ILP - FFHA) 37

4.5 Run-times (ILP vs FFHA) . 38

4.6 Average response times of different methods of sending applications 42

4.7 Percentage of applications sent using different methods 43

vii

List of Tables

4.1 ILP - Averages and Standard deviations of response times & run-

time . 40

4.2 FFHA - Averages and Standard deviations of response times &

run-time . 40

4.3 Average cluster size . 41

viii

Chapter 1

Introduction

In recent years, the number of Internet of Things (IoT) devices is exponentially

increasing [1], and the data that is being generated from these devices is growing

at an accelerating pace. These devices come in a plethora of different flavors,

from simple sensors for small tasks, to complex systems made up from various

interconnected devices.

The computational demand of different IoT systems can be handled using the

current Cloud-based frameworks [2]. However, applications that require real-time

responses would be hindered due to the physical distance between the devices and

Cloud data centers, which can decrease the Quality of Service (QoS) [3], or, might

even render some applications unattainable. In addition, the massive amounts of

data flowing back and forth from the data centers, have the potential of congest-

ing the back-bone network [4].

Fog computing is introduced in order to overcome such boundaries, and deal

with the increasing number of devices by extending the Cloud to the edge of the

network, allowing applications to run in close proximity of where the data is being

1

generated. Professor Salvatore J. Stolfo [5] coined the term Fog computing [6],

then it has been picked up by Cisco [7].

The Fog is a layer or several layers, consisting of computing components such

as Raspberry Pi devices, routers, switches and Micro-Data Centers (MDC), usu-

ally referred to as Fog nodes, which are heterogeneous and Geo-distributed. They

are introduced between edge devices and Cloud data centers. They offer infras-

tructure resources to store, process and manage data closer to where it is being

generated [8], along with adding networking functionalities. Therefore reducing

application service time due to propagation delay, and the load on the back-

bone network to avoid bottle-necking and congestion. However, Fog nodes are

substantially inferior to Cloud data centers in terms of computational capabilities.

With the 5G broadband mobile network on the horizon, bringing processing

closer to the edge of the network is necessary for the technology to reach its full

potential, and deliver ultra-high-speeds of data transfer, as well as sub-millisecond

latency [9]. This is caused by some 5G communications utilizing high frequency

signals in the millimeter-wave frequency band, and with those high frequency

signals, several issues such as short range and Line-Of-Sight (LoS) arise [9].

Fog Computing provides solutions for numerous applications, especially for

industry 4.0 [10]. An area of application for Fog computing is Self-driving cars.

The sensors of the intelligent vehicles capture an immense amount of information

about the environment and driving conditions, which has to be analyzed and pro-

cessed within a very short time. In order for the vehicles to respond to current

road conditions, traffic conditions and unexpected events and anomalies such as

pothole occurrences [11], it is crucial that processing large amounts of data with

2

minimal latency is possible. Edge computing and Fog computing enable data to

be processed directly in the vehicle, or processed in a device in the vicinity of the

vehicle respectively. At the same time, the network services and central resources

are decoupled.

Another, yet closely related scenario would involve Smart Traffic Light Sys-

tems (STLS), which is a network of traffic lights that intelligently takes decisions

that reduce traffic congestion, minimize noise and fuel consumption, prevent ac-

cidents, and give the drivers a better experience by long-term monitoring [12].

Although the STLS is just a component of the larger idea of smart connected

vehicles and advanced transportation systems, it is rich enough to drive some key

requirements for Fog computing. A traffic light in an STLS should be able to de-

tect vehicles not following traffic rules and inform adjacent traffic lights to notify

vehicles or pedestrians that could potentially be affected by those rogue vehicles

[13]. However, this accident prevention mechanism causes the traffic light cycles

in the affected area to go out of synchronization. Therefore, re-synchronization

is required to mitigate this consequence.

Flow control is essential to ensure a smooth movement of traffic without hav-

ing to make the drivers stop too often. A STLS can collect information about

the level of traffic in each lane of the city, and maintain a lane continuously

open for a certain period of time, reducing the number of times a vehicle would

have to stop at traffic signals. This would reduce congestion, fuel consumption,

and noise, since vehicles would not have to accelerate as often [14]. Moreover,

by monitoring and analyzing the data gathered from the entire system over a

large period of time, the STLS can improve its traffic routing plan continuously.

Through long-term analysis on observed vehicle and pedestrian movements, the

3

STLS would be able to decide the optimal times for which pedestrians should be

allowed to cross.

The design requirements of STLS include:

• Low-latency response: Accident prevention requires a very low response

time to alert the potentially affected entities.

• Handling a large volume of data: A STLS has a large number of sensors

that generate data at a high rate, poor network architecture can be a victim

of bandwidth over-utilization and cause congestion.

• Heavy processing power: Planning requires large amounts of data to be

processed, and the analysis has to be done on a city level.

Sensors that are deployed on the roads and CCTV cameras installed at in-

tersections, are the main data collection points in a STLS. Sensors can detect

crossing vehicles and their speeds. Since any action performed by the STLS is

reflected by a change of traffic lights, the traffic lights are considered the actu-

ators of the system. Each intersection could be equipped with a 5G small-cell

which connects the devices on that intersection, allowing real-time device-to-

device communication among them. These small cells could potentially include a

Fog component [15]. The small cell is also connected to the Cloud by a high band-

width connection through intermediate network devices. These network devices

will be used for communicating with other devices in the neighboring intersec-

tions, which are also Fog-enabled, meaning that they are points for offloading

application logic as well. The device component of STLS are the sensors, CCTV

cameras, and traffic lights. The sensors should be able to send updates to the

small cells over a 5G network. The CCTV cameras should process the recorded

video stream in real-time, to detect events of interest [16]. As for the traffic lights

4

they just change lights according to the decisions taken by the system. Regard-

ing the Fog component, it runs on the small cell in each intersection, as well as

on the intermediate network devices connecting the small cells to the Internet.

The logic running on these devices handles most of the requirements of a STLS.

The Fog component should handle the data sent from the sensors and CCTV

cameras and detect possible accidents, then sends a message to the traffic lights

on corresponding streets, to change lights accordingly in real time. Finally, the

Cloud component is responsible for the long term analysis of the STLS system.

Data about the traffic conditions and events generated from the small cells will

be uploaded to the Cloud at regular intervals, which reduces the volume of data

sent at any given moment to avoid congestion.

Fog computing could also be utilized to semantically enrich data streams

with contextual information, as well as complex event processing in IoT applica-

tions. One use case would be in the field of e-Health, as an anomaly detection,

and classification scenario over an Electrocardiogram (ECG) stream [17]. ECG

signals are processed dynamically and classified with modern machine learning

algorithms. By applying the algorithms in the Fog layer, the data volume can be

reduced, resulting in the reduction of the classification latency, as well as required

processing resources.

