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Abstract 

The burden of several common diseases including obesity, diabetes, hypertension, asthma, and 

depression is increasing in most world populations. However, the mechanisms underlying the 

numerous epidemiological and genetic correlations among these disorders remain largely unknown. 

We investigated whether common polymorphic inversions underlie the shared genetic influence of 

these disorders. We performed an inversion association analysis including 21 inversions and 25 

obesity-related traits, on a total of 408,898 Europeans, and validated the results in 67,299 

independent individuals. Seven inversions were associated with multiple diseases while inversions at 

8p23.1, 16p11.2 and 11q13.2 were strongly associated with the co-occurrence of obesity with other 

common diseases. Transcriptome analysis across numerous tissues revealed strong candidate genes 

of obesity-related traits. Analyses in human pancreatic islets indicated the potential mechanism of 

inversions in the susceptibility of diabetes by disrupting the cis-regulatory effect of SNPs from their 

target genes. Our data underscore the role of inversions as major genetic contributors to the joint 

susceptibility to common complex diseases. 

 

 

KEYWORDS: genetic inversions, obesity-related diseases, common diseases, obesity, diabetes, 

hypertension, asthma, human traits, disease co-occurrence. 

 
 

  



3 
 

INTRODUCTION 
 
 
Obesity is a disorder with increasing but non-uniform prevalence in the world population and one of 

the major public health burdens1. Obesity (MIM: 615812) derived morbidity and years of life lost 

strongly associate to a broad range of highly prevalent diseases, including type 2 diabetes 

(MIM:125853), cardiovascular disease (MIM: 608901), asthma (MIM: 600807) and 

(neuro)psychological disturbance such as depression (MIM:608516) or intellectual disability,  among 

others2. While the causes underlying the multiple co-occurrences of obesity are likely complex and 

diverse, common mechanisms underlying these comorbidities, which are potential targets for 

preventive or therapeutic intervention, are largely unknown.  

 

One of the possible genetic mechanisms of comorbidity can be through rare copy number variants 

(CNVs), which are more prevalent in people with some severe forms of obesity3,4 and might confer at 

least part of the increased risk for obesity via developmental delay5. Most of these findings have been 

described in pediatric obesity.6,7  

 

Genomic inversions, copy-neutral changes in the orientation of chromosomal segments with respect to 

the reference, are (also) excellent candidates for being important contributors to the genetic 

architecture of common diseases. Inversion polymorphisms can alter the function of the including and 

neighboring genes by multiple mechanisms, disrupting genes, separating their regulatory elements, 

affecting chromatin structure, and maintaining a strong linkage of functional variants within an interval 

that escape recombination. Therefore, by putatively affecting multiple genes in numerous ways, 

inversions are important sources of shared genomic variation underlying different human diseases and 

traits. Consequently, human inversions show genetic influences in multiple phenotypes. For instance, 

the common inversion at 8p23.1 has been independently linked to obesity8, autism (MIM: 209850)9, 

neuroticism (MIM: 607834)10 and several risk behavior traits11, while inversion at 17q21.31 has been 

associated with Alzheimer (MIM: 607822)12 and Parkinson (MIM: 168600) 13 diseases, heart failure14 
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and intracranial volume15. We previously reported a ~40% of population attributable risk for the co-

occurrence of asthma and obesity given by a common inversion polymorphism at 16p11.216. In 

addition, transcriptional effects have been documented in several tissues for inversions at 

17q21.3113,17, and 16p11.216.   

 

It is estimated that each human genome contains about 156 inversions18.  Therefore, inversions 

constitute a substantial source of genetic variability. Many of those polymorphic inversions show 

signatures of positive or balancing selection associated with functional effects19. However, the overall 

impact of polymorphic inversions on human health remains largely unknown because they are difficult 

to genotype in large cohorts. We overcame this limitation by recently reporting a subset of 20 

inversions that can be genotyped with SNP array data as they are old in origin, low or not recurrent 

and frequent in the population20. We have also included an additional inversion in our catalog, 

16p11.2, previously validated and genotyped in diverse populations16. Three of the inversions are 

submicroscopic (0.45-4 Mb), flanked by large segmental duplications and contain multiple genes. Five 

are small (0.7-5 Kb) and intragenic, and 13 are intergenic of variable size (0.7-90 Kb) but highly 

enriched in pleiotropic genomic regions21. While this is clearly not a comprehensive set of inversions, it 

is probably the largest set that can be genotyped in publicly available datasets. 

 

In this manuscript, we aimed to study the association of 21 common polymorphic inversions in 

Europeans with highly prevalent co-morbid disorders and related traits.  We particularly aimed to 

decipher the role of inversions in known epidemiological co-occurrences with obesity such as 

diabetes, hypertension (MIM: 145500), asthma and mental diseases like depression, bipolar disorder 

(IMIM: 125480) or neuroticism. For significant associations, we investigated whether causal pathways 

could be established and the most likely underlying mechanisms. 

 
 
MATERIAL AND METHODS 

Discovery Dataset 
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The UK Biobank (UKB) is a population-based cohort involving 500,000 individuals aged between 37 

and 73 years, recruited across UK in the period 2006-2010.  Further details on the quality control and 

genotyping are described in the study design22. Phenotypic information is recorded via questionnaires 

and interviews (e.g., demographics and health status) and SNP genotypes were generated from the 

Affymetrix Axiom UK Biobank and UKBiLEVE arrays. We based our study on 408,898 individuals from 

European descent and from whom inversion genotypes were called using SNP array data. Principal 

components computed by the UK Biobank (data-field 22009) were used in the analyses to control for 

population stratification. 

 

Replication Datasets 

Different public datasets with access grant to the co-authors were used to attempt to replicate our 

positive findings in the association studies (Figure 1). The next sections describe these resources. 

