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Abstract. Impact of injecting microbubbles on the thermal expansion due to the nuclear 
spallation reaction were examined numerically. Since the mercury density is higher than the 
density of solid wall, the interaction between mercury and solid wall must be taken into 
account. Our approach is to solve the momentum and energy conservation equations and the 
time development of elastic stress for both bubbly fluid and elastic solid. The Keller equation 
is employed to reproduce the nonlinear oscillation of bubble with considering the thermal 
dumping effect by the reduced order model. The continuum phase of liquid mercury is 
coupled with the discrete phase of microbubbles using the Euler-Lagrange method. As the 
results, the bubble cloud develops around the center of inertia of motion induced by the 
thermal expansion. The elasticity of the wall affects on the migration of the center of inertia 
away from the wall. The injection of microbubbles is effective to decrease the pressure rise 
due to thermal expansion for both rigid and elastic wall conditions when the void fraction of 
microbubbles is higher than the volume rate of thermal expansion of liquid mercury. 
 
1 INTRODUCTION 

Japan proton accelerator research complex (J-PARC) was constructed as a spallation 
neutron source in Japan. The heat generation of the nuclear spallation reaction causes the 
thermal expansion of liquid mercury, which produces high pressure waves. When the pressure 
waves hit a casing wall, cavitation occurs and erodes the wall [1]. To mitigate the cavitation 
erosion, a method of introducing gas bubbles into liquid mercury has been proposed [2]. The 
method has expected that the microbubbles absorb the thermal expansion of liquid mercury 
and attenuate the pressure waves. 

The propagation of pressure waves caused by a thermal shock in liquid mercury containing 
microbubbles has been numerically investigated in the previous work [3]. The influences of 
the injecting bubble size and void fraction on the absorption of the thermal expansion of 
liquid mercury and the attenuation of pressure waves have clarified as follows. Firstly, if the 
void fraction is higher than the volume rate of thermal expansion of liquid mercury, the 
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pressure rise due to thermal expansion decreases with decreasing bubble radius, because of 
the increase of the natural frequency of bubble in bubbly mixture. Secondly, as the bubble 
radius increases, the peak of pressure waves which propagate at the sound speed of mixture 
decreases due to the dispersion effect of bubbly mixture. In the case of liquid mercury 
containing large bubbles whose natural frequency is lower than the frequency of thermal 
shock, the pressure waves propagates at the sound speed of the liquid mercury and increases 
the peak pressure at the wall. Thirdly, the comparison with and without heat transfer through 
the gas liquid interface shows that the pressure waves are attenuated by the thermal damping 
effect even if the decrease of the void fraction makes the behaviour of bubbles nonlinear. 

Since the density of liquid mercury (13,579kg/m3) is higher than the density of solid wall 
(316SS, 7,946kg/m3), the impact of the interaction between liquid mercury and wall on 
cavitation erosion should be considered when the pressure waves hit the wall. Therefore, we 
extend the previous work to consider the elasticity of wall in a two-dimensional computation. 

Our approach is to solve the mass, momentum and energy conservation equations for 
bubbly fluid with the equation of state of liquid mercury to reproduce the pressure rise due to 
thermal shock. The Euler-Lagrange method is used for coupling the liquid mercury and 
microbubbles. The nonlinear oscillation of bubble dynamics is described by the Keller 
equation with an assumption of spherical bubble. The thermal dumping effect due to the heat 
transfer through the bubble interface is taken into account using the reduced order model. The 
elastic wall is represented by solving the equations for elastic body. 

In the present paper, firstly, basic equations are introduced to reproduce the propagation of 
pressure waves caused by a thermal shock in liquid mercury containing microbubbles with 
taking into account the interaction between bubbly fluids and elastic wall. Secondly, the 
numerical method and model are mentioned. Finally, the impacts of the interaction of the 
thermal expansion of liquid mercury and the wall on the pressure rise due to thermal 
expansion and the distribution of bubble clouds are discussed. 

2 BASIC EQUATIONS 

2.1 Discrete phase of bubbles 
To describe the dynamics of spherical bubble of radius R, the Keller equation [4][5] is 

employed 
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where cs is the sound speed of surrounding liquid,  is liquid density,  is surface tension and 
 is liquid viscosity. If the bubble boundary moves with a velocity much lower than the speed 
of sound in the gas, the pressure of gas inside bubble PG can be taken as uniform and is 
expressed as 
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where  is the ratio of specific heats [6]. The second term on the right hand side represents the 
heat transfer between the gas inside bubble and the surrounding liquid. The temperature 
gradient at the bubble boundary is estimated by a reduced order model [7] instead of directly 
solving the energy equation for the temperature distribution inside bubble. The reduced order 
model is briefly described as follows. 