In this thesis work, we model a conceptual Cloud to Fog (C2F) environment.

We implement two dynamic clustering techniques for the Fog nodes, so that they

serve applications within a cluster in order to overcome the limitations of Fog

nodes, by utilizing their combined resources. We describe the clustering tech-

niques later in the implementation section of Chapter 3. The proposed approach

first considers an application consisting of a number of tasks, then identifies and

5

1.1 State of the Art

selects suitable Fog nodes to form clusters, and finally sends the tasks to the

selected Fog nodes. We use a mapping algorithm built on a unified semantic

description, that provides a shared vocabulary for representing application re-

quirements and Fog node properties. To establish the allocation of tasks in a Fog

cluster, the proposed solution is optimized using Linear programming (LP) and

a First Fit Heuristic Algorithm (FFHA).

1.1 State of the Art

Our proposed approach relies mainly on describing device properties, and applica-

tion requirements in a unified scheme. It also depends on optimization techniques

to manage the task placement and allocation problem. Moreover, simulating the

entire environment is crucial for testing and evaluation. Correspondingly, this

section presents an overview of existing works in the aforementioned technologi-

cal backgrounds, with regard to the scope of this project.

1.1.1 Semantic representation

IoT and IoE environments integrate a broad spectrum of interconnected smart

objects and networking devices with heterogeneous capabilities. The data flow-

ing within such environments inherently has a huge amount of different com-

positions coming from different domains, rendering the comprehensibility of the

environment rather overwhelming. Therefore, adding a semantic description and

representation of the task requirements, properties of the Fog nodes and the

connections between them, is highly beneficial in utilizing a given system in an

efficient way.

6

1.1 State of the Art

Semantic Web technologies are developed for this purpose, since they facil-

itate unified data representation, and have been popularly used in the context

of heterogeneous IoT environments, with the goal of addressing system inter-

operability and incorporation related challenges [18]. Using the Semantic Web

technology stack to represent data in a uniform and homogeneous manner, with

situation awareness across distributed sensing nodes [19]. Semantic Sensor Net-

work Ontology (SSNO) [20] is one of the main products of this initiative, SSNO

is a community-directed vocabulary, modeling the sector of physical sensor net-

works. The Web of Things (WoT) [21] is yet another promising initiative that

combines the Semantic Web and the IoT to implement a Web of physical smart

things.

1.1.2 Task placement optimization

The decentralized computation within Fog clusters can be significant in improving

application response times, and decreasing network congestion, which benefits a

number of IoT scenarios such as smart city or smart grid scenarios, where a large

volume of data needs to be processed in real-time. Breaking down the applica-

tions into tasks, and sending them to a number of Fog nodes to be processed.

This raises the issue of optimizing the task placement, considering the variety of

the requirements of the tasks and the available resources of each Fog node.

This could be modeled as an Integer Linear Programming (ILP) or a Mixed

Linear Programming (MILP) optimization problem to find the optimal solution.

One study models the application service placement over Fog resources for IoT

as an ILP problem, considering the heterogeneity of applications and resources in

7

1.1 State of the Art

terms of QoS attributes. However, in a real life scenario where the number of Fog

nodes and edge devices are high, this approach will take a rather long time to find

the optimal solution. This shortcoming is then addressed by proposing a Greedy

First Fit Heuristic and a genetic algorithm as a problem resolution heuristic [22].

The results show that a faster response time is achieved when using the genetic

algorithm, but a better utilization of Fog resources when using the Linear Pro-

gramming (LP) optimization model.

1.1.3 Environment modeling and simulation

In order to test and evaluate such a complex environment that integrates di-

verse policies with different configurations, a platform or scheme that enables the

quantification of performance of resource management strategies, proves essen-

tial. One way to approach this is through modeling and simulation.

iFogSim is a simulation tool written in Java for IoT, Edge and Fog Computing

environments [23]. It allows the investigation and comparison of resource man-

agement techniques based on certain criteria, such as network congestion, network

latency, cost, and energy consumption. Other studies have used iFogSim in their

research such as [24] and [25]. YAFS is yet another discrete event simulation

tool for Fog and IoT environments, written in Python [26]. YAFS incorporates

the simulation of factors such as dynamic link and node failures, user mobil-

ity, network congestion, and application popularity, among other aspects. YAFS

also accomplishes several design objectives, since it incorporates describing the

network topology based on complex network theory, a user customized configu-

ration of policies, a light syntax, and a dynamic invocation of policies during the

simulation.

8

1.2 Research Questions

1.2 Research Questions

In this work, we intend to answer the following questions:

• How to model and simulate the Cloud - Fog environment?

• How to allocate applications to Fog nodes within a cluster using

semantic description of resources and application requirements?

• What are the differences in response times and the number of

devices being served in different scenarios?

• What are the differences in execution time and the quality of

optimization when using LP and heuristic methods?

1.3 Thesis Structure

The thesis will be structured as follows. Chapter 2 will explain the motivation be-

hind solving the aforementioned research questions, the scope and the objectives

of the project. Chapter 3 explains in detail the methodology, architecture and

the implementation of the system. Next, in Chapter 4, we present our evaluation

scheme of the system, the conducted experiments and assess the results of our

proposed implementation. Finally, in Chapter 5, we present our final thoughts,

conclusions and future work.

9

Chapter 2

Motivation, Scope and Objectives

2.1 Motivation

The number of devices connected to the internet is expected to reach over 75 bil-

lion devices in 2025 [1]. That is an extremely large number of devices, which will

impose a corresponding increase in communications. This makes relying solely

on the Cloud paradigm infeasible. Several studies present and explain edge and

Fog computing, and how they could be the go-to solution to compensate for such

massive amounts of data, and for good reason.

From providing some insights on service placement in Cloud to Fog (C2F) en-

vironments in [27], to presenting a conceptual framework that tackles the resource

provisioning problem [25], to [28], where a profit-aware application placement pol-

icy for integrated Fog-Cloud environments is proposed.

These efforts all converge to serve in realizing the Fog computing paradigm,

which promises to reduce service latency and enable critical applications requiring

real-time responses, reduce the network congestion and the energy consumption,

10

2.2 Scope

while also bringing beneficial security aspects [27]. Fog nodes are also known as

Micro-data centers, Mini-Clouds or Cloud-lets, see [29] for insights on how Fog

nodes may be defined.