  

Genetic Epidemiology Research on Aging (GERA) 

The GERA cohort (dbGaP Study Accession: phs000674.v1.p1) consists on a cohort of over 100,000 

adults from the Northern California Region (USA). Only individuals with reported race (variable 

phv00196837.v2.p2) equal to white were selected for the analyses (n=56,638). The resulting studied 

cohort is 40% male, 60% female, and ranges in age from 18 to over 100 years old with an average 

age of 64 years at the time of the survey (2007). Individuals were genotyped with Affymetrix 

Axiom_KP_UCSF_EUR. After quality control of the inversion genotyping calling process a total of 

53,782 individuals with information about sex, age, principal components for genetic ancestry and 

several diseases including obesity (9,439 cases), diabetes (6,529 cases), hypertension (27,009 

cases), asthma (8,716 cases) and depression (6,924 cases) were used in the replication studies. 

 

70KforT2D: diabetes and obesity 

The 70KforT2D study (70KT2D)23 includes 5 datasets publicly available in dbGAP or EGA: NuGENE, 

FUSION, GENEVA, WTCCC and GERA. Notice that 70KforT2D include cases diagnosed with 
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diabetes and obesity from the GERA cohort. We used information about being diabetic or not as 

describe elsewhere23. The 5 datasets were used to attempt to replicate the significant findings in the 

UK Biobank data on diabetes. The WTCCC dataset was removed from the obesity and 

obesity/diabetes analysis since we did not have access to body mass index (BMI) information for that 

study. The GERA dataset was split in two (GERA1 and GERA2) to speed up the imputation and 

inversion calling procedure since it is a large dataset. After performing QC on inversion genotypes, a 

total of 67,299 individuals were used in the replication step (54,801 controls and 12,498 diabetic). 

Data was accessed from the portal cg.bsc.es/70kfort2d. 

 

The obesity variable was created using the body mass index (BMI) variable. We considered control 

individuals those having BMI in the interval (18.5–24.9) and obese people those having BMI>30.0. For 

obesity associations, we excluded individuals with diabetes. As a result, a total of 34,316 individuals 

(23,818 controls and 10,498 obese) were used for that purpose. The co-occurrence of obesity and 

diabetes was studied by comparing individuals with no obesity and no diabetes as the reference 

category with individuals being obese and diabetic simultaneously. This ended up with a total of 

23,818 control and 5,715 obese/diabetic individuals. Next, we further describe the studies included in 

the 70KT2D dataset along with their accession numbers.  

 

Northwestern NUgene Project: Type 2 Diabetes (NUGENE) (dbGaP Study Accession: 

phs000237.v1.p1) contains data from individuals from the Northwestern University Medical Center 

(USA). For this study, T2D cases were included if they had been diagnosed of Type 2 Diabetes, they 

took drugs to treat Type 2 Diabetes or they presented abnormal diabetes-related blood measures. 

Controls were included if they had not been diagnosed of Type 2 Diabetes, they did not take drugs to 

treat Type 2 Diabetes, they presented normal diabetes-related blood measures and they did not have 

any family history of diabetes (either Type 1 or Type 2). In both groups, subjects with Type 1 Diabetes 

were excluded. These individuals were genotyped with Illumina Human1M-Duov3_B.  
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The Finland-United States Investigation of NIDDM Genetics - GWAS Study (FUSION) (dbGaP Study 

Accession: phs000100.v4.p1) aims to investigate the association between genetics and Type 2 

Diabetes in Finish families. For this study, cases were included if they had been diagnosed of type 2 

diabetes, they took drugs to treat type 2 diabetes or they presented abnormal diabetes-related blood 

measures. Controls were included if they presented normal diabetes-related blood measures and 

were frequency matched to the cases by age, sex and birth province. In both groups, individuals with 

family history of type 1 diabetes were excluded. These individuals were genotyped with Illumina 

HumanHap300v1.1.  

 

GENEVA Genes and Environment Initiatives in Type 2 Diabetes (Nurses' Health Study/Health 

Professionals Follow-up Study) (dbGaP Study Accession: phs000091.v2.p1) is a nested case-control 

(2,720 cases and 3,180 controls) study from two USA female cohorts: the Nurses' Health Study (NHS) 

and the Health Professionals Follow-up Study (HPFS) with a mean age of 57 ranging from 40 and 78. 

These individuals were genotyped with Affymetrix AFFY_6.0.  

 

Geographical variation in Europe 

POPRES project (dbGaP Study Accesion: phs000145.v4.p2 access granted to the authors) was used 

to estimate inversion frequencies in European countries and regions. This project aimed to facilitate 

exploratory genetic research by assembling a DNA resource from a large number of subjects 

participating in multiple studies throughout the world. We selected European individuals (variable 

phv00173964.v2.p2) leading a total of 3,071 samples.  A geographic label (North, Center, South) was 

assigned to each individual using information of variable phv00066613.v2.p2. 

 

Transcriptomic analyses 

GTEx Analysis 

We associated the 21 chromosomal inversions to changes in gene expression in GTEx project. We 

determined inversion genotypes on the GTEx v7 genotype calls from dbGAP (dbGaP Study 
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Accession: phs000424.v7.p2 accession granted to the authors). We only included samples classified 

as European with a confidence higher than 90% by peddy24. Inv3_003 was discarded as the calling 

was not confident. Gene expression counts from RNA-seq data were downloaded using recount225. 

We computed the association between gene expression and inversions using voom26 and limma27. 

