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Motivating Example: MLE vs BI

Example

• We begin by considering a single binary random variable X
where X(Ω) = {0, 1}. For example, X might describe the outcome
of flipping a coin, with X = 1 representing ’heads’ and X = 0
representing ’tails’.

• We can imagine that this is a damaged coin so that the
probability of landing heads is not necessarily the same as that
of landing tails.

• The probability of X = 1 will be denoted by the parameter µ so
that

p(X = 1 | µ) = µ,

where 0 ≤ µ ≤ 1, from which it follows that

p(X = 0 | µ) = 1− µ.
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Motivating Example: MLE vs BI

Example

• The probability distribution function (pdf) over x can therefore
be written in the form

f (x | µ) = p(X = x | µ) = µx(1− µ)1−x

which is known as the Bernoulli distribution:

X ↪→ b(µ)

• It is easily verified that

E(X) = µ

var(X) = µ(1− µ)
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Motivating Example: MLE vs BI

Example

• Now suppose we have a data set D = {x1, . . . , xN} of observed
values of X.

• We can construct the likelihood function, which is a function of
µ, on the assumption that the observations are drawn
independently, so that

p(D | µ) =
N∏
i=1

p(X = xi | µ) =
N∏
i=1

µxi(1− µ)1−xi

• In a frequentist setting, we can estimate a value for µ by
maximizing the likelihood function. The maximum likelihood
estimator is

µML =
1
N

N∑
i=1

xi

which is also known as the sample mean. 4



Motivating Example: MLE vs BI

Example

• If we denote the number of heads within this data set by m,
then we can write

µML =
m
N

“The probability of landing heads is given, in this maxi-
mum likelihood framework, by the fraction of observations
of heads in the data set.”
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Motivating Example: MLE vs BI

Example

• Now suppose we flip a coin, say, 3 times and happen to observe
3 heads. Then

N = m = 3

and

µML = 1

• In this case, the maximum likelihood result would predict that
all future observations should give heads.

• Common sense tells us that this is unreasonable, and in fact this
is an extreme example of the over-fitting associated with the
maximum likelihood.

• We shall see (BI) how to arrive at more sensible conclusions
through the introduction of a prior distribution over µ.
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Maximum Likelihood Estimators (MLE)1

MLE
When sampling from a population described by a pdf f (x|θ),
kwoledge of θ provides knowledge of the entire population. The
idea behind maximum likelihood is to select the value for θ that
makes the observed data most likely under the assumed
probability model.

Likelihood function
When x = {x1, x2, · · · .xN} are the observed values of a random
variable X from a population with parameter θ, the likelihood
function of θ for x is denoted by

L(θ|x) = f (x|θ) =
N∏
i=1

f (xi|θ) = f (x1, θ) · f (x2|θ) · · · f (xN|θ)

1Based on Ugarte, M.D., Militino, A.F. and Arnholt, A.T., 2015. Probability and Statistics
with R. Chapman and Hall/CRC. 7



Maximum Likelihood Estimators (MLE)

Log-likelihood function
In general, the likelihood function may be difficult to manipulate,
and it is usually more convenient to work with the natural
logarithm of L(θ|x), called the log-likelihood function, since it
converts products into sums.

ln (L(θ|x)) = ln

( N∏
i=1

f (xi|θ)
)

=
N∑
i=1

ln (f (xi|θ))

8



Maximum Likelihood Estimators (MLE)

Maximum Likelihood Estimate
Finding the value θ that maximizes the log-likelihood function is
equivalent to finding the value of θ that maximizes L(θ|x) since the
natural logarithm is a monotonically increasing function.

A possible MLE solution is

∂ (ln (L(θ|x)))
∂θ

= 0
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Maximum Likelihood Estimators (MLE)

Example
Suppose {x1, x2, . . . , xN} are the observed values of a random
variable X ↪→ N(µ, σ2), where σ is assumed to be known. Find the
maximum likelihood estimator of µ.