The Fog computing principle has not yet matured enough to be successfully

adopted for commercial and industrial use. However, the theoretical foundations

are mostly well established [25]. Recent researches enabled the grouping of com-

puting resources from multiple edge devices, to handle data-intensive tasks using

Big Data clustering middle-ware. The use of these solutions is still being held

back by the resource constrictions on the devices, the device variety, and the

time-critical, mobile and alternating nature of IoT environments [30]. A dynamic

clustering technique for Fog nodes could aid in addressing these issues.

Regarding this thesis work, we implement and evaluate two dynamic clus-

tering policies of Fog nodes, based on a semantic description of Fog resources

and application requirements, enabling the processing of more demanding appli-

cations.

2.2 Scope

The scope of this thesis includes the modeling and simulation of the C2F environ-

ment for testing different scenarios. These scenarios are constructed to compare

between Cloud-to-device and Fog-to-device communications in terms of response

times, based on a unified semantic description of resources and application re-

quirements. Furthermore, we address the task allocation problem with two opti-

mization techniques.

11

2.3 Objectives

Issues regarding 5G (line of sight, wave frequency, etc..) are not considered in

this thesis. Software compatibility between applications and Fog nodes is key for

realizing Fog computing architectures. Furthermore, job handling and scheduling

are essential features [30]. Security of the Fog nodes and the communication links

is evidently a major concern [28]. However, the aforementioned aspects are out of

this project’s scope, and would rather be considered as related research or further

future work.

2.3 Objectives

The project has several objectives that consist of (1) modeling and simulating

the C2F environment; (2) optimizing task allocation; (3) evaluating the proposed

clustering techniques;

Regarding the constraints mentioned above, we define the problem statement

as: How to model and simulate the C2F ecosystem, using semantic de-

scription of Fog devices and applications, to allocate given tasks to

offload some of the processing load from the Cloud?

To tackle this problem, in the section below we define a set of objectives:

• Modeling and simulating the environment consisting of:

– Cloud entity

– Fog nodes

– Edge devices

• Clustering Fog nodes to serve a given application

– In-range Clustering

12

2.3 Objectives

– Neighbor Clustering

• Optimizing the task allocation in a cluster using:

– Linear Programming

– Heuristics

• Evaluating the proposed implementation in terms of:

– Application response times

– Bench-marking the optimization techniques

– Assessing the utility of the clustering techniques

The clustering techniques mentioned above will be explained later in the im-

plementation section of the next chapter. Finally, we will evaluate the results by

comparing the information gathered from our tests presented in Chapter 4.

13

Chapter 3

Methodology, architecture and

implementation

3.1 Outline

In this chapter, we present our methodology of our implementation, and we ex-

plain the architecture of the system and its components. Then we describe how

we modeled the simulation environment.

3.2 Methodology

We approach the problem by viewing the system as a network, consisting of a

number of nodes. This network consists of a Cloud node, multiple Fog nodes and

edge devices. On one hand, the Cloud node will always have the same coordi-

nates that can be set prior to the simulation. The Fog nodes and edge devices,

on the other hand, are going to be generated with random coordinates following

a uniform distribution. The number of generated nodes is set before running the

simulation.

14

3.2 Methodology

We first assume that the Fog nodes are connected to the Cloud node by de-

fault, regardless of the distances between them. However, concerning the edge

devices, they will not have any connections to either the Cloud node, nor to any of

the Fog nodes initially. We can then start connecting edge devices to Fog nodes,

if they fall within a predefined coverage range set for each of the Fog nodes. We

assume the distances from the Cloud to the Fog nodes to be around 5km, be-

ing the estimated distance between central Barcelona (Plaça de Catalunya) and

Barcelona Super-computing Center (BSC).

As the scope of this project is not concerned with application deployment

and job handling, we assume that each edge device will have only one request, or

application, made up of a number of tasks with certain requirements.

We model three scenarios:

1. When a device does not fall in range of any Fog node:

(a) The application will be directly sent to the Cloud.

2. When a device falls in range of only one Fog node:

(a) This node has the sufficient resources, then the application is sent as

a whole to this node.

(b) This node does not have the resources required by the device, then the

node will start checking if there are any neighboring Fog nodes in its

range, that could be incorporated to form a Neighbor Cluster.

(c) There are no Fog nodes in range to form a cluster, or the potential

neighbor clusters could not handle the application, then the request

15

3.2 Methodology

is forwarded to the Cloud through the initial node that received the

request.

3. When a device falls in range of multiple Fog nodes:

(a) At least one node has the sufficient resources, then the application is

sent as a whole to the node which gives the shortest response time.

(b) None of the nodes can solely handle the request, then they check if

more than one node can handle the application together to form an

In-range Cluster.

(c) The potential In-range clusters do not have the needed resources, then

the in-range nodes will start checking for neighbor nodes to incorporate

to form a new neighbor cluster.

(d) The potential neighbor clusters can not handle the request, then the

request is forwarded to the Cloud through the node with the closest

proximity to the device.

The choice of which Fog node is the most suitable to incorporate to form either

an In-range cluster, or a Neighbor cluster, in order to serve a request, is based on

a semantic description of the nodes’ resources and application requirements: such

as the memory, the compute power of a node, the number of tasks, task size and

the number of instructions of a task. The distribution of tasks of an application

among Fog nodes within a cluster, is treated as an optimization problem with

the objective of minimizing the number of nodes used, and the response time.

16

3.3 Architecture

3.3 Architecture

As mentioned before in the introduction, Fog nodes could be composed of one or

more layers, however in our implementation we consider just one layer between

the Cloud and the edge devices.

Figure 3.1: Architecture overview

17

3.3 Architecture

As shown in Figure 3.1 we first have a Cloud layer which contains the Cloud

infrastructure, then the Fog layer containing the Fog nodes which are connected

to the Cloud through the internet. The connections between the Cloud and the

Fog nodes pass through several hops. The physical distance between the Cloud

data centers, and the Fog nodes affects data transfer rate, since it increases both

latency and potential packet loss. The Fog nodes are directly connected to the

edge devices i.e one hop away, which makes the data transfer faster, more stable

and reliable.

The Cloud node has abundant memory and processing power, while the Fog

nodes are rather limited in comparison. The edge devices in our system will just

have one application each that they need to run using certain specifications.

Figure 3.2: Cloud architecture

We describe the Cloud in Figure 3.2 as a system that consists mainly of a

processing component, memory component, management and operating systems.

The memory incorporates containers as virtualization technology for application

delivery and execution.

18

3.3 Architecture

Figure 3.3: Fog node architecture

Similarly, the Fog nodes as shown in Figure 3.3 consist of the same building

blocks of the Cloud, but with far more less memory and computational power.

Fog nodes may benefit greatly from containers because of their lightweight and

resource-friendly structure [31].