The linear model included the inversion coded as additive (0: NN, 1: NI, 2: II) and the same covariates 

than GTEx (first three genome-wide PCA components, sex and covariates from PEER). In each 

tissue, we selected those features having more than 10 counts in at least 10% of the samples. We 

corrected the association results per tissue for multiple comparisons by using a false discovery rate 

(FDR) adjusted p-value per tissue. 

 

EGCUT Biobank 

Estonian Gene Expression Cohort was used to attempt to replicate positive transcriptomic results 

found in GTEx. The cohort is composed of 1,048 randomly selected samples (mean age 37+/-16.6 

years; 50% females) from the cohort of 53,000 samples in the Estonian Genome Center Biobank, 

University of Tartu. Whole-Genome gene-expression levels from whole blood RNA were obtained by 

Illumina HT12v3 arrays according to manufacture’s protocols. Low quality samples were excluded. All 

probes with primer polymorphisms were discarded, leaving 34,282 probes. Raw gene expression data 

was Log-Quantile normalized using MixupMapper software. DNA was genotyped with Human370CNV 

array.  

 

Pancreatic Islets 

We analyzed the transcriptomic effect of inversions 8p23.1 and 16q11.2 on 118 pancreatic human islet 

samples using RNA-sequencing counts and high-density genotyping data28. DNA genotype data (EGA 

accession number EGAS00001001261) was used to call inversion genotypes using scoreInvHap, then 

the association between gene expression and inversions was assessed using voom26 and limma27. 

Only genes in the inversion regions were analyzed and un-corrected p-values were reported as a 

measure of association.  
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Positional analyses 

For the positional analyses, several annotations were gathered from the following sources: TAD 

boundaries from the Human ES Cell (H1) topological domains29; promoters, enhancers, CTCF-peaks 

and ATAC-seq open-chromatin regions from the human islet regulome annotation30; islet-specificity 

scores were calculated using the gene expression data from31; eQTL SNP-gene associations from28,32. 

The chromatin landscape coverage percentage was calculated using a sliding window of 500kb and 

1Mb for inversions 8p23.1 and 16p11.2 respectively, using steps of 1% of the window size, and 

calculating the percentage of covered nucleotides by significant signal in each of the categories. For 

the islet-specific expression analysis, we calculated the non-islet median expression level and 

difference between the 75 and 50 quartiles, and considered as islet-specific any gene that was 

expressed in islet >3 quartiles over the median of non-islet expression. Visualization was done in 

python3 using the matplotlib graphics library. 

 

Statistical methods 

SNP imputation and inversion calling 

SNP microarray data was imputed with imputeInversion pipeline prior to inversion calling33. This 

pipeline was designed to impute only those SNPs inside the inversion region or closer than 500 Kb to 

the inversion breakpoints. This step is recommended before performing inversion calling. 

imputeInversion uses shapeITv2.r904 to phase34, Minimac335 to impute and 1000 Genomes as 

reference haplotypes. Variants with an imputation R2 < 0.3 were discarded. Genotype probabilities 

were used to call inversions using scoreInvHap20 which is available at Bioconductor. scoreInvHap 

computes a similarity score between an individual’s alleles and the reference alleles in each 

chromosomal status. We used the development version of scoreInvHap, which includes references for 

21 inversions. These methods were used to perform inversion calling of discovery and replication 

studies as well as individuals from POPRES. 
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Inversion frequencies 

Inversion frequencies were estimated in UKB and POPRES studies using SNPassoc package36. A 

trend test implemented in the R function prop.trend.test was used to assess whether inversion 

frequencies in European regions from POPRES (North, Center, South) showed a significant cline. 

Principal component analysis was used to visualize inversion frequencies across European regions of 

POPRES dataset. 

 

Obesity and obesity co-occurrence traits 

Obesity trait was created using body mass index (BMI) information. First, BMI was categorized in 5 

categories using World Health Organization (WHO) classification which considers the following 

categories: underweight (BMI below 18.5), normal weight (BMI between 18.5 and 25), pre-obesity 

(BMI between 25 and 29.9), obesity class I (BMI between 30 and 34.9) and obesity class II and III 

(BMI above 35). Obesity was considered as obesity class I, II and III and was compared with normal 

weight category. The analysis of obesity co-occurrence with diabetes, hypertension, asthma, 

depression and neuroticism was performed by comparing individuals with normal weight and no 

presence of the disease with individuals being obese and having the disease of interest.    

 

Inversion association analyses 

Each inversion was independently associated with all the traits by using generalized linear models 

implemented in SNPassoc package36. The models were adjusted for gender, age and the first four 

principal components obtained from GWAS data in order to control for population genetic differences. 

The inversions were analyzed using an additive model. Multiple comparison problem was addressed 

by correcting for the total number of inversions and the phenotypes analyzed by considering the 

effective number of tests (18 independent tests) using Li and Li method37 that accounts for correlation 

among traits. This ended up with a corrected p-value equal to 0.00128. 
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Causal inference 

Mediation analysis using mediation R package38 was used to evaluate whether inversion 8p23.1 

mediates the association between obesity and diabetes. Additive Bayesian network models using abn 

R package39 were used to determine optimal Bayesian network models to identify statistical 

dependencies between inversions 8p23.1, 16p11.2 and 11q13.2 and obesity, diabetes and 

hypertension in the UKB dataset, and validated in the GERA cohort. The most probable network 

structure was estimated using exact order-based approach as implemented in the mostprobable 

function of abn package. 

Data availability 

The data used in this work were obtained from publicly available datasets that are accessible through 

public repositories: UKB study, dbGaP, EGA, GTeX and GEO. The inversion calling of UKB samples 

will be available through their platform. The inversion calling for the other samples are available upon 

request. The complete transcriptomic summary statistics of the 21 inversions are also available upon 

request.  