The likelihood function is

L(µ|x) =
N∏
i=1

f (xi|µ) =
N∏
i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}

=

(
1√
2πσ2

)N
exp

{ N∑
i=1

−(xi − µ)2

2σ2

}
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Maximum Likelihood Estimators (MLE)

Example
The log-likelihood function is

ln (L(µ|x)) = −N
2
ln(2π)− N

2
ln(σ2)− 1

2σ2
N∑
i=1

(xi − µ)2

To find the value of µ that maximizes ln (L(µ|x)), take the first-order
partial derivative with respect to µ, set the answer equal to zero,
and solve.

∂ (ln (L(µ|x)))
∂µ

=
1
σ2

N∑
i=1

(xi − µ) = 0 =⇒ µ̂ML =
1
N

N∑
i=1

xi = x̄

11



Maximum Likelihood Estimators (MLE)

Example
Suppose {x1, x2, . . . , xN} are the observed values of a random
variable X ↪→ N(µ, σ2), where µ is assumed to be known. Find the
maximum likelihood estimator of σ2.

The likelihood function is

L(σ2|x) =
N∏
i=1

f (xi|σ2) =
N∏
i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}

=

(
1√
2πσ2

)N
exp

{ N∑
i=1

−(xi − µ)2

2σ2

}

12



Maximum Likelihood Estimators (MLE)

Example
The log-likelihood function is

ln
(
L(σ2|x)

)
= −N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2
N∑
i=1

(xi − µ)2

To find the value of σ2 that maximizes ln
(
L(σ2|x)

)
, take the

first-order partial derivative with respect to σ2, set the answer
equal to zero, and solve.

∂
(
ln
(
L(σ2|x)

))
∂σ2

= − N
2σ2

+
1
2σ4

N∑
i=1

(xi − µ)2 = 0

=⇒ σ̂2ML =
1
N

N∑
i=1

(xi − µ)2 = s2N
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Maximum Likelihood Estimators (MLE)

Example
Generate 1000 N(4, 1) random variables. Write log-likelihood
functions for the simulated random variables and verify that the
simulated maximum likelihood estimates for µ and σ2 are
reasonably close to the true parameters. Produce side-by-side
graphs of ln (L(µ|x)) and ln (L(σ|x)) indicating where the simulated
maximum occurs in each graph.
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Maximum Likelihood Estimators (MLE)

Python code
1 %matplotlib inline
2 import numpy as np
3 import matplotlib.pyplot as plt
4 N = 1000
5 mu = 4
6 sigma2 = 1
7 np.random.seed(1)
8 x = np.random.normal(mu, np.sqrt(sigma2), N)
9 def negloglikemu(muv):
10 return N/2*np.log(2*np.pi)+N/2*np.log(sigma2)\
11 +(np.sum(np.square(x))-2*muv*np.sum(x)+N*muv**2)/(2*sigma2)
12 def negloglike(sv):
13 return N/2*np.log(2*np.pi)+N/2*np.log(sv)\
14 +(np.sum(np.square(x))-2*mu*np.sum(x)+N*mu**2)/(2*sv)
15 rr = np.arange(2, 6, 0.01)
16 rr2 = np.arange(0.5, 1.5, 0.01)
17 f, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=False)
18 plt.subplots_adjust(wspace=.25,hspace=0)
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Maximum Likelihood Estimators (MLE)

Python code
1 axes[0].plot(rr, -negloglikemu(rr))
2 axes[0].set_xlabel('$\mu$')
3 axes[0].set_ylabel('$\ln(L(\mu|\mathbf{x}))$')
4 from scipy.optimize import fmin
5 import math
6 mumin = fmin(negloglikemu,np.array([2]))
7 sigma2min = fmin(negloglike,np.array([2]))
8 axes[0].axvline(x=mumin,linestyle='--')
9 axes[1].plot(rr2, -negloglike(rr2))
10 axes[0].set_title('Illustration of $\ln(L(\mu|\mathbf{x}))$')
11 axes[1].set_xlabel('$\sigma^2$')
12 axes[1].set_ylabel('$\ln(L(\sigma^2|\mathbf{x}))$')
13 axes[1].set_title('Illustration of $\ln(L(\sigma^2|\mathbf{x}))$

')
14 axes[1].axvline(x=sigma2min,linestyle='--')
15 plt.savefig('loglike.eps', dpi=300, bbox_inches='tight')
16 plt.show()
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Maximum Likelihood Estimators (MLE): Homework

Example
Given the density function

f (x) = (θ + 1)(1− x)θ, 0 ≤ x ≤ 1, θ > 0,

(a) Find the maximum likelihood estimator of θ for a random
sample of size N.