19

3.4 Implementation

3.4 Implementation

We implemented the simulation using Python 3.8.2, which is the latest stable

version of Python as the time of writing and development. The main library

used is the NetworkX version 2.4, which enabled us to define and manipulate the

nodes, and the connections between them. Additionally, the library includes a

number of useful functions that create a myriad of options for creating different

networks for testing and analyzing the results.

3.4.1 Environment modelling

In this project, we describe the Cloud and the Fog nodes as computing entities

that contain CPU and memory. In real life there are several other factors that

determine the performance of a machine such as memory bus speed, and type of

storage technology just to mention a few.

3.4.1.1 Fog nodes

We describe each node with the following attributes:

• MIPS: Million instructions per second

• RAM: Memory capacity

• Range: Range of node in meters

Realistically, the Cloud has elastic memory and compute power, which are

expandable if needed. In our system, the Cloud will have a fixed 5000 MIPS and

64000 MB of RAM. We consider that the Fog node resources could potentially

be similar to Raspberry Pi like devices. Therefore, in our implementation we use

the specifications and benchmarks of Raspberry Pi models 4, 3A+, 3B+ and B

20

3.4 Implementation

[32] for the Fog node attributes. As Fog nodes could potentially be placed within

5G small cells [15], they will inherently have the same coverage range. Thus, the

Fog nodes will be generated at random positions and will have varying attributes

ranging from 200 MIPS to 900 MIPS for compute power, and from 512 MB

to 4096 MB of RAM, and 500 m to 2500 m for the Range.

3.4.1.2 Edge Devices

Similarly we model the applications that the edge devices are going to request

using the following attributes:

• Tasks: Number of tasks

• Tsize: Size of each task

• TmINS: Number of instructions in each task (in millions)

How an application would perform in the real world depends on a lot of differ-

ent factors such as complexity, inter-dependencies and third-Party components,

among many others. However, we follow a more simple path with Edge devices

similar to their Fog counterparts, where they are also generated at random posi-

tions and assigned random attributes. Each application will have both a common

Tsize and a common TmINS, ranging from 32 MB to 256 MB, and from 1

million instructions to 5 million instructions respectively. The number of

tasks ranges from 1 to 100 Tasks.

21

3.5 System Workflow

3.4.1.3 Connections

As for the connections between the nodes, we assign them the following attributes:

• DR: Data Rate

For the values we used for the data rates, we followed the theoretical per-

formance metrics regarding the 5G broadband cellular network [33]. We apply

this only for the connections between Fog nodes and edge devices, for the connec-

tions either between Fog nodes and Cloud, or edge devices and Cloud we follow

the current values of Ethernet and 4G network [34] [35]. Since different environ-

ments will have different data rates, we generate data rates for the connections

at random, ranging from 1000 Mb/s to 10000 Mb/s for the Fog to device con-

nections, and from 100 Mb/s to 1000 Mb/s for the Fog to Cloud and device

to Cloud connections.

3.5 System Workflow

As mentioned before, the Cloud node is always generated in a fixed position with

fixed attributes, the Fog nodes are generated at random positions with random

attributes, and are all connected to the Cloud node. Then, the edge devices are

also generated at random positions, with random attributes for their applications.

However, the edge devices initially do not have any connections.

3.5.1 Discovery and selection

An edge device has to fall within range of a Fog node in order to have the poten-

tial to connect with that node. Furthermore, if a device falls in range of multiple

Fog nodes, they will all be added to a candidate list which will be used to find

22

3.5 System Workflow

which Fog node is best for serving the application or for creating potential In-

range clusters.

3.5.2 Semantic reasoning and clustering

Since we have a unified description of the Fog node resources and the require-

ments of each application in the edge devices, we can formulate an algorithm to

determine how the application is sent, whether through a single Fog node, an

In-range cluster, a neighbor cluster, or directly to the Cloud.

The algorithm first adds all Fog nodes in range of a device to a candidate

list, then performs a memory check on the nodes in that list to find the nodes

that could handle the application exclusively. The memory check verifies if the

memory of a Fog node is enough to accommodate the application depending on

its size, then if there is one or more nodes that pass the memory test, their

corresponding response time is calculated, and the application is sent to the node

with the minimum response time.

In the case that all nodes in the candidate list fail the initial memory check,

the algorithm performs a combined memory check by using different combinations

of the nodes in the list to check if any combination has the required resources. The

combinations that pass the check are considered as potential In-range clusters.

Then, the application’s tasks are divided among the nodes in the cluster that

gives the minimum response time, and uses the least number of nodes.

If all the combinations did not pass the second memory check, then the

nodes in the candidate list will check for any neighbor nodes in range. The

algorithm then performs another combined memory check for all the possible

combinations of in range and neighbor nodes. The combinations that pass the

23

3.5 System Workflow

check are considered as potential Neighbor clusters. The application’s tasks are

then divided among the nodes in the cluster that gives the minimum response

time, and uses the least number of nodes.

Supposing that all potential neighbor clusters fail the third check, then the

application is forwarded to the Cloud through the node in the candidate list that

has the fastest link to the device. Moreover, if a device does not fall within a

range of any of the generated Fog nodes, its application is directly sent to the

Cloud.

We calculate the response time using the following equations:

Response time = Processing time + Network Latency

Where:

Processing time =
Number of Instructions

Number of Instructions per Second

Network Latency = Propagation Delay + Serialization Delay

And:

Propagation Delay =
Distance

Speed of Medium

Serialization Delay =
Package Size

Data Rate

24

3.5 System Workflow

Regarding the Processing time, we already have the Number of Instruc-

tions and the Number of Instructions per Second, from the edge device

and Fog node attributes respectively. For the Propagation Delay, we already

have calculated the Distance between any given Fog node and any edge device,

and we assume that the Speed of Medium is equal to the speed of light. As for

the Serialization Delay, the Package Size is the number of tasks in a given

edge device multiplied by the size of the task, and the Data Rate is already

defined as an attribute to each connection.

Figure 3.4 and Figure 3.5 show the workflow of when a device falls in range of

multiple Fog nodes and when a device is in range of just one Fog node respectively.

Figure 3.4: Edge device in range of multiple Fog nodes

25

3.5 System Workflow

Figure 3.5: Edge device in range of a single Fog node

3.5.3 Task allocation optimization

The responsibility of the solver in our system, is to perform the mapping be-

tween the tasks in an application to Fog nodes within a cluster. Its function is

to find which Fog node is going to execute which tasks of an application. Thus,

mapping could be considered as an optimization problem. The problem could be

described as a variant to the bin-packing problem [36], where we have a number

of items that we want to place in a number of bins, with a common capacity and

minimize the number of used bins. Unlike the traditional problem, we will have

different capacities to represent the memory of the Fog nodes. We first apply ILP

to get the optimum solution, then we solve the problem using a First Fit Heuris-

tic Algorithm (FFHA) [37] approach to decrease the run-time of the optimization.