 
 
RESULTS 
 

Frequency and stratification of inversions in European populations 

Using scoreInvHap, we first called the inversion status of individuals from the UK Biobank (UKB) with 

European ancestry (n=408,898). We confirmed the previously reported frequency in the 1000 Genome 

project of the 21 inversions analyzed in this work (Table 1). As inversion frequencies have a strong 

demographic effect, we also analyzed 12 European countries from the POPRES study (Figure S1). 

We observed significant clines along north-south latitude for several inversions (Table 1 and Figure 
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S2A) as well as subtle ancestral differences (Figure S2B). Thus, population stratification was 

considered when performing association analyses as explained in the methods section. 

 

Inversions at 8p23.1, 16p11.2 robustly associate with obesity and obesity-related traits  

The discovery phase of the study used data from UKB. We performed association analyses between 

the 21 inversions with obesity and co-morbid diseases and traits (see Methods). These include 

obesity, diabetes, stroke, hypertension, asthma, chronic obstructive pulmonary disease (COPD), 

depression and bipolar disorder, along with related traits or phenotypes classified as morphometric (4 

traits), metabolic (5 traits), lipidic (2 traits), respiratory (3 traits) and behavioral (3 traits) (Figure 2). 

Table S1 shows the total number of cases and controls used to perform the association analyses on 

each trait. The significant associations were further validated in the GERA independent dataset that 

contains information about several diseases. Positive results found in diabetes were validated in the 

70KT2D dataset, which includes GERA among others (NUGENE, FUSION, GENEVA and WTCCC) 

(see Methods and Figure 1 which describes the comprehensive data analysis performed in the 

different datasets). 

 

The analyses on the UKB revealed several genetic influences of inversions on obesity and related 

common diseases (Figure 2). We observed a total of 74 significant associations after correcting for 

the number of inversions analyzed and the effective number of tests to consider the multiple analyzed 

traits (see Methods). In general, we observed higher numbers of associations and stronger effects for 

the largest inversions at 8p23.1, 16p11.2 and 17q21.31, consistent with the fact that they encapsulate 

more genes. Some smaller inversions such as the ones at 11q13.2 and Xq13.2 also showed notable 

effects such as shared susceptibility and strength, respectively. We found a prominent inflation of 

association suggesting common genetic influences of the inversions across multiple phenotypes 

(Figure S3A). Some of the associations found have already been reported such as those at inversion 

8p23.1 with obesity8 and neuroticism10 and the one with inversion 16p11.2 with obesity16.  
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As a summary of the relevant findings, we observed that inversions at 8p23.1, 16p11.2 and 11q13.2 

are all strongly associated with several obesity-related diseases (Figure 2). Remarkably, the non-

inverted (N) allele of inversion 8p23.1 (i.e. the risk allele) is independently associated with diabetes 

(OR=1.04, p=1.1x10-3), hypertension (OR=1.04, p=7.0x10-16) and asthma (OR=1.03, p=7.0x10-5) 

(Table 2). The association with diabetes was replicated in the 70KT2D study (Figure 3A) (OR =1.08, 

p=1.1x10-8) as well as the association with obesity (OR=1.08, p=5.6x10-6) and the association with 

hypertension, which was validated in the GERA study (OR=1.03, p=0.0183) (Table 2). We also found 

a significant association between the non-inverted (N) allele of inversion 16p11.2 and obesity 

(OR=1.05, p=3.9x10-24) that was replicated in GERA study (OR=1.07, p=1.4x10-4). The significant 

association found in the UKB for the inversion 11q13.2 was not validated in the GERA study 

(OR=1.03, p= 0.0712). Consistently, the analysis of UKB study also revealed association of inversions 

at 8p23.1 and 16p11.2 with different obesity-related traits such as body mass index (BMI), waist 

circumference, high density lipoprotein (HDL) or systolic and diastolic blood pressure, among others 

(Figure 2).   

 

Some interesting associations in the discovery sample included those of inversion 17q21.31 with HDL, 

waist circumference, waist-hip ratio and systolic and diastolic blood pressure (Figure 2). Interestingly, 

this inversion also showed a significant role in behavioral traits such as mood swing, depression and 

bipolar disorder, which would need further validation. While we also found significant association of the 

inversion 6p21.33 with asthma (OR=1.02, p=0.0215) and different respiratory capacity traits (FEV1, p= 

3.4x10-9 and FVC, p=3.2x10-9) the association with asthma was not replicated in the GERA study. The 

inversion 7q11.2 was associated with different morphometric traits (BMI, waist circumference and 

waist-to-hip ratio) and will require further validation studies.   

 

Inversions at 8p23.1, 16p11.2 and 11q13.2 are more strongly associated with the co-occurrence 

of diseases than with single diseases  
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Remarkably, the N-allele of the inversion 8p23.1 was significantly associated with the co-occurrence of 

obesity with diabetes (OR=1.08, p=3.1x10-7), hypertension (OR=1.07, p=1.7x10-16) or asthma 

(OR=1.08, p=3.0x10-11). These results were validated in the GERA and 70KT2D (Table 2). For 

obesity/diabetes we observed an OR=1.17 (p=1.4x10-13) (Table 2 and Figure 3C) and none of the 

SNPs located within the inverted region were significantly associated at a genome-wide level 

(minimum p = 3.8x10-5) (Figure S4A). Finally, we also found a significant association of the N-allele of 

inversion 11q13.2 with the co-occurrence of obesity with diabetes (OR=1.05, p=0.0011) and 

hypertension (OR=1.03, p=2.9x10-5) (Figure 2), which was not validated in the GERA study. 