The temperature gradient at the bubble boundary is modeled as 
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where 3 3
0 0b G b GT P R T P R is the representative temperature of the gas inside bubble. The 

natural frequency of bubble N is described by 
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where ϒN is a complex function defined by 
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The thermal penetration length L
~

P is also a complex function and is described as 
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The temperature gradient at a boundary can be obtained by solving equations (3) to (7). Then 
the pressure inside is updated according to Eq.(2). 

In the present study, bubbles are treated in a Lagrangian way. Due to the assumption of the 
no-slip condition, the bubble velocity is the same as the bubbly mixture velocity. The position 
of the each bubble is then traced by 

  B B dt x u x . (8) 

2.2 Continuum phase of bubbly fluid and elastic solid 
Since the acoustic Mach number is low, the advection term assumes to be negligible. Then, 

the momentum equation can be represented 
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and includes the elastic strain rate, thermal strain rate and the volumetric strain rate due to 
bubble oscillation as E T B  e e e e . Assuming the small strain, Hook’s low for isotropic 
linear elasticity is employed for the elastic strain. The time development of elastic stress can 
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where  is shear modulus. The time development of pressure is defined by 
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where  is bulk modulus. The volume change due to bubble oscillation is described using the 
void fraction of bubbles fG [8] 

   1tr
1

G
B

G

f
f t




 
e . (13) 

And the thermal volumetric strain rate can be described using the thermal expansion rate at 
constant pressure   1

p
V V T     [9] as 

  tr T
p

ST
C t
 




e . (14) 

Both a temperature diffusion and the heat generation due to the nuclear spallation reaction are 
taken into account in the energy equation 
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Substituting Eq.(15) to Eq.(14), the thermal volumetric strain rate becomes 
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On the other hand, using the thermodynamic relation as  pTdS C dT T dp    [9], the 
time development of temperature can be described 
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In the present study, two volume fractions are introduced. Firstly, the volume fraction of 
solid phase is employed to distinguish solid phase from fluid phase. Secondly, the volume 
fraction of gas is defined as the volume ratio of bubble in the fluid phase. The mixture density 
of fluids and solid is described as  1 S F S S       , where the density of fluid phase can 

be assumed as  1F G Lf    because of low density and low void fraction of gas. Then the 
mixture density becomes 

   1 1S G L S Sf        . (18) 

Specific heat and thermal expansion rate at constant pressure are represented respectively, 

   1 1p S G L pL S S pSC f C C         (19) 

and 

   1 1S G L S Sf        . (20) 

The coefficients, bulk modulus, shear modulus and thermal conductivity are calculated by the 
harmonic average using the volume fraction of solid phase as 

 11 S S

L S

 
  


  . (21) 

The density and bulk modulus of liquid phase is obtained from pressure and temperature 
through the equation of state for liquid mercury [3]. 

3 NUMERICAL METHODS 
The basic equations are solved using a second-order finite difference scheme based on the 

FDTD method [10]. To resolve the rebound of bubble collapse, the Keller equation is 
integrated in adaptive time increments, which are always smaller than the time increment for 
the integration of the basic equations for the mixture. Bubbles are described by the 
representative bubble at the Lagrange point and coupled with mixture phase by the Euler-
Lagrange method, which requires the interpolation of physical values between Euler and 
Lagrange points. The void fraction at the Euler point is obtained by 
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The width of the smooth delta function  is taken as x. On the other hand, the pressure and 
velocity of the mixture at the bubble position, which are required to solve Eq. (1) and Eq. (8), 
are interpolated, respectively, as follows: 
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4 NUMERICAL MODEL 
Bubbly liquid mercury in a cylinder is considered as shown in Fig.1(a). Helium 

microbubbles uniformly distribute in the liquid mercury. The sizes of numerical domain are 
LR=30mm and LZ=30mm, which is resolved by 200  200 grid points. The width of bottom 
wall is W=1.5mm resolved by 10 grid points. The properties of the solid material of 316SS 
are density S=7,964kg/m3, Young’s modulus ES=195GPa and Poisson ratio S=0.27. A heat 
generation is introduced around the center bottom of the cylinder to represent a spallation 
neutron reaction. The profiles of the heat generation are 1s rectangular pulse in time and 
Gaussian distribution of the standard deviation =5mm in space as shown in Fig.1(b). That 
induces the thermal expansion of liquid mercury and pressure rises. Pressure waves then 
propagate through the bubbly liquid mercury. We chose the maximum of the heat generation 
as Qmax=26.7 1012W/m3 to reproduce the pressure rise of the order of tens MPa in the case 
without microbubbles.  