The objective is minimizing both the number of Fog nodes used, and the

processing time by allocating as many tasks to Fog nodes with higher CPU as

26

3.5 System Workflow

possible.

We formalize the problem as follows:

Objective:

min ∑
f∈F

fpt × f used

Where:

• f : Fog node.

• F : Set of Fog nodes.

• fpt : processing time of node f.

• f used: equals 1 if node f is used, 0 otherwise.

subject to:

• constraint 1:

∀t ∈ T ∶

∑
f∈F

xtf = 1

• constraint 2:

∀f ∈ F ∶

∑
t∈T

t size × xtf ≤ fRAM × f

Where:

• xtf : equals 1 if task t is placed in Fog node f, 0 otherwise.

27

3.5 System Workflow

• tsize: Size of task t

• fram: RAM capacity of f.

The constraints 1 and 2, make sure that a task can only exist in one Fog

node, and that the sum of task sizes cannot exceed the memory capacity of the

Fog node they are placed in respectively.

For the ILP method, we use the PuLP Python package to solve the op-

timization problem. PuLP can generate Mathematical Programming System

(MPS) or Linear Programming (LP) files and call GLPK [38], COIN CLP/CBC

[39], CPLEX [40], and GUROBI [41] to solve linear problems. PuLP uses Coin-

or Branch and Cut (CBC) as its default solver, which is an open-source mixed

integer programming solver written in C++.

For the FFHA, we define our own algorithm to solve our specific problem,

where we have a variable number to represent Fog node’s RAM. The following

snippet shows the pseudo-code of the FFHA implementation:

Algorithm 1 First Fit Heuristic Algorithm

for Fogs = 1, 2, . . . do
for index = 1, 2, . . . , inRangeFogSizes.length do

Assign taskSize in sizes to sizes[index][1]
if filledFogselectedFogSize . . . then

if taskSize <= (FogSize − filledFogSize) then
filledFog + taskSize

else
break

end if
else

return to loop
end if

end for
Return assignment results

end for

28

3.5 System Workflow

Figure 3.6: Simulation with 3 Fog nodes and 15 Edge devices

As mentioned before, every time we run the simulation, the Fog nodes and

the edge devices are generated in different positions with random attributes. Fig-

ure 3.6 shows an instance of our simulation with 5 Fog nodes and 10 edge devices,

where the nodes are represented using color coded circles. The Cloud node in

red, the Fog nodes in blue and the edge devices in green. As we can see, all

Fog nodes are connected to the Cloud node, while the lines between the edge

29

3.5 System Workflow

devices and the Fog nodes represent if a device is in the range of a Fog node. The

actual links are determined after the aforementioned calculations, to get the opti-

mal connections. The connections between Fog nodes and other Fog nodes show

that a neighbor cluster was formed. In this particular case, it happened between

nodes f1 and f3. As we can see edge devices d1, d3, d9, and d10 did not fall in

the range of any of the Fog nodes, therefore they connected directly to the Cloud.

In the next chapter we present how we intend to assess the proposed solution

and discuss the experiments done on our system, and analyze the results to get

insights about its strong points and weaknesses.

30

Chapter 4

Evaluation methodology,

experiments and results

4.1 Outline

In this chapter, we state how we intend to evaluate the system, then we present

the experiments done on the system and review the obtained results. Lastly, we

highlight the strengths and shortcomings of our implementation.

4.2 Evaluation Methodology

To assess the performance of our implementation, we benchmark the overall pro-

cess by running the simulation with different sets of numbers for the Fog nodes

and the devices. Since the semantic reasoning and clustering directly affects the

overall all performance, we can test for how the system scales by increasing the

number of the Fog nodes and edge devices. Moreover, we compare between the

two solvers we used by focusing on the differences in run-times, and the appli-

cation response times obtained from the varied possible scenarios of how the

31

4.3 Experiments and results

application is being sent.

These scenarios are:

• The application is directly sent to the Cloud

• The application is sent to the Cloud through a Fog node

• The application is sent to a single Fog node

• The application is sent to an In-range cluster

• The application is sent to a neighbor cluster

We evaluate the utility of the two proposed clustering techniques, by compar-

ing and the response times obtained from each method of sending applications.

4.3 Experiments and results

The machine specifications that the simulations are being executed on, will cer-

tainly have an effect on the performance of the system and the obtained results.

All tests where executed on a single machine with the following specifications:

• Operating system: Windows 10 Pro

• CPU: Intel Core i7-4710HQ @ 2.5 Ghz, base Clock Speed up to 3.5 Ghz

Turbo Speed, 6MB L3 cache

• Memory: 16GB DDR3 @ 1600 MHz, Dual channel

• Storage: 500 GB NAND Sata SSD

32

4.3 Experiments and results

Since the simulation generates random attributes for the Fog nodes, the edge

devices and the connections, we have to run the simulation for number of times

and calculate the means of the values to acquire decisive results. On one hand,

for bench-marking and comparison between the run-times of the solvers, we ran

the simulation using different sets of numbers for the Fog nodes and edge devices.

For each set of numbers, we ran the simulation 50 times with the ILP solver, and

50 times with the FFHA. On the other hand, for the response time analysis, we

run the simulation with the same number of Fog nodes and edge devices 50 times.

In that manner, we focus on how the clustering techniques affect the response

times. Figure 4.1 shows an example of the simulation with 5 Fog nodes and 250

edge devices.

Figure 4.1: Simulation example of 10 Fog nodes and 250 devices

33

4.3 Experiments and results

4.3.1 System performance

To evaluate the optimization techniques used to solve the task allocation prob-

lem, we focus on the response times of the applications in different scenarios, and

we measure the average run-time for all the scenarios. We ran the simulation

with the following sets of parameters 50 times with the ILP solver and 50 times

with the FFHA.

• 5 Fog nodes with 100, 250 and 400 edge devices

• 10 Fog nodes with 100, 250 and 400 edge devices

• 20 Fog nodes with 100, 250 and 400 edge devices

34

4.3 Experiments and results

(a) 5 Fogs-100 devices

(b) 5 Fogs-250 devices

(c) 5 Fogs-400 devices

Figure 4.2: Response times for 5 Fogs and 100, 250, 400 devices (ILP - FFHA)

As expected, the results show that the ILP solver acquires slightly better

response times than that of the FFHA, in the case of running the simulation with

5 Fog nodes and 100, 250, and 400 devices as shown in Figure 4.2.

35

4.3 Experiments and results

(a) 10 Fogs-100 devices

(b) 10 Fogs-250 devices

(c) 10 Fogs-400 devices

Figure 4.3: Response times for 10 Fogs and 100, 250, 400 devices (ILP - FFHA)

When running the simulation with 10 Fog nodes and the same sets of de-

vices, the results show that in some cases, the FFHA gets better response times

compared to the ILP solver as shown in Figure 4.3.