17



Maximum Likelihood Estimators (MLE): Homework

Example
Given the density function

f (x) = θe−θx, x ≥ 0, θ > 0,

(a) Find the maximum likelihood estimator of θ for a random
sample of size N.

(b) Set the seed equal to 88, and generate 1000 values from f (x)
when θ = 2. Calculate the maximum likelihood estimate of θ
from the generated values.

(c) How close is the maximum likelihood estimate in (b) to θ = 2?
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Bayesian Inference for the Normal Distribution2

Posterior distribution with a sample size of one
Let us begin with a simple example in which we consider a single
Gaussian random variable X. We shall suppose that the variance σ2

is known, and we consider the task of inferring the mean µ given a
set of N = 1 observation x = {x1}. According to Bayes’ theorem:

p(µ|x) = p(x|µ)p(µ)
p(x)

where p(µ|x) is the posterior probability distribution, p(x|µ) is the
likelihood and p(µ) is the prior probability distribution. p(x) is the
normalization constant and it can be expressed as:

p(x) =
∫
p(x|µ)p(µ)dµ ∈ R

2Based on Bishop, C.M., 2006. Pattern recognition and machine learning. Springer.
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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one
Since X ↪→ N(µ, σ2), then

p(x|µ) = 1√
2πσ2

exp

{
−(x1 − µ)2

2σ2

}
If we choose a prior p(µ) given by a Gaussian

µ ↪→ N(µ0, σ20)

where µ0 and σ20 are known, then

p(µ) = 1√
2πσ20

exp

{
−(µ− µ0)

2

2σ20

}
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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one
The posterior distribution of µ given that we have one observation
x = {x1} is

p(µ|x) = p(x|µ)p(µ)
p(x) =

p(x|µ)p(µ)∫
p(x|µ)p(µ)dµ

∝ p(x|µ)p(µ)

=
1√
2πσ2

exp

{
−(x1 − µ)2

2σ2

}
· 1√

2πσ20
exp

{
−(µ− µ0)

2

2σ20

}

=
1√

2πσ2σ20︸ ︷︷ ︸
constant

exp

{
−x21 + 2x1µ− µ2

2σ2
+

−µ2 + 2µµ0 − µ20
2σ20

}

∝ exp

{
−x21σ20 + 2x1µσ20 − µ2σ20 − µ2σ2 + 2µµ0σ2 − µ20σ

2

2σ2σ20

}
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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one

p(µ|x) ∝ exp

{
−x21σ20 + 2x1µσ20 − µ2σ20 − µ2σ2 + 2µµ0σ2 − µ20σ

2

2σ2σ20

}
= exp

{
−µ2

(
σ2 + σ20

)
+ 2µ

(
µ0σ

2 + σ20x1
)
−
(
µ20σ

2 + σ20x21
)

2σ20σ2

}

= exp


−µ2 + 2µµ0σ

2 + σ20x1
σ2 + σ20

− µ20σ
2 + σ20x21

σ2 + σ20
2σ20σ2

σ2 + σ20


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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one
But,

µ20σ
2 + σ20x21

σ2 + σ20
=

(
µ0σ

2 + x1σ20
σ2 + σ20

)2
+

σ2σ20(x − µ0)
2

(σ2 + σ20)
2

and, therefore

p(µ|x) ∝ exp


−µ2 + 2µµ0σ

2 + σ20x1
σ2 + σ20

−
(
µ0σ

2 + x1σ20
σ2 + σ20

)2
2σ20σ2

σ2 + σ20


× exp

{
σ2σ20(x − µ0)