 

The study of inversion 16p11.2 also revealed some new significant associations between the inversion 

and the co-occurrence of obesity with several diseases (Figure 2). The co-occurrence with diabetes at 

UKB (OR=1.06, p=7.5x10-5) was independently replicated in the 70KT2D study (OR=1.13, p=1.2x10-8), 

where none of the SNPs located within the inverted region were significantly associated at a genome-

wide level (minimum p: 0.0214) (Figure S4B). In addition, the significant co-occurrence with 

hypertension observed in the UKB study (OR=1.06, 2.7x10-14) was validated in the GERA study 

(OR=1.05, p=0.0357) further confirming the robustness of these findings (see Table 2 reporting the 

effect of the risk allele N). 

 

In order to further illustrate that the association of the inversion is not driven by single variants, we 

downloaded data from the GWAS catalog and checked whether the GWAS signals for the analyzed 

traits are associated (i.e. tags) with the inversions. No tag-SNPs for any of these traits were found. In 

particular, the results for the three inversions associated with the co-occurrence of obesity with other 

traits showed the following results: the median R2 between SNPs in the 8p23.1 region and the 

inversion was 0.36 (IQR: 0.17-0.46), 0.71 (IQR: 0.62-0.89) for the inversion 16p11.2, and all the SNPs 

are not associated (i.e linkage equilibrium) (R2 < 0.06) for the inversion 11q13.2. 
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Regulatory region and gene disruption are the mechanisms underlying the effect of inversions 

on diabetes  

To investigate the possible mechanisms underlying the shared genetic influences of the inversions 

with obesity and its co-morbidities, we analyzed the transcriptional effects of the 21 inversions on 

different tissues from the GTEx project (see Methods). As a result of these analyses, we found that 

inversion 8p23.1 modulated the transcription in brain, pancreas and adipose tissue of the pseudogene  

FAM86B3P (HGNC: 44371), as well as the genes MFHAS1 (MIM: 605352), IL19 (MIM: 605687), 

HAND2 (MIM: 602407), FDFT1 (MIM: 184420), FAM167A (MIM: 610085), ERI1 (MIM: 608739), 

CHAC1 (MIM: 614587), CCL22 (MIM: 602957), CCL19 (MIM: CCL19) and BLK (MIM: 191305) in 

other tissues (Figure 3D). Genes FDFT1 (MIM: 184420), C8orf13 (MIM: 610085), CLDN23 (MIM: 

609203), NEIL2 (MIM: 608933), MTMR9 (MIM: 606260), MSRA (MIM: 606260), BLK (MIM: 191305)  

and were also differentially expressed in blood samples from the validation study we performed in the 

independent general population cohort belonging to EGCUT Biobank (Figure 3E). For the inversion 

16p11.2 we found a total of 30 genes differentially expressed at 5% FDR level in blood, brain, 

pancreas or adipose tissue including TUFM (MIM: 602389), SULT1A2 (MIM: 601292), SPNS1 (MIM: 

612583), EIF3CL (MIM: 603916), FOXO1 (MIM: 136533)  among many others (Table S2). These 

results were also observed in the blood samples of the validation cohort from EGCUT Biobank (Figure 

S5). The genes affected by the other inversions and the different tissues can be found in Table

 

Inversions 8p23.1 and 16p11.2 affect key genes associated with diabetes in pancreatic islets 

We conducted a more detailed analysis of gene expression on a relevant tissue to support the 

association on diabetic/obese individuals. We first genotyped the inversions and analyzed RNA 

sequencing in human pancreatic islets from 89 deceased donors (see Methods). This revealed a 

significant association between inversion 8p23.1 and the expression levels of CLDN23 (p=1.3x10-3) 

and ERI1 (p=0.0356). We observed a nominally significant interaction of inversion 8p23.1 with 

obese/diabetic status associated with the expression of lncRNA FAM66A (HGNC: 30444) (p= 0.0254), 

where individuals carrying the risk allele for obesity and diabetes also present FAM66A down-
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regulation (Figure 3F). In addition, results with inversion at 16p11.2 also revealed a significant 

interaction between the inversion and obese/diabetic status for the expression of NUPR1 (MIM: 

614812) (p= 0.0116) and ATXN2L (MIM: 607931) (p= 0.0167) (Figure S6). 

 

Cis-regulatory SNPs are disrupted by breakpoints of inversions 8p23.1 and 16p11.2 

We also investigated whether the positional effects of the inversions could be associated with diabetes 

(see Methods). Figure 4A shows the chromatin landscape of the region of the inversion 8p23.1 as 

well as the location of all genes having a significant alteration of expression, including those that are 

islet-specifically expressed.  A cluster of islet-specific genes is located outside the rightmost boundary 

of the inversion but inside the inversion’s topologically associated domains (TAD). Therefore, it is likely 

that the regulatory regions of these genes lie across the inversion’s boundary, and thus their cis-

regulatory SNPs being separated from their target genes by the right breakpoint of the inversion 

8p23.1 in the case of genes FAM66A and FAM66D (HGNC: 24159) (Figure 4A). Similarly, the analysis 

of the inversion 16p11.2 also revealed four eQTLs in which the cis-regulatory SNPs were separated 

from their target genes by the inversion breakpoints: TUFM, SULT1A1 (MIM: 171150), EIF3C (MIM: 

603916), EIF3CL (Figure 4B). The EIF3CL gene is disrupted by the inversion breakpoint providing a 

different mechanism of action for that gene (Figure 4B).  