36

4.3 Experiments and results

(a) 20 Fogs-100 devices

(b) 20 Fogs-250 devices

(c) 20 Fogs-400 devices

Figure 4.4: Response times for 20 Fogs and 100, 250, 400 devices (ILP - FFHA)

The Figure 4.4 shows the results when running the simulation with 20 Fog

nodes. We can see that the results are similar to running the simulation with 10

Fog nodes. Where the ILP solver performs slightly better than the FFHA, yet

the difference is not significant.

37

4.3 Experiments and results

Overall, regarding the application response times, given the different meth-

ods of sending the application. The results gathered from running the simulation

with the aforementioned sets of numbers for the Fog nodes and the devices, we

can deduce that the ILP solver has a slight edge over the FFHA. However, the

difference is rather minor. That is due to the fact that we perform the memory

checks mentioned in Chapter 3, as an initial filter, then the solvers optimize where

the tasks are processed to get the least possible response time.

In contrast, when reviewing the run-times of the simulations, there is a sub-

stantial difference between the performance of the ILP solver and the FFHA,

where the FFHA performs much faster than the ILP solver as shown in Figure

4.5.

Figure 4.5: Run-times (ILP vs FFHA)

On one hand, increasing the number of edge devices linearly affects the run-

time. On the other hand, we can see an exponential increase in run-time when

increasing the number of Fog nodes, which is unsurprising, since this increases

38

4.3 Experiments and results

the number combinations when forming either an in-range or neighbor cluster.

39

4.3 Experiments and results

To measure the consistency of the optimization techniques, we calculate the

standard deviation, of both the response times and the run-times by conducting

another experiment, using an instance size of 10 Fog nodes and 100 devices, and

100 iterations. Additionally, we calculated the number of Fog nodes in the clusters

from the same instance, to give insight on the size of the clusters. Tables 4.1

and 4.2 show the average response times and run-times with their corresponding

Standard Deviations (STD), when running the simulation using the ILP solver

and the FFHA respectively.

ILP
Avg response times Response times STD

Cloud direct 17.1991722 8.71893098
Cloud through Fog 2.18383078 0.23542268
Single Fog 0.43523073 0.10711002
In-range cluster 1.09988548 0.21959514
Neighbor cluster 0.88225381 0.21159424

Avg run-time Run-time STD
3.82993240 0.81419498

Table 4.1: ILP - Averages and Standard deviations of response times & run-time

FFHA
Avg response times Response times STD

Cloud direct 18.2210832 10.5720824
Cloud through Fog 2.19942492 0.26223306
Single Fog 0.45561651 0.11327142
In-range cluster 1.09464597 0.19415273
Neighbor cluster 0.93392979 0.22757457

Avg run-time Run-time STD
0.22792500 0.09110830

Table 4.2: FFHA - Averages and Standard deviations of response times & run-
time

When comparing the run-times STD, we can see that the FFHA behaves

more consistently than the ILP solver, with less deviation.

40

4.3 Experiments and results

Table 4.3 presents the average number of Fog nodes in both the in-range

clusters and the neighbor clusters. We can see that the numbers are marginally

higher when using the FFHA, which indicates that when using the ILP solver,

we obtain clusters containing less Fog nodes. Conclusively, the results reflect our

choice of Fog node and application properties.

Cluster size
Type ILP FFHA
In-range cluster 2.713035699 2.912991401
Neighbor cluster 3.294254702 3.50243713

Table 4.3: Average cluster size

4.3.2 Utility of Fog clustering

We focus mainly on two aspects to evaluate the utility of our proposed clustering

techniques. First, we analyze the overall response times gathered from the differ-

ent methods of sending the application, regardless of the optimization technique.

Next, we consider the number of devices being served by the Fog layer when no

clustering technique is applied, using only in-range clustering, and using both

in-range and neighbor clustering.

41

4.3 Experiments and results

Figure 4.6: Average response times of different methods of sending applications

Figure 4.6 shows the difference in application response times when sending

the application using different methods. As we can see, the difference between

sending the application directly to the Cloud and utilizing the Fog paradigm is

huge, which is expected due to the physical distance and number of hops be-

tween the devices and the Cloud. Moreover the data rate of the connection is

much slower compared to the ones between the Fog nodes and the devices. Pro-

cessing an application in a single Fog node provides the fastest response time,

since no task allocation optimization takes place, and also because that applica-

tion is just being sent over one link.

Our proposed clustering techniques deliver relatively fast response times,

while enabling the service of a larger number of applications, with more de-

42

4.4 Discussion

manding requirements. Figure 4.7, presents the percentages of applications being

served regarding the different scenarios of how the applications are being sent and

processed; directly to the Cloud, Cloud through a Fog node, a single Fog node,

in-range clusters and neighbor clusters. We obtained the percentages shown in

Figure 4.7, by running the simulation using 10 Fog nodes and 100 edge devices

for 100 iterations, without any clustering techniques, with only the In-range clus-

tering, and with both In-range and neighbor clustering. The results show a

significant decrease in applications being sent to the Cloud when applying the

clustering techniques, which in turn results in faster response times overall.

Figure 4.7: Percentage of applications sent using different methods

4.4 Discussion

Our implementation shows that there is a massive gain in response times when

utilizing the Fog computing paradigm, compared to just relying on the Cloud.

43

4.4 Discussion

After reviewing the results, it is apparent that the application response times

are fundamentally faster when utilizing Fog nodes or clusters. While it is faster

to process an application in a single Fog node, than to divide its tasks among

several nodes within a cluster, some applications are more demanding and will

require more resources than those of a single Fog node. Although the response

times are slower when processing an application in a cluster, our implementation

addresses the issue of processing more demanding applications in the Fog layer.

In our simulation, we just considered one type of application profile, while in

real-life scenarios, we have to consider a variety of application and task types,

which in consequence will behave differently, and give varying results. Regrading

the scalability of our implementation, one notable observation, is that the sys-

tem starts experiencing crashes when simulating the system with more than 30

Fog nodes and 2000 edge devices. Furthermore, the values of the response times

gathered from the results, where the application is sent to an in-range cluster or

a neighbor cluster, do not support the real-time response requirement [42]. The

reason being, that in our simulation we run all processes on one local machine. In

a real-life test environment, the semantic reasoning and task allocation optimiza-

tion should be processed in each of the Fog nodes, which will potentially reduce

the response times.