2

(σ2 + σ20)
2

}
︸ ︷︷ ︸

constant

23



Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one

p(µ|x) ∝ exp


−µ2 + 2µµ0σ

2 + σ20x1
σ2 + σ20

−
(
µ0σ

2 + x1σ20
σ2 + σ20

)2
2σ20σ2

σ2 + σ20


Let us define

σ21 =
σ20σ

2

σ2 + σ20
=

1
σ−2 + σ−2

0

µ1 =
µ0σ

2 + x1σ20
σ2 + σ20

=
µ0σ

2 + x1σ20
σ2 + σ20

=
1

σ−2 + σ−2
0

(
µ0σ

−2
0 + x1σ−2)

= σ21
(
µ0σ

−2
0 + x1σ−2)
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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample size of one
And hence,

p(µ|x) ∝ exp

{
−(µ− µ1)

2

2σ21

}
,

from which it follows that as density, must integrate to unity,

p(µ|x) = 1√
2πσ21

exp

{
−(µ− µ1)

2

2σ21

}

The posterior distribution is given by

µ|x ↪→ N(µ1, σ21 )
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Bayesian Inference for the Normal Distribution

Posterior distribution with a sample of size N
We consider a single Gaussian random variable X. We shall
suppose that the variance σ2 is known, and we consider the task of
inferring the mean µ given a set of N observations
x = {x1, x2, . . . , xN}. If we choose a prior p(µ) given by a Gaussian

µ ↪→ N(µ0, σ20)

where µ0 and σ20 are known, then the posterior distribution is given
by

µ|x ↪→ N(µN, σ2N)

µN =
σ2

Nσ20 + σ2
µ0 +

Nσ20
Nσ20 + σ2

(
1
N

N∑
i=1

xi

)
1
σ2N

=
1
σ20

+
N
σ2
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Bayesian Inference for the Normal Distribution: Homework

Example
Consider a single Gaussian random variable X with variance σ2 = 1.
Infer the mean µ = µN given the set of N = 10 observations

2.16698806,1.52581308, 0.72238059, 2.44863382, 2.20167179,
0.44891844,1.13245188, 0.36254031, 0.17785248, 3.27225828,

if we choose a prior p(µ) given by a Gaussian

µ ↪→ N(µ0 = 1, σ20 = 1.5)
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The Bootstrap3

The bootstrap

• The bootstrap is a flexible and powerful statistical tool that can
be used to quantify the uncertainty associated with a given
estimator or statistical learning method.

• For example, it can provide an estimate of the standard error of
a coefficient, or a confidence interval for that coefficient.

3Based on James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An introduction to
statistical learning (Vol. 112, p. 18). New York: Springer.
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The Bootstrap

Example

• Suppose that we wish to invest a fixed sum of money in two
financial assets that yield returns of X and Y , respectively, where
X and Y are random quantities.

• We will invest a fraction α of our money in X, and will invest the
remaining 1− α in Y .

• We wish to choose α to minimize the total risk –or variance– of
our investment. In other words, we want to minimize

var (αX + (1− α)Y)

• One can show that the value that minimizes the risk is given by

α =
σ2Y − σXY

σ2X + σ2Y − 2σXY
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The Bootstrap

Example

• However, the values of σ2X, σ2Y and σXY are unknown.
• We can compute estimates for these quantities, σ̂2X, σ̂2Y and σ̂XY ,
using a data set that contains measurements for X and Y .

• We can then estimate the value of α that minimizes the variance
of our investment using

α̂ =
σ̂2Y − σ̂XY

σ̂2X + σ̂2Y − 2σ̂XY

30



The Bootstrap

Example

• Each panel displays 100 simulated returns for investments X and
Y . From left to right and top to bottom, the resulting estimates
for α are 0.704, 0.614, 0.698, and 0.486.
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The Bootstrap

