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1 INTRODUCTION 
      Generalized plasticity theory has been successfully used by the author and his co-

workers in order to model phase transformations of shape memory alloy materials.  Our 

work has been initially carried out within small strains (Panoskaltsis et al. [1], Ramanathan 

et al. [2]) and very recently within finite deformations and rotations and under both 

isothermal and non-isothermal conditions (Panoskaltsis [3]). In this paper we will develop, 

for the first time, two important decompositions applied to materials undergoing phase 

transformations. In the first decomposition (Theorem 1) the rate of the Kirchhoff stress 

tensor is given in terms of the rate of deformation tensor and the rate of the temperature.  

In the second decomposition (Theorem 2), which can be thought of as a conjugate to the first 

one, the rate of deformation tensor is expressed as a sum of the (objective) rate of the stress 

tensor and the rate of the temperature. In the next section we will review the formulation of 
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generalized plasticity theory for modeling phase transformations in finite deformations and 

in both reference and current configurations of the body (for an exhaustive development, see 

Panoskaltsis [3]). Finally, in the last section, we will prove Theorems 1 and 2.  

 
 

2  GENERALIZED PLASTICITY FOR PHASE TRANSFORMATIONS 

 

2.1 Formulation of the governing equations in the reference configuration 

   Generalized plasticity is a local internal variable theory of rate – independent behavior 

which is based primarily on loading – unloading irreversibility. In the theory it is assumed 

that the local thermomechanical state in a body is determined uniquely by the couple (G, Q) 

where G stands for the vector of the controllable state variables and Q  stands for the vector 

of the internal variables, which are related to phase transformations. In this work, we follow 

a material (referential) approach within a strain – space formulation. Accordingly, G may 

be identified by (E, T) where E is the referential (Green – St. Venant) strain tensor and T is 

the (absolute) temperature. Depending on the nature of the (material) internal variable vector 

Q, the theory may, in principle, be formulated equivalently with respect to the macro –, 

meso –, or micro – scale structure of the material. 

The central concept of generalized plasticity is that of the elastic range (e.g., see Lubliner 

[4]) which is defined at any material state, as the region in the strain – temperature space 

comprising the strains which can be attained elastically (i.e., with no change in the internal 

variables) from the current strain – temperature point. It is assumed that the elastic range is a 

regular set in the sense that it is the closure of an open set. The boundary of this set is 

defined as a loading surface at Q (see Eisenberg and Phillips [5], Lubliner [4]). In turn a 
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material state may be defined as elastic if it is an interior point of its elastic range and 

inelastic if it is a boundary point of its elastic range; in the latter case the material state lies 

on a loading surface. It should be added that the notion of process is introduced implicitly 

here. By assuming that the loading surface is smooth at the current strain - temperature point 

and by invoking some basic axioms and results from set theory and topology, Lubliner [4] 

showed that the rate equations for the evolution of the internal variable vector may be 

written in the form: 

 ( , ) : ,HQ L G Q N G  (1) 

where <·> stands for the Macauley bracket which is defined as:  

 
if 0 

0 if 0
x x

x
x


  
 

and H  denotes a scalar function of the state variables enforcing the defining property of an 

inelastic state. Accordingly, the value of H must be positive at any inelastic state and zero at 

any elastic one. Finally, L denotes a non - vanishing (tensorial) function of the state variables, 

which is associated with the properties of the phase transformation and N is the outward 

normal to the loading surface at the current state, while the symbol : between two second 

order tensors denotes their double contraction. Furthermore, the set of the material states 

defined as ( , ) 0,H H G Q  which comprises all the elastic states, is called the elastic 

domain and its projection on the set defined by Q = constant is defined at the elastic domain 

at Q.  In general, the elastic domain at Q is a subset of the elastic range (Lubliner [4]). The 

particular case where the two sets coincide corresponds to classical plasticity and the 
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boundary of the elastic domain, that is the initial loading surface, constitutes the yield surface 

(see Eisenberg and Phillips [5], Lubliner [4], Panoskaltsis et al. [6]). 