44

Chapter 5

Conclusions and Future work

5.1 Conclusions

Fog computing is a very promising paradigm, and coupled with 5G broadband

network they could prove essential in realizing the next stage of digital evolution.

Its main role is to take some of the load off the Cloud, either by processing entire

applications or by pre-processing the data, then sending it to the Cloud. However,

there are several of its aspects need to be addressed for it to be adopted in real-

life infrastructures. One of those aspects is related to the hardware limitations

of the Fog devices. With edge devices progressively incorporating more powerful

hardware, the requirements of their requests, grows correspondingly. Cluster-

ing of Fog devices could feasibly address this issue. In this thesis, we proposed

two dynamic clustering techniques for Fog nodes, using a semantic description of

their resources and the application’s requirements to answer the research ques-

tions, presented in Chapter 1. The first technique involves clustering the Fog

nodes that are in range of an edge device, while the other technique incorporates

the clustering of Fog nodes in the vicinity of other Fog nodes. Additionally, we

modeled and simulated the C2F environment using Python to test different sce-

45

5.2 Future work

narios. However, the clustering of Fog nodes leads to another concern, namely,

the task allocation problem. In order to manage the issue that we modeled as an

optimization problem, we used the PuLP python package to implement an ILP

solver. This solver finds the optimal solution, but its run-time is greatly affected

by the number of Fog nodes and edge devices. Consequently, we implemented a

FFHA to minimize the effect of instance size on run-time. We then ran several

tests against the system to evaluate its performance. The experiments showed

that applying the FFHA achieved similar results to those of the ILP solver, but

with a major decrease in run-time. Furthermore, we showed the difference in

response times when sending applications directly to the Cloud, and to either

a single Fog node, an in-range cluster, or a neighbor cluster. We also assessed

the utility of Fog clustering, by comparing the number of applications being sent

directly to the Cloud when no clustering method is applied, when only applying

in-range clustering, and when applying both in-range and neighbor clustering.

The results suggest that Fog node clustering enables more demanding applica-

tions to be processed in the Fog layer, which in turn reliefs the Cloud from some

its workload.

To conclude, we acknowledge that this thesis work has accomplished the

proposed objectives mentioned in Chapter 1, through the demonstrated research,

implementation and the results obtained from analyzing the outcomes of the

simulations.

5.2 Future work

While our proposed implementation presents and evaluates two clustering tech-

niques for Fog nodes, as regard to the scope of the project, evidently, there is

still more work to be done in the field. Our implementation is executed on one

46

5.2 Future work

local machine, which leaves room for a more realistic testing by employing real

machines for the Cloud, Fog nodes and edge devices. Additionally, job handling,

scheduling and queuing are key factors in developing a fully functional system.

By utilizing real-life data sets obtained from the increasing number of connected

devices generating, processing, and sending heterogeneous data, could lead to

more realistic results. Finally, security is undoubtedly a major concern that can

not be overlooked. The increased amount of connected devices and Machine to

Machine (M2M) communication, potentially raises more security vulnerabilities

that can be exploited.

47

5.3 Abbreviations

5.3 Abbreviations

• IoT: Internet of Things

• IoE: Internet of Everything

• QoS: Quality of Service

• LoS: Line of Sight

• MDC: Micro Data Center

• C2F: Cloud to Fog

• STLS: Smart Traffic Light System

• ECG: Electrocardiogram

• WoT: Web of Things

• MILP: Mixed Integer Linear Programming

• ILP: Integer Linear Programming

• CBC: Coin-or Branch and Cut

• LP: Linear Programming

• WSGA: Weighted Sum Genetic Algorithm

• NSGA-II: Non-dominated Sorting Genetic Algorithm II

• MOEA/D: Multi Objective Evolutionary Algorithm based on Decompo-

sition

• FFHA: First Fit Heuristic Algorithm

48

5.3 Abbreviations

• MIPS: Million Instructions per Second

• RAM: Random Access Memory

• DR: Data Rate

• MPS: Mathematical Programming System

• M2M: Machine to Machine

• STD: Standard Deviation

49

References

[1] IHS Markit Ltd. IoT platforms: Enabling the Internet of Things. White

Paper, pages 4–5, 2016.

[2] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and

future directions. Future Gener. Comput. Syst., 29(7):1645–1660, 2013.

[3] Harshit Gupta, Sandip Chakraborty, Soumya K. Ghosh, and Rajkumar

Buyya. Fog computing in 5g networks: an application perspective. 2017.

[4] Mahbuba Afrin, Md Mahmud, and Md. Abdur Razzaque. Real time detec-

tion of speed breakers and warning system for on-road drivers. Test, pages

495–498, 12 2015.

[5] Noah Shachtman. Feds look to fight leaks with ’fog of disinformation’, July

2012. Accessed 2020-02-12.

[6] Jonathan Bar-Magen. Fog computing: introduction to a new cloud evolution.

2013.

[7] Cisco Systems. Cisco delivers vision of fog computing to accelerate value

from billions of connected devices, January 29 2014. Accessed 2020-02-14.

50

REFERENCES

[8] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog

computing and its role in the internet of things. Test, pages 13–16, 2012.

[9] Raed Shubair and Fatima Al-Ogaili. Millimeter-wave mobile communications

for 5g: Challenges and opportunities. 06 2016.

[10] Rainer Schmidt, Michael Möhring, Ralf-Christian Härting, Christopher Re-

ichstein, Pascal Neumaier, and Philip Jozinović. Industry 4.0 - potentials for

creating smart products: Empirical research results. pages 16–27, 2015.

[11] Fatos Xhafa, Burak Kilic, and Paul Krause. Evaluation of iot stream process-

ing at edge computing layer for semantic data enrichment. Future Generation

Computer Systems, 105, 12 2019.

[12] Stefan Lämmer and Dirk Helbing. Self-control of traffic lights and vehicle

flows in urban road networks. Journal of Statistical Mechanics: Theory and

Experiment, 2008(04):P04019, apr 2008.

[13] Roxanne Hawi, George Okeyo, and Michael Kimwele. Techniques for smart

traffic control: An in-depth review. International Journal of Computer Ap-

plications Technology and Research, 4:566–573, 07 2015.

[14] Tahere Royani, Javad Haddadnia, and Mohammad Alipoor. Control of traffic

light in isolated intersections using fuzzy neural network and genetic algo-

rithm. International Journal of Computer and Electrical Engineering, pages

142–146, 01 2013.

[15] Seiamak Vahid, Rahim Tafazolli, and Marcin Filo. Small cells for 5g mobile

networks. pages 63–104, 05 2015.