 

Obesity mediates the association of inversions with diabetes and hypertension 

We first aimed to disentangle the shared genetic influence of the inversion 8p23.1 in obesity and 

diabetes. To this end, a Bayesian network analysis was performed on the discovery study (see

Methods). Based on the BIC, the most likely model was for the sequence inv8p23.1 -> obe

sity -> diabetes, suggesting a mediatory effect of obesity on the association between the inversion and 

diabetes (Figure 5A). The same network was obtained in the GERA cohort. This was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

consistent with mediation analyses showing that 38.7% (CI95%: 25.2-59.0%) of the diabetes risk 

variance explained by the inversion 8p23.1 was mediated by obesity (p<10-16). Then, we also 

investigated whether inversion 8p23.1, 16p11.2 and 11q13.2 act jointly or not on obesity, diabetes and 



17 
 

hypertension. The Bayesian network analysis including the three inversions in the model revealed that 

the inversions 8p23.1 and 16p11.2 independently associated with diabetes and hypertension being 

mediated by obesity (Figure 5B).  

 

 

DISCUSSION 

Epidemiological studies largely support the co-occurrence of obesity with numerous traits and 

diseases such as diabetes, hypertension, asthma and psychiatric disorders among others40,41. The 

extent to which obesity is a cause, a consequence or shares common causes with these traits is 

subject of intense research42–44. Here, we show that at least two common polymorphic inversions at 

8p23.1 and 16q11.2 offer a genetic substrate to some widely observed co-morbidities of obesity, such 

as those with diabetes, hypertension, asthma and depression.  

 

The analysis of UKB dataset validated the estimated inversion allele frequencies in European 

populations reported in our recent analyses20. The observed differences of some inversion allele 

frequencies among major populations could explain part of the existing geographic variability in 

disease incidence45. In particular, the reported cline of the inversion at 8p23.1 and 16p11.2 could 

capture a proportion of the observed North-South European differences in obesity46, diabetes and 

hypertension47 incidence.  

 

The analysis of our discovery sample also confirmed previous reported associations of inversions with 

phenotypes, such as neuroticisms for the inversions 17q21.31 and 8p23.110, obesity for inversion 

8p23.18,  and the co-occurrence of asthma and obesity with the inversion 16p11.216. In addition, we 

discovered and robustly validated new associations of the inversion 8p23.1 with diabetes and 

hypertension as well as the co-occurrences of obesity with diabetes, hypertension and asthma. These 

results suggest a relevant role of the inversion 8p23.1 in this metabolic syndrome48.  
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Our data suggest a causal path in which obesity mediates the observed association between 

inversions and several complex diseases. In particular, obesity mediates the independent effect of 

inversions at 8p23.1 and 16p11.2 on diabetes. Transcriptome analyses from general population has 

revealed candidate genes to mediate this effect, such as BLK, involved in pancreatic β-cell insulin 

metabolism whose rare mutations are associated with young age of onset diabetes49, or FDFT1, 

linked to C-reactive protein (CRP) and lipids levels50 and one of the strong candidates for obesity in 

gene expression networks derived from mouse intercrosses51. A more specific analysis of 

transcriptome and eQTLs on pancreatic islets leads to another interesting gene: FAM66A. FAM66 is a 

multiple copy non-coding gene located in the flanking segmental duplications of the 8p23.1 inversion 

breakpoint highly expressed in brain and with low-level expression in pancreas. Diabetic individuals 

carrying the N-allele have lower gene expression, while no differential expression across inversion 

genotypes is observed in control individuals. Consistently, allele-specific expression analysis of this 

gene shows clear differences in expression in pancreatic cells of already symptomatic diabetic 

subjects. Remarkably, a copy-number gain variant including FAM66 genes has been associated with 

increased risk of diabetes52. Our positional analyses also pointed out at FAM66D (8p23.1) as a 

candidate since the gene body was split in two by the inversion breakpoint.  

 

We have also shown that inversion at 16p11.2 affects the joint effect of obesity with diabetes and 

hypertension and that this effect is independent of the effect found for inversion 8p23.1. Also, the odds 

ratios found for these associations are stronger than those observe when analyse those diseases 

independently. The functional consequences of this inversion were previously reported to be mediated 

by deregulation of TUFM, SULT1A1, SULT1A2, SH2B1 (MIM: 608937), APOB48R (MIM: 605220), and 

EIF3C in blood16. Position transcriptional analysis in pancreatic islets revealed that TUFM and EIF3C 

have their lead eQTL SNPs separated in the inverted allele. Remarkably, the eQTL SNP rs42861 of 

TUFM does not seem to be causal in the centiSNP database53 suggesting that it is in LD with the 

causal variant. This SNP is located into the promoter region that is closer to TUFM in the inverted 

haplotypes. This supports the hypothesis that the positional changes made by the inversion can affect 
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TUFM gene expression and subsequently have an effect in obesity/diabetes increased risk. Positional 

analyses also pointed out EIF3CL, a gene also split in two by the inversion breakpoint, and with some 

isoforms preferentially expressed in human pancreatic islets31.  

  

The inversions at 8p23.1 and 16p11.2 were also associated with the joint occurrence of obesity with 

behavioral traits, in particular with depression. These data further support our hypothesis that 

polymorphic inversions are strong candidates for the joint genetic susceptibility to co-occurring 

diseases by simultaneously affecting multiple genes. The observation that some SNPs located in both 

inversion regions are not or weakly associated with the analyzed traits, while inversion haplotypes are 

associated even at genome-wide significant level for GWAS, and the strongest association found in 

people having more than one disease, also confirm that inversions are main contributors to the shared 

genetic susceptibility of co-occurring diseases. The fact that inverted alleles do not recombine 

preserving haplotypes in strong linkage disequilibrium highly suggest that the underlying evolutionary 

genetic event that has maintained or selected functional eQTLs in cis in these haplotypes is the 

inversion. Functional analyses in the appropriate tissue in cases and controls, as the one we 

performed for obesity and diabetes, will shed light into the genes and mechanisms involved in 

behavioral or psychiatric traits.  