5 RESULTS 
Influences of the elasticity of the bottom wall are examined without microbubbles. The 

time evolution of the pressure distribution for the elastic wall is compared with that for the 
rigid wall in Fig.2. In the case of the elastic wall, the pressure around the center bottom 
changes as plus, minus and plus in time. The pressure propagates upward unlike with the 
spherical pressure propagation of the rigid wall. The profiles of the pressure at points of z=0, 
4.5mm on the axis of the cylinder are shown in Fig.3 with comparing for the rigid and elastic 
wall conditions. The elasticity of the solid wall decreases the pressure fluctuation induced by 
the thermal expansion at z=0mm as shown in Fig.3(a). However, as shown in Fig.3(b), the 

 

 

(a) Numerical domain (b) Profiles of heat generation 
Figure 1: Schematic diagram of the numerical model. The bubbly liquid mercury is surrounded by the rigid 
and elastic wall of the cylinder, in which helium microbubbles uniformly distribute. The heat generation is 
introduced at the center bottom. 
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negative pressure becomes lower than that for the rigid wall. This is because the center of 
inertia of the motion induced by the thermal expansion is moved upward away from the center 
of heat generation owing to the elasticity of the wall, whose density of the solid wall is lower 
than the mercury density. Such negative pressure is closely related with the growth of bubble 
clouds. We have focused on the production of the bubble cloud after the thermal expansion of 
liquid mercury. 

Influences of the elasticity of the bottom wall on the production of the bubble cloud are 
examined by injecting microbubbles to liquid mercury with bubble diameter d=10m and 
initial void fraction fG0=0.05%. Figure 4 shows the time evolution of the pressure and void 
fraction distributions for the rigid and elastic wall conditions. As shown in Fig.4(a), pressure 
waves spherically propagate under the rigid wall condition at the slower speed than the sound 
speed of mercury. The bubble clouds also spherically grow up at the center bottom. On the 
other hand, the bubble clouds grow up away from the wall in the case of the elastic wall. The 
shape of the bubble clouds is like a squashed sphere as shown in Fig.4(b). The pressure 
fluctuations are observed between the bubble clouds and the elastic wall. The profiles of the 
pressure and void fraction at points of z=0, 4.5mm on the axis of the cylinder are shown in 

Rigid wall 

     

Elastic wall 

    

 

 t=1s t=6s t=11s t=16s  
Figure 2: Influence of elastisity of bottom wall on the development of pressure distribution without 
microbubbles. 
 

  
(a) z=0mm (b) z=4.5mm 

Figure 3: Influence of elastisity of bottom wall on the profiles of the pressure at z=0, 4.5mm without 
microbubbles. 
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than the mercury density. Such negative pressure is closely related with the growth of bubble 
clouds. We have focused on the production of the bubble cloud after the thermal expansion of 
liquid mercury. 

Influences of the elasticity of the bottom wall on the production of the bubble cloud are 
examined by injecting microbubbles to liquid mercury with bubble diameter d=10m and 
initial void fraction fG0=0.05%. Figure 4 shows the time evolution of the pressure and void 
fraction distributions for the rigid and elastic wall conditions. As shown in Fig.4(a), pressure 
waves spherically propagate under the rigid wall condition at the slower speed than the sound 
speed of mercury. The bubble clouds also spherically grow up at the center bottom. On the 
other hand, the bubble clouds grow up away from the wall in the case of the elastic wall. The 
shape of the bubble clouds is like a squashed sphere as shown in Fig.4(b). The pressure 
fluctuations are observed between the bubble clouds and the elastic wall. The profiles of the 
pressure and void fraction at points of z=0, 4.5mm on the axis of the cylinder are shown in 

Rigid wall 

     

Elastic wall 

    

 

 t=1s t=6s t=11s t=16s  
Figure 2: Influence of elastisity of bottom wall on the development of pressure distribution without 
microbubbles. 
 