It is emphasized that Equation (1) has been derived under the assumption of a smooth loading 

surface at the current strain – temperature point, which implies that only one loading 

mechanism can be considered. On the other hand, the phase transformations include multiple 

and sometimes interacting loading mechanisms, which may result in the appearance of a 

vertex or a corner at the current strain – temperature point. This fact calls for an appropriate 

modification of the rate Equation (1). 

For this purpose we assume that the loading surfaces are defined in the state space by a 

number – say n – of smooth surfaces, which are defined by expressions of the form:  

 i( , ) 0.   i=1, 2,..., n G Q  (2) 

These surfaces can be either disjoint, or intersect in a possibly non – smooth fashion. Each of 

these surfaces is associated with a particular transformation mechanism which may be active 

at the current strain – temperature point. Then by assuming that each equation i ( , ) 0 G Q

defines independent (non – redundant) active surfaces at the current stress temperature point 

the rate equations for the evolution of the internal variables in view of Equation (1) can be 

stated in the following general form: 

 
n

i i i
i=1

( , ) : ,HQ L G Q N G  (3) 

where i i,  H L  and iN  are functions of the state variables defined as in Equation (1) and each 

set of them – defined by the index i – refers to the specific transformation associated with the 

part of the loading surface defined by i ( , ) 0. G Q  From Equation (3) one can deduce 
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directly the loading – unloading criteria for the proposed formulation as follows: Lets denote 

admn n the number of loading surfaces that may be active at an inelastic state i.e., i 0H > , 

and lets denote by admJ the set of admn indices associated with those surfaces, i.e.,  

admJ { {1,2,...,n}/ 0}.H  >  

Then Equation (3) implies the following loading – unloading conditions: 

adm

adm

adm

adm

If J ,  then =0.
If J ,  then:

i  If : 0 for all J  then  =0,

ii If : 0 for at least one J  then  0.












 

 

Q

N G Q

N G > Q

 

So, if we denote further by act admn n the number of parts for which (ii) holds, and we set: 

act admJ { J / : 0},  N G >  

the loading criteria in terms of the sets admJ and actJ  may be stated as: 

adm

adm act

adm

If J :                                                          elastic state.
If J  and J :  

           i. If : 0 for all J :                  elastic unloading,

           ii. If :








 

N G <

N adm

adm act

0 for at least one J :    neutral loading,
If  J  and J :                                       inelastic loading. 








  
   

G

                             (4) 

 

2.2 Equivalent spatial formulation 

    The equivalent assessment of the governing equations in the spatial configuration can be 

done on the basis of a push – forward operation (e.g., see Marsden and Hughes [5], pp. 67 – 

68) to the basic equations. Hence, by performing a push – forward operation onto Equation 

(3) the latter is written in the form: 
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n

i i i
i=1

L ( , , ) ,h rVq l g q F  (5) 

where F stands for the deformation gradient and g denotes the vector of the controllable 

variables in the spatial configuration. These are, the Almansi strain tensor e – defined as the 

push – forward of the Green – St. Venant strain tensor – and the temperature T.  Moreover, in 

Equation (5) q stands for the push forward of the internal variable vector Q and L ( )V  

denotes the Lie derivative of its argument (e.g., see Marsden and Hughes [5], pp. 93 – 104), 

defined as the convected derivative relative to the spatial configuration. The use of Lie 

derivatives guarantees the objectivity of rate equations in the current configuration (Marsden 

and Hughes [5], p. 99).  Finally, ih  denotes the expression of the scalar invariant functions 

iH  in terms of the spatial variables (e, T, q) and the deformation gradient F, while il  denotes 

the push – forward of the tensorial functions iL , and ir  stands for the (scalar invariant) 

loading rates which are written in the form:  

 i i
i :L T,

T
r   
 
 Ve
e

 (6) 

where i  is the expression for the loading surface associated with the index i in terms of the 

spatial variables. The (spatial) loading – unloading criteria follow naturally from Equations 

(5) as: 

adm

adm act

adm

If j :                                                          elastic state.
If j  and j :  
           i. If r 0 for all j :                         elastic unloading,
           ii. If

 



 

<

adm

adm act

 r 0 for at least one j :           neutral loading,
If  j  and j :                                       inelastic loading. 