[16] Rui Peng, Alexander Aved, and Kien Hua. Real-time query processing on

live videos in networks of distributed cameras. IJITN, 2:27–48, 01 2010.

51

REFERENCES

[17] Patrick Schneider and Fatos Xhafa. Data semantic enrichment for complex

event processing over iot data streams. Master’s thesis, UNIVERSITAT

POLITECNICA DE CATALUNYA (UPC), 2019.

[18] Fano Ramparany, Fermı́n Galán, Javier Soriano, and Tarek Elsaleh. Han-

dling smart environment devices, data and services at the semantic level with

the fi-ware core platform. Proceedings - 2014 IEEE International Conference

on Big Data, IEEE Big Data 2014, 10 2014.

[19] Rustem Dautov, Iraklis Paraskakis, and Mike Stannett. Towards a frame-

work for monitoring cloud application platforms as sensor networks. Cluster

Computing, 17(4):1203–1213, 2014.

[20] Michael Compton, Payam M. Barnaghi, Luis Bermudez, Raul Garcia-Castro,

Óscar Corcho, Simon J. D. Cox, John Graybeal, Manfred Hauswirth, Cory A.

Henson, Arthur Herzog, Vincent A. Huang, Krzysztof Janowicz, W. David

Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus,

Andriy Nikolov, Kevin R. Page, Alexandre Passant, Amit P. Sheth, and

Kerry Taylor. The SSN ontology of the W3C semantic sensor network incu-

bator group. J. Web Semant., 17:25–32, 2012.

[21] Dave Raggett. The web of things: Challenges and opportunities. IEEE

Computer, 48(5):26–32, 2015.

[22] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and

Philipp Leitner. Optimized iot service placement in the fog. Service Oriented

Computing and Applications, 11(4):427–443, 2017.

[23] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar

Buyya. ifogsim: A toolkit for modeling and simulation of resource manage-

52

REFERENCES

ment techniques in internet of things, edge and fog computing environments.

CoRR, abs/1606.02007, 2016.

[24] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao,

and Rajkumar Buyya. Profit-aware application placement for integrated fog-

cloud computing environments. J. Parallel Distributed Comput., 135:177–

190, 2020.

[25] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and

Philipp Leitner. Optimized iot service placement in the fog. Service Oriented

Computing and Applications, 11(4):427–443, 2017.

[26] Isaac Lera, Carlos Guerrero, and Carlos Juiz. YAFS: A simulator for iot

scenarios in fog computing. IEEE Access, 7:91745–91758, 2019.

[27] Vitor Barbosa C. Souza, Xavier Masip-Bruin, Eva Maŕın-Tordera, Sergio

Sánchez-López, Jordi Garcia, Guang-Jie Ren, Admela Jukan, and Ana Juan

Ferrer. Towards a proper service placement in combined fog-to-cloud (F2C)

architectures. Future Gener. Comput. Syst., 87:1–15, 2018.

[28] Brij B. Gupta, Yogachandran Rahulamathavan, Shingo Yamaguchi, Tyson

Brooks, and Zheng Yan. IEEE access special section editorial: Recent ad-

vances in computational intelligence paradigms for security and privacy for

fog and mobile edge computing. IEEE Access, 7:134063–134070, 2019.

[29] Eva Maŕın-Tordera, Xavier Masip-Bruin, Jordi Garcia Almiñana, Admela

Jukan, Guang-Jie Ren, and Jiafeng Zhu. Do we all really know what a fog

node is? current trends towards an open definition. Comput. Commun.,

109:117–130, 2017.

[30] Rustem Dautov and Salvatore Distefano. Automating iot data-intensive

53

REFERENCES

application allocation in clustered edge computing. IEEE Transactions on

Knowledge and Data Engineering, PP:1–1, 06 2019.

[31] Oracle Linux. Linux containers, 2019. Accessed 2020-03-08.

[32] Lucy Hattersley. Raspberry pi 4, 3a+, zero w - specs, benchmarks ’—&’

thermal tests, 2019. Accessed 2020-03-15.

[33] NGMN Alliance. 5g white paper-executive version. White Paper, December,

2014.

[34] Paul Farrell and Hong Ong. Communication performance over a gigabit

ethernet network. pages 181 – 189, 03 2000.

[35] Afaq Khan, Mohammed Qadeer, Juned Ansari, and Sariya Waheed. 4g as

a next generation wireless network. Future Computer and Communication,

International Conference on, 0:334–338, 04 2009.

[36] Edward G. Coffman, J. Csirik, Gábor Galambos, Silvano Martello, and

Daniele Vigo. Bin packing approximation algorithms: Survey and classi-

fication. 1-5:455–531, January 2013.

[37] R. Yesodha and T Amudha. A comparative study on heuristic procedures

to solve bin packing problems. International Journal in Foundation of Com-

puter Science ’—&’ Technology (IJFCST), 2:37–49, 11 2012.

[38] A. Makhorin. Glpk (gnu linear programming kit).

Available at http://www.gnu.org/software/glpk/glpk.html.

[39] Coin-or (common infrastructure for operations research).

Available at http://www.coin-or.org.

54

REFERENCES

[40] Alberto Ceselli, Marco Fiore, Marco Premoli, and Stefano Secci. Optimized

assignment patterns in mobile edge cloud networks. Comput. Oper. Res.,

106:246–259, 2019.

[41] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

[42] J. Huang, Y. Wang, and F. Cao. On developing distributed middleware

services for qos- and criticality-based resource negotiation and adaptation.

Real-Time Systems, 16:187–221, 05 1999.

55

	1 Introduction
	1.1 State of the Art
	1.1.1 Semantic representation
	1.1.2 Task placement optimization
	1.1.3 Environment modeling and simulation

	1.2 Research Questions
	1.3 Thesis Structure

	2 Motivation, Scope and Objectives
	2.1 Motivation
	2.2 Scope
	2.3 Objectives

	3 Methodology, architecture and implementation
	3.1 Outline
	3.2 Methodology
	3.3 Architecture
	3.4 Implementation
	3.4.1 Environment modelling
	3.4.1.1 Fog nodes
	3.4.1.2 Edge Devices
	3.4.1.3 Connections

	3.5 System Workflow
	3.5.1 Discovery and selection
	3.5.2 Semantic reasoning and clustering
	3.5.3 Task allocation optimization

	4 Evaluation methodology, experiments and results
	4.1 Outline
	4.2 Evaluation Methodology
	4.3 Experiments and results
	4.3.1 System performance
	4.3.2 Utility of Fog clustering

	4.4 Discussion

	5 Conclusions and Future work
	5.1 Conclusions
	5.2 Future work
	5.3 Abbreviations

	References