  
(a) z=0mm (b) z=4.5mm 

Figure 3: Influence of elastisity of bottom wall on the profiles of the pressure at z=0, 4.5mm without 
microbubbles. 
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Fig.5. The pressure increase to around 60MPa for the rigid wall and to around 35MPa for the 
elastic wall at the point of z=0mm. The peaks of pressure for both conditions are lower than 
the peaks without microbubbles. This is due to the contraction of the injected microbubbles. 
As shown in Fig.5(a), the pressure at z=0mm fluctuates in the case of the elastic wall. 
Negative pressure as shown in Fig.3 is disappeared owing to the microbubbles. The void 
fraction at z=0mm for the rigid wall is higher than that for the elastic wall. Contrary, the void 
fraction at z=4.5mm for the rigid wall is lower than that for the elastic wall. This is because 
the center of inertia of motion induced by the thermal expansion is away from the wall as 
shown in Fig.4. Thus the bubble cloud develops around the center of inertia of motion 
induced by the thermal expansion of liquid mercury. The elasticity of the wall impacts on the 
migration of the center of inertia away from the wall. 

Here, the volume rate of thermal expansion of liquid mercury is estimated as 

 maxL
L

L pL

Qf
C

 



  . (25) 

It becomes fL=0.26% for L=182 10-6K-1, L=13,579kg/m3, CpL=139J/kg∙K, 
Qmax=26.7 1012W/m3 and =1s. So it is required for the mitigation of the pressure rise that 
the initial void fraction of microbubbles is higher than the volume rate of thermal expansion 
of liquid mercury fL=0.26%. 

Next, calculations under the condition of the initial void fraction of fG0=0.5% are 
performed. The diameter of microbubbles is 10m. Figure 6 shows the time evolution of the 
pressure and void fraction distribution for the rigid and elastic wall condition. The time 
evolution of the pressure distribution for both is similar to that without microbubbles as 
shown in Fig.2. But the time scale with microbubbles is much longer due to the slower sound 
speed of bubbly liquid. On the other hand, the time evolution of the void fraction distribution 
well follows the pressure distribution. The void fraction decreases in the high pressure region 
and decreases in the low pressure region.  

Figure 7 shows the profiles of the pressure and void fraction for the rigid and elastic wall 
conditions. Obviously, the pressure rise decreases in both conditions as shown in Fig.7(a) and 
(b). The intensity of pressure at z=0mm is around 2.5MPa, which is much lower than that 
without microbubbles. The fluctuations of pressure at z=0mm and 4.5mm are observed in 
t=0~4s. This is due to the bubble oscillation with the natural frequency of bubble in bubbly 
liquid [3]. For the elastic wall, the pressure at z=0mm continuously fluctuates owing to the 
oscillation of the elastic wall. As shown in Fig.7(c) and (d), the void fraction at z=0mm 
decreases from 0.5% to 0.25% in t=0~1s. The difference of the void fraction is around 
0.25%, which approximately corresponds to the volume rate of thermal expansion of liquid 
mercury fL=0.26%. Thus, the injection of microbubbles is effective to decrease the pressure 
rise due to thermal expansion of liquid mercury for both rigid and elastic wall conditions 
when the void fraction of microbubbles is higher than the volume rate of thermal expansion of 
liquid mercury. 

6 CONCLUSIONS 
To investigate the cavitation erosion and its mitigation for the nuclear spallation source, the 

impacts of injecting microbubbles on the thermal expansion due to a nuclear spallation 
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reaction were examined numerically. The interaction between liquid mercury and solid wall 
was taken into account by solving the momentum and energy conservation equations and the 
time development of elastic stress for both fluid and solid phases. Additionally, the nonlinear 
oscillation of bubbles was reproduced using Keller equation with considering the thermal 
dumping effect by the reduced order model.  

As the result of the calculation, the bubble cloud develops around the center of inertia of 
motion induced by the thermal expansion of liquid mercury. The elasticity of the wall affects 
on the migration of the center of inertia away from the wall. 

The injection of microbubbles is effective to decrease the pressure rise due to thermal 
expansion of liquid mercury for both rigid and elastic wall conditions when the void fraction 
of microbubbles is higher than the volume rate of thermal expansion of liquid mercury. 
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Figure 4: Time evolution of the pressure and void fraction distribution for fG0=0.05%. 

 

  
(a) Pressure at z=0mm (b) Pressure at z=4.5mm 

  
(c) Void fraction at z=0mm (d) Void fraction at z=4.5mm 

Figure 5: Profile of the pressure and void fraction at points of z=0, 4.5mm for fG0=0.05%. 
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(a) Rigid wall 
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(b) Elastic wall 
Figure 6: Time evolution of the pressure and void fraction distribution for fG0=0.5%. 

 

  
(a) Pressure at z=0mm (b) Pressure at z=4.5mm 

  
(c) Void fraction at z=0mm (d) Void fraction at z=4.5mm 

Figure 7: Profiles of the pressure and void fraction at points of z=0, 4.5mm for fG0=0.5%. 