Python code
1 import numpy as np
2 import seaborn as sns
3 import matplotlib.pyplot as plt
4 meanx = 0
5 meany = 0
6 mean = (meanx, meany)
7 sigmaX2 = 1
8 sigmaY2 = 1.25
9 sigmaXY = 0.5
10 cov = [[sigmaX2, sigmaXY], [sigmaXY, sigmaY2]]
11 np.random.seed(3)
12 x = np.random.multivariate_normal(mean, cov,size=(100,4))
13 f, axes = plt.subplots(2, 2, figsize=(10, 5), sharex=True)
14 axes[0,0].scatter(x[:,0,0], x[:,0,1])
15 axes[0,0].set_xlabel('$X$')
16 axes[0,0].set_ylabel('$Y$')
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The Bootstrap

Python code
1 axes[0,1].scatter(x[:,1,0], x[:,1,1])
2 axes[0,1].set_xlabel('$X$')
3 axes[0,1].set_ylabel('$Y$')
4 axes[1,0].scatter(x[:,2,0], x[:,2,1])
5 axes[1,0].set_xlabel('$X$')
6 axes[1,0].set_ylabel('$Y$')
7 axes[1,1].scatter(x[:,3,0], x[:,3,1])
8 axes[1,1].set_xlabel('$X$')
9 axes[1,1].set_ylabel('$Y$')
10 plt.savefig('randomXY.eps', dpi=300, bbox_inches='tight')
11 plt.show()
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The Bootstrap

Example

• To estimate the standard deviation of α̂, we repeat the process
of simulating 100 paired observations of X and Y , and estimating
α 1000 times.

• We thereby obtained 1000 estimates for α, which we can call

α̂1, α̂2, . . . , α̂1000
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The Bootstrap

Example

• For these simulations the parameters were set to
σ2X = 1, σ2Y = 1.25 and σXY = 0.5, and so we know that the true
value of α is 0.6. We indicated this value using a dashed vertical
line on the histogram.
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The Bootstrap

Python code
1 import numpy as np
2 import seaborn as sns
3 import matplotlib.pyplot as plt
4 meanx = 0
5 meany = 0
6 mean = (meanx, meany)
7 sigmaX2 = 1
8 sigmaY2 = 1.25
9 sigmaXY = 0.5
10 cov = [[sigmaX2, sigmaXY], [sigmaXY, sigmaY2]]
11 np.random.seed(3)
12 x = np.random.multivariate_normal(mean, cov,size=(100,1000))
13 alpha_list = list()
14 for k in range(0, 1000):
15 sigmaY2hat = np.var(x[:,k,1],ddof=0)
16 sigmaX2hat = np.var(x[:,k,0],ddof=0)
17 sigmaXYhat = np.cov([x[:,k,0],x[:,k,1]],ddof=0)[0,1]
18 alphahat = (sigmaY2hat-sigmaXYhat)/(sigmaY2hat+sigmaX2hat

-2*sigmaXYhat)
19 alpha_list.append(alphahat) 36



The Bootstrap

Python code
1 %matplotlib inline
2 import numpy as np
3 import matplotlib.pyplot as plt
4 f, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=False)
5 axes[0].hist(alpha_list)
6 axes[0].axvline(x=0.6,linestyle='--',color='darksalmon')
7 axes[1].boxplot(alpha_list,patch_artist=True)
8 axes[1].axhline(y=0.6,linestyle='--',color='darksalmon')
9 plt.savefig('histobox.eps', dpi=300, bbox_inches='tight')
10 plt.show()
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The Bootstrap

Example

• The mean over all 1000 estimates for α is

ᾱ =
1

1000

1000∑
i=1

α̂i = 0.6030,

very close to α = 0.6.
• The standard deviation of the estimates is√√√√ 1

1000− 1

1000∑
i=1

(α̂i − ᾱ)2 = 0.084

• This gives us a very good idea of the accuracy of α̂. Roughly
speaking, for a random sample from the population, we would
expect α̂ to differ from α by approximately 0.08, on average.
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The Bootstrap

Python code
1 >>np.mean(alpha_list)
2 0.6030401995913561
3 >>np.std(alpha_list,ddof=1)
4 0.08399535702038463
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The Bootstrap

The Bootstrap: Back to the Real World!

• The procedure outlined above cannot be applied, because for
real data we cannot generate new samples from the original
population.