 





  
   

                              (7) 
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where the sets admj  and actj  are now defined in terms of the spatial variables as:

admj { {1,2,...,n}/ 0}h  >  and act admj { J /r 0}.  >  

 

 

3  STRESS AND RATE OF DEFORMATION DECOMPOSITIONS 

   In this section, we derive decompositions of the rate of the Kirchhoff stress tensor and of the 

rate of deformation tensor into mechanical and thermal parts. The approach presented herein 

extends the work of Marsden, Hughes and Pister, which has been carried out within the theory 

of finite deformation nonlinear elasticity (see Marsden and Hughes [5], pp. 204 – 206).  Their 

work has itself generalized the so called “Duhamel – Neumann hypothesis” for linearized 

(infinitesimal) elasticity (Sokolnikoff [9], p. 359). Our derivations are for inelastic materials 

with internal variables and in particular for shape memory alloys, within the framework of 

finite strains and rotations. Our results are given by Theorems 1 and 2.  In Theorem 1 the 

Kirchhoff stress tensor is decomposed in terms of the rate of deformation tensor and the rate 

of temperature. Our proof is based on a manipulation of the constitutive equation for the 

Kirchhoff stress tensor   which is defined as: 

 ref , 


e
  (8) 

where   is the free energy in spatial coordinates. The Kirchhoff stress tensor is related to 

Cauchy stress   by J   , where J is the determinant of the deformation gradient F, and 

can be also thought of as the push – forward onto the spatial configuration of the second Piola 
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– Kirchhoff stress tensor. In our derivation we will employ the concept of Lie derivative, a 

Legendre transformation and the rate Equations (5). The procedure is the following: 

By considering an inelastic process and taking Lie derivatives of both members of Equation 

(8) and noting that the material time derivative of the mass density in the reference 

configuration is zero, ref 0,    we derive: 

 
2 2 2

ref 2L ( :L T+ :L ),
T

     
 

    v v ve q
e e e q

                                 (9) 

 which, on substituting for the Lie derivative of q from Equation (5) yields: 

 

2 2 2 n
i i

ref i i2
i=1

2 2 2 2n n
i i

ref i i i i2
i=1 i=1

L [ :L T+ : ( ,T, , )( :L T)]
T T

       = [ : ( ,T, , ) ]:L [ : ( ,T, , ) ]T.
T T

h

h h

    

     

    
   

      

     
  

        



 

Vv v

v

e l e q F e
e e e q e

l e q F e l e q F
e e q e e e q


         

  (10) 

Note, that the double contraction between a fourth and a second order tensor, denoted by the 

symbol :, produces a second order tensor. We now define the tangential stiffness (a fourth 

order tensor) and the thermal stress coefficient tensor (a second order tensor) as 

    
2 2 2 2n n

i i
i i i i2

i=1 i=1
: ( ,T, , ) ,  = : ( ,T, , ) ,

T T
h h        

  
         a l e q F m l e q F
e e q e e e q

       (11) 

respectively.  It is instructive and helpful to give here their indicial expression also:  

 
1 m 1 m

1 m 1 m

2 2 2 2n n
i i

abcd i ir ...r ab i ir ...r
i=1 i=1ab cd ab r ...r cd ab ab r ...r

,  m = .
T T

a h l h l
e e e q e e e q
          

  
              (12) 

By taking into account these definitions and by noting that the Lie derivative of the Almansi 

strain tensor equals the rate of deformation tensor d (e.g., see Holzapfel [7], p. 107), we can 

state the following theorem: 
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Theorem 1: For the rate – independent SMA material with internal variables, whose 

evolution in the course of martensitic transformations is described by the rate Equations (5) 

(or equivalently by Equations (3)), the thermomechanical constitutive equation  relating the 

(objective) rate of the Kirchhoff stress tensor to the rate of deformation tensor and to the rate 

of the temperature is given by 

 refL ( : T), v a d m  (13) 

where the tangential stiffness a and the thermal coefficients m are dependent on the 

martensitic phase transformation properties, through their dependence on the internal 

variables.  