 

Our hypothesis that inversions underlie the shared genetic susceptibility to common diseases is 

particularly supported by our findings in large inversions. These inversions encapsulate multiple genes 

and their associations with phenotypes were highly significant and could be replicated. Smaller 

inversions showed significant effects for numerous traits in the discovery study but only one result 

could be confirmed, namely the correlation of inversion at 11q13.2 with obesity and related traits and 

also with the co-occurrence of obesity, hypertension and diabetes. Similarly, this study opens the door 

to further association studies of these and other inversions with traits and disorders not studied in this 

work. Additionally, the large number of significant genes associated with different tissues as well as the 

significant associations found for some traits also provides good candidate genes for some human 
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diseases that are likely under the influence of inversions. These include, among others, Autism, 

Alzheimer and Parkinson disease.   

 

In conclusion, we report the largest association study of genomic inversions and human traits that 

represents a breakthrough for genomic association of comorbid disorders, in which polymorphic 

inversions were often previously disregarded. Our results underscore the role of some inversions as 

major genetic contribution to the joint susceptibility to common diseases. The results in obesity and 

diabetes reveal a mechanism in which cis-regulatory SNPs are separated from their target genes by 

inversion breakpoints. Our findings set a new framework for future studies which are now accessible 

to the research community thanks to inversion genotyping tools such as our scoreInvHap method20.  

 

SUPPLEMENTARY DATA DESCRIPTION 

 

The file inversions_supplementary_material.pdf contains supplementary figures S1-S6 and 

supplementary table S1. 

 

The file Table_S2.xlxs contains a the supplementary table S2 with the gene expression data analysis 

of GTEx and inversions (one chromosome per tab).  
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FIGURE TITLE AND LEGENDS 

 

Figure 1. Discovery and validation datasets. The flow chart shows the discovery sample and the 

validation datasets as well as the datasets used for post-genomic data analyses. Sample size (n) used 

from each dataset after performing quality control are also shown.  

 

Figure 2. Association analyses between 21 inversions and 8 diseases (in bold) and 17 traits 

and the co-occurrence of obesity with 6 other complex diseases. Circles represent the direction 

(color) and the strength (size) of the association for different groups of traits (morphometric, metabolic, 

lipidic, respiratory and behavioral) and the epidemiological well-established co-occurrence of obesity-

related diseases. Inversions are grouped by size and features: 1) submicroscopic are large (0.4-4Mb) 

encompassing multiple genes and flanked by segmental duplications; 2) intragenic are located within 

a gene, either intronic or containing one exon; and 3) intergenic are enriched in pleitropic regions 

 

 

Figure 3. Validation of positive associations between the inversion 8p23.1 with diabetes, 

obesity and their co-occurrence in the 70KT2D dataset and transcriptional allelic effects in 

samples from EGCUT Biobank and GTEx tissues. A: Meta-analysis of datasets belonging to 

70KT2D for the association of inversion 8p23.1 with diabetes. B: Meta-analysis of datasets belonging 

to 70KT2D for the association of inversion 8p23.1 with obesity. C: Meta-analysis of datasets belonging 

to 70KT2D for the association of inversion 8p23.1 with obese and diabetic individuals. D: Differential 

expressed genes at inversion genotypes (at 5% FDR) in different tissues from GTEx. E: Differentially 

expressed genes at inversion genotypes (at 5% FDR) in blood samples from EGCUT Biobank. F: 

FAM66A gene expression interaction between diabetic status and inversion 8p23.1 in pancreatic islets 

samples (p=0.0254). 
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Figure 4. Mechanisms underlying the inversion association with diabetes. Panel A shows the 

islet specific expression of inversion 8p23.1 genes. We observed a cluster of islet-specific genes, 

mainly lncRNAs, next to the distal inversion breakpoint that could be separated from regulatory 

elements located inside the inverted region. The bottom panel depicts an eQTLs (rs1478898) of 

FAM66A gene disrupted by the inversion distal breakpoint (van de Bunt et al, 2015).  FAM66D has its 

gene body split in two by the inversion, and would also have its promoter separated from its eQLT 

SNP (rs140730217) by the inversion. This could be the most likely causal candidate. Panel B shows 

the same information for the inversion 16p11.2.  TUFM and EIF3C have their lead eQTL SNP 

separated by the inversion breakpoint. There is no evidence in the centiSNP database53 for SNP 

rs42861 to be causal, suggesting that it should be in LD with the causal variant. This promoter region 

SNP is located in a segmental duplication block that is closer to TUFM in the inverted haplotypes. 

Therefore, positional changes made by the inversion can affect TUFM gene expression by separating 

the gene from regulatory sequences and subsequently increasing obesity risk. 

 

 

Figure 5. Mediation effect of obesity in the causal link between inversions and diabetes and 

hypertension. Figure A shows mediation analysis of obesity in the association between inversion 

8p23.1 which is the Best Bayesian Network when analyzing these three variables. Figure B shows the 

Best Bayesian Network based on AIC obtained after including obesity, hypertension, diabetes and 

inversions 8p23.1, 16p11.2 and 11q13.2. Results are obtained from UKB data. 
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TABLE TITLES AND LEGENDS 
 
Table 1. Characteristics of the 21 genomic inversions. The table shows the coordinates, SNP 
content, size, and inversion frequency obtained from 1000 Genomes as described in Ruiz-Arenas et 
al20, the UKB and European regions (north, center and south) using the regions described in the 
POPRES dataset (see Methods). The p-value correspond to a trend test to assess north-south linear 
association (in bold those significant at 5% level). 
 