• However, the bootstrap approach allows us to use a computer to
mimic the process of obtaining new data sets, so that we can
estimate the variability of our estimate without generating
additional samples.

• Rather than repeatedly obtaining independent data sets from
the population, we instead obtain distinct data sets by
repeatedly sampling observations from the original data set
with replacement.

• Each of these “bootstrap data sets” is created by sampling with
replacement, and is the same size as our original dataset. As a
result some observations may appear more than once and some
not at all. 40



The Bootstrap

Example

• A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations.

5.3 2.83

2 1.12.1

Y

1 2.44.3

Obs. X

4.3 2.41

3 2.85.3

Y

2 1.12.1

Obs. X

4.3 2.41

2 1.12.1

Y

2 1.12.1

Obs. X

5.3 2.83

1 2.44.3

Y

3 2.85.3

Obs. X

Original data (Z)

Z*1

Z*2

Z*B

…

α
*1

α
*2

α
*B

41



The Bootstrap

The bootstrap

• Consider an original data set Z with n observations.
• We randomly select n observations (with replacement) from the
data set in order to produce a bootstrap data set, Z?1.

• We can use Z?1 to produce a new bootstrap estimate for α, which
we call α̂?1.

• This procedure is repeated B times in order to produce B
different bootstrap data sets

Z?1, Z?2, . . . , Z?B,

and B corresponding α estimates

α̂?1, α̂?2, . . . , α̂?B.
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The Bootstrap

The bootstrap

• We can compute the standard deviation of these bootstrap
estimates —aka standard error— using the formula

SE(α̂) =

√√√√√ 1
B− 1

B∑
i=1

α̂?i − 1
B

B∑
j=1

α̂?j

2
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The Bootstrap

Example

• Left: A histogram of the estimates of α obtained from 1000
bootstrap samples from a single data set. Right: The estimates
of α displayed in the left panel are shown as a boxplot. In each
panel, the dark salmon dashed line indicates the true value of α.
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The Bootstrap

Python code
1 import numpy as np
2 meanx = 0
3 meany = 0
4 mean = (meanx, meany)
5 sigmaX2 = 1
6 sigmaY2 = 1.25
7 sigmaXY = 0.5
8 cov = [[sigmaX2, sigmaXY], [sigmaXY, sigmaY2]]
9 np.random.seed(3)
10 x = np.random.multivariate_normal(mean, cov,size=(100,1000))
11 bootM = np.zeros((100,2,1000))
12 alpha_list2 = list()
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The Bootstrap

Python code
1 for i in range(0,1000):
2 nprc = np.random.choice(100,100) # array with 100 random

integers between 0 and 99
3 for k in range(0,100):
4 bootM[k,:,i]=x[nprc[k],0,:] #first bootstrap sample
5 sigmaY2hat = np.var(bootM[:,1,i],ddof=0)
6 sigmaX2hat = np.var(bootM[:,0,i],ddof=0)
7 sigmaXYhat = np.cov([bootM[:,0,i],bootM[:,1,i]],ddof=0)[0,1]
8 alphahat = (sigmaY2hat-sigmaXYhat)/(sigmaY2hat+sigmaX2hat

-2*sigmaXYhat)
9 alpha_list2.append(alphahat) # 1000 estimates of alpha

46



The Bootstrap

Python code
1 %matplotlib inline
2 import numpy as np
3 import matplotlib.pyplot as plt
4 f, axes = plt.subplots(1, 2, figsize=(10, 5), sharex=False)
5 axes[0].hist(alpha_list2)
6 axes[0].axvline(x=0.6,linestyle='--',color='darksalmon')
7 axes[1].boxplot(alpha_list2,patch_artist=True)
8 axes[1].axhline(y=0.6,linestyle='--',color='darksalmon')
9 plt.savefig('histobox2.eps', dpi=300, bbox_inches='tight')
10 plt.show()
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The Bootstrap

Example

• Left: A histogram of the estimates of α obtained by generating
1000 simulated data sets from the true population. Right: A
histogram of the estimates of α obtained from 1000 bootstrap
samples from a single data set. In each panel, the dark salmon
dashed line indicates the true value of α.