We will now obtain the counterpart of Equation (13), i.e., an expression for the rate of 

deformation tensor in terms of the rate of the Kirchhoff stress tensor and the temperature rate. 

This will be accomplished as follows.  First, we define the complementary free energy, by 

using the Legendre transformation technique, as: 

 
ref

1ˆ ( ,T, ) ) ( ,T, ).  


   q e e q   (14) 

We assume that the change of variables from e to τ is invertible and that the evolution of the 

internal variables can be given in the stress space in the course of inelastic loading by a rate 

equation of the form 

 
n

i i i i
i=1

L ( ,T, , )[ ( ,T, , ):L ( ,T, , )T],t y V Vq c q F x q F q F     (15) 

where the functions i i,  t c  have an analogous meaning with the functions i i,  h l  in the rate 

Equations (5) and ix , iy  are tensorial functions of the (new) state variables. By taking partial 

derivatives in Equation (14) with respect to the Kirchhoff stress we obtain:  
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 ref ref
ˆ

,     
  

   
e ee

e


  
  (16) 

which in light of the constitutive equation for the Kirchhoff stress tensor (Equation (8)) yields 

the constitutive relation for the Almansi strain tensor as a function of the Kirchhoff stress 

tensor:  

 ref
ˆ

. 



e


      (17) 

By taking the Lie derivative of both hand sides in Equation (17) we obtain 

 
2 2 2

ref 2L ( :L T+ :L ),
T

     
 

    v v ve q
q


  

     (18) 

which in turn, upon substitution of the rate Equation (15) takes the form  

2 2 2 n

ref i i i i2
i=1

2 2 n

ref i i i2
i=1

2 2 n

i i i
i=1

L ( :L T+ : ( ,T, , )[ ( ,T, , ):L ( ,T, , )T)
T

[ : ( ,T, , ) ( T, , )]:L

[ : ( ,T, , ) ( ,T, , )]T.
T

t y

t

t y

  

 

 

  
   

    

 
 

  

 
 
   







Vv v

v

e c q F x q F q F
q

c q F x q F
q

c q F q F
q

    
  

  
 

 
 

,  

                                                                                                                               (19) 

We now define the fourth and second order material compliance tensors r and s as 

2 2 2 2n n

i i i i i i2
i=1 i=1

: ( ,T, , ) ( ,T, , ),  = : ( ,T, , ) ( ,T, , ),
T

t t y      
  
       r c q F x q F s c q F q F

q q
   

   
                                                                                                                                          (20) 

respectively, with components 

 
1 n 1 n

1 n 1 n

2 2 2 2n n

abcd i ir ...r icd ab i ir ...r i
i=1 i=1ab cd ab r ...r ab ab r ...r

,  = .
T

r t c x s t c y
q q

   
    
   

  
            (21) 
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Therefore, and since the Lie derivative of e is equal to   Equation (19) with the help of 

Equations (20) yields for the rate of deformation tensor 

 ref ( : L T). Vd r s  (22) 

We have therefore proved the following theorem: 

Theorem 2: For a rate – independent shape memory alloy material with internal variables, 

whose evolution in the course of martensitic transformations is described in strain – space 

and in the current configuration by the rate Equations (5) (or equivalently in the reference 

configuration by Equations (3)), its rate of deformation tensor can be decomposed in terms of 

the Lie derivative of its stress tensor and the rate of its temperature, according to Equation 

(22).  

 

4 CONCLUSIONS 

  The formulation of a finite strain multi surface generalized plasticity theory in strain space 

and in referential and current configurations for the description of phase transformations, as 

well as the important loading-unloading criteria have been reviewed. The main thrust of this 

work is the derivation of a decomposition of the rate of the Kirchhoff stress tensor and of the 

rate of deformation tensor into mechanical and thermal rates, for materials with internal 

variables, for arbitrary strains and rotations and for non isothermal conditions. 
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