     
 European Populations 

(POPRES) 
 

Chr. 
band Coordinates 

Num. 
SNPs 

Length 
(Kb) 

Inv. 
Freq.20 

 
UKB 

 
North 

 
Center 

 
South 

trend 
p-value 

1p22.1 chr1:92,131,841-
92,132,615 6 0.77 11.23 10.1 8.9 9.1 14.4 0.0057 

1q31.3 chr1:197,756,784-
197,757,982 5 1.2 19.68 20.2 19.4 21.7 19.1 0.8781 

2p22.3 chr2:33,764,554-
33,765,272 6 0.72 15.11 15.5 13.8 13.5 11.7 0.3199 

2q22.1 chr2:139,004,949-
139,009,203 13 4.25 71.47 75.3 76.6 71.9 66.4 0.0003 

3q26.1 chr3:162,545,362-
162,547,641 6 2.28 56.16 51.1 53.4 55.2 61.1 0.0140 

6p21.33 chr6:31,009,222-
31,010,095 5 0.87 63.12 62 61.3 65.0 72.8 0.0001 

6q23.1 chr6:130,848,198-
130,852,318 12 4.12 6.56 7.6 7.3 8.7 8.1 0.6070 

7p14.3 chr7:31,586,765-
31,592,019 11 5.25 23.56 23.5 22.6 23.3 26.5 0.1605 

7p11.2 chr7:54,302,450-
54,376,389 180 73.9 50.39 51 52.1 51.2 54.4 0.4715 

7q11.22 chr7:70,426,185-
70,438,879 10 12.7 63.52 61.8 61.0 61.8 62.4 0.6196 

7q36.1 chr7:151,010,030-
151,012,107 5 2.08 19.88 20.7 20.1 24.0 24.7 0.0775 

8p23.1 chr8:8,055,789-
11,980,649 13,411 3,925 57.95 55.6 56.5 54.9 53.6 0.3424 

11p12 chr11:41,162,296-
41,167,044 7 4.75 15.81 15.4 14.3 13.9 14.6 0.8479 

11q13.2 chr11:66,018,563-
66,019,946 5 1.38 34.39 28.5 32.4 31.3 30.5 0.5287 

12q13.11 chr12:47,290,470-
47,309,756 43 19.3 7.46 6.6 6.2 7.9 10.9 0.0085 

12q21.2 chr12:71,532,784-
71,533,816 4 1.03 36.98 38.8 37.4 36.5 33.3 0.1647 

14q23.3 chr14:65,842,304-
65,843,165 4 0.86 29.42 25.5 26.5 26.9 26.4 0.9823 

16p11.2 chr16:28,424,774-
28,788,943 361 364.17 ND 40.5 39.3 32.0 29.1 0.0007 

17q21.31 chr17:43,661,775-
44,372,665 3637 711 23.96 22.6 15.1 19.4 22.1 0.0035 

21q21.3 chr21:28,020,653-
28,021,711 11 1.06 51.29 49.2 51.6 52.1 57.4 0.0651 

Xq13.2 chrX:72,215,927-
72,306,774 135 90.8 13.3 13.9 12.4 12.1 8.5 0.0400 
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Table 2: Association between inversions 8p23.1 and 16p1.2 and different obesity-related traits in UKB and replication data sets. 
The table shows the odds ratios (OR) and their confidence intervals at 95% (CI95%) for the inverted allele and different diseases and the 
joint co-occurrence with obesity at UKB and replication datasets. The p corresponds to the best genetic model depict in the first column of 
each inversion. 
 
 

 Inversion 8p23.1 (effect of risk-Haplotype: N-allele)  Inversion 16p11.2 (effect of risk-Haplotype: N-allele) 

 UKB Replication  UKB Replication 

Disease OR CI95% p-value OR CI95% p-value  OR CI95% p-value OR CI95% p-value 
Obesity 1.04 (1.03-1.05) 2.4x10-13 1.08 (1.04-1.11) 5.6x10-6  1.05 (1.04-1.06) 3.9x10-24 1.07 (1.03-1.10) 1.4x10-4 

Diabetes 1.04 (1.01-1.06) 1.1x10-3 1.08 (1.05-1.11) 1.1x10-8  1.02 (0.99-1.04) 0.1450 1.07 (1.04- 1.11) 1.2x10-6 

Hypertension 1.04 (1.03-1.05) 7.0x10-16 1.03 (1.00-1.05) 0.0183  1.01 (1.00-1.02) 0.0184 1.02 (0.99-1.05) 0.2127 

Asthma 1.03 (1.01-1.04) 7.0x10-5 1.02 (0.90-1.05) 0.2225  1.00 (0.99-1.01) 0.9529 1.00 (0.97-1.04) 0.8074 

Depression 0.98 (0.97-0.99) 0.0119 1.01 (0.97-1.05) 0.6630  0.98 (0.96-1.00) 0.0184 1.01 (0.98-1.05) 0.5384 
Joint 
occurrence of 
Obesity with: 

  
   

    

Diabetes 1.08 (1.05-1.11) 3.1x10-7 1.17 (1.12-1.22) 1.4 x10-13  1.06 (1.03-1.08) 7.5x10-5 1.13 (1.08- 1.17) 1.2x10-8 

Hypertension 1.07 (1.05-1.08) 1.7x10-16 1.06 (1.02-1.11) 6.9x10-3  1.06 (1.05-1.07) 2.7x10-14 1.05 (1.00-1.10) 0.0357 

Asthma 1.08 (1.06-1.10) 3.0x10-11 1.09 (1.02-1.16) 9.7x10-3  1.05 (1.03-1.07) 7.4x10-6 1.08 (1.01-1.15) 0.0287 

Depression 1.04 (1-02-1.07) 1.4x10-3 1.12 (1.04-1.20) 3.8x10-3  1.06 (1.03-1.08) 1.4x10-6 1.03 (0.95-1.11) 0.5241 
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