• Note that both histograms look very similar!

48



The Bootstrap

Example

• The standard deviation of these bootstrap estimates is 0.090,
very close to the estimate of 0.084 obtained using 1000
simulated data sets.

Python code
1 >>np.std(alpha_list2,ddof=1)
2 0.08970390965071548 49



Estimating the Accuracy of a Linear Regression Model:
Labwork

Simple linear regression

• Simple linear regression is a very straightforward approach for
predicting a quantitative response Y on the basis of a single
predictor variable X. It assumes that there is approximately a
linear relationship between X and Y . Mathematically, we can
write this linear relationship as

Y ≈ β0 + β1X.

Example
For example, X may represent horsepower and Y may represent
mpg (miles per gallon) (with respect to the Auto data set). Then we
can regress mpg onto horsepower by fitting the model

mpg ≈ β0 + β1 × horsepower.
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Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

The Auto data set. For a number of cars, mpg and horsepower are
shown. There is a pronounced relationship between mpg and
horsepower.
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Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• The bootstrap approach can be used to assess the variability of
the coefficient estimates and predictions from a statistical
learning method.

• We will use the bootstrap approach to assess the variability of
the estimates for β0 and β1, the intercept and slope terms for
the linear regression model that uses horsepower to predict
mpg in the Auto data set.

• We first import the following Python packages:

1 >>import numpy as np
2 >>import csv
3 >>import pandas as pd
4 >>from sklearn.linear_model import LinearRegression
5 >>from sklearn.preprocessing import PolynomialFeatures
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Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• We then load the Auto data set and remove the missing values.

1 >>filename = "Auto.csv"
2 >>df = pd.read_csv(filename)
3 >>moddf = df.dropna()
4 >>v = moddf.values

• The following Python code can be used to compute the intercept
and slope estimates for the linear regression model:

1 >>xtrain = v[:,3].reshape((-1,1))
2 >>ytrain = v[:,0]
3 >>xtrain_ = PolynomialFeatures(degree=1, include_bias=False).

fit_transform(xtrain)
4 >>model = LinearRegression().fit(xtrain_, ytrain)
5 >>beta0 = model.intercept_
6 >>beta1 = model.coef_[0]
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Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• Set this seed so that we all have the exact same result.

1 >>np.random.seed(3)

• Create B = 1000 bootstrap data sets of n = N = 392
observations.

• Create a list beta0 with the B = 1000 corresponding β0
estimates:

β̂?1
0 , β̂?2

0 , . . . , β̂?1000
0

• Create a list beta1 with the B = 1000 corresponding β1
estimates:

β̂?1
1 , β̂?2

1 , . . . , β̂?1000
1
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Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• Compute the standard deviation —standard error— SE(β̂0) and
SE(β̂1) of these bootstrap estimates. You can use np.std with
ddof=1. In your Python code, denote these two values as
std_beta01 and std_beta11, respectively.

• Compare the intercept β0 with the linear regression in the full
set of 392 observations with 1

1000
∑1000

i=1 β̂?i
0 . Compare the slope

β1 too.
• Compare the slope β1 with the linear regression in the full set of
392 observations with 1

1000
∑1000

i=1 β̂?i
1 .

55



Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• Import the following Python packages and plot a histogram of
the estimates of β0 and β1, respectively, from the B = 1000
bootstrap samples.

1 >>%matplotlib inline
2 >>import numpy as np
3 >>import matplotlib.pyplot as plt

• Repeat this labwork to compute the bootstrap standard error
estimates and the standard linear regression estimates that
result from fitting a quadratic model

mpg ≈ β0 + β1 × horsepower+ β2 × horsepower2

to the data. In your Python code, denote the standard errors as
std_beta02, std_beta12 and std_beta22, respectively. 56



Estimating the Accuracy of a Linear Regression Model:
Labwork

Example

• Send the Jupyter Notebook to francesc.pozo@upc.edu. Add
comments to the code to make it easier to understand.

• You can work in pairs or in threes.
• Deadline: January 7th, 2019.
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