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Abstract. The incompressible two-dimensional Navier-Stokes equations including ther-
mal energy balance equation are solved by the recently developed Method of Approximate
Particular Solutions (MAPS). In a previous authors’ work this method was implemented
to solve the two-dimensional Stokes equations by employing the pressure and velocity par-
ticular solutions obtained by Oseen’s decomposition with the Multiquadric (MQ) RBF
as non-homogeneous term. A pressure-velocity linkage strategy is not required since the
pressure particular solutions are obtained from the velocity ones. In the present contribu-
tion, the Navier-Stokes equations with Boussinesq approximation are solved by linearizing
the convective term in a Picard iterative scheme. With the velocity values obtained at
each of the Picard iterations, the energy conservation equation is solved by the MAPS by
approximating temperature with the particular solutions of a Poisson problem with the
MQ as a forcing term. With the aim of improving the computational efficiency of the
global strategy, the two-dimensional domain is split into overlapped rectangular subdo-
mains where the Schwarz Alternating Algorithm is employed to find a solution by using
velocity and temperatures values from neighbouring zones as boundary conditions. The
mixed convection lid-driven cavity flow problem is solved for moderate Reynolds and low
Richardson numbers with the aim of validating the proposed method.
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1 INTRODUCTION

Mixed natural and forced convection problems are frequently found in industrial appli-
cations [1, 2]. Therefore, a detailed understanding of the transport phenomena involved
is a key aspect when designing new devices or improving old designs. In this sense,
numerical methods for solving partial differential equations (PDEs) have become an in-
teresting tool because they allow obtaining a deterministic description of temperature,
pressure and velocity field by solving the momentum and energy conservation equations
in their differential form which in case of incompressible fluid problems are known as
the Navier-Stokes equations. The accuracy of new numerical methods for solving PDEs
ought to be verified by comparing their results to analytical solutions or other tested
numerical results. When dealing with non-isothermal flows with mixed convection, the
lid-driven cavity flow problem with differentially heated top and bottom walls has widely
employed for code verification. Besides validation, several authors analysed the influence
of the characteristic dimensionless numbers on the heat transferred through the cavity
walls quantified by the Nusselt (Nu) number. For instance, Torrance et al. [3] studied
the buoyancy effect on the flow structure by changing the Grashof (Gr) number, while
Moallemi and Jang [1] found that the buoyancy effect are more notorious and the heat
transfer is higher as the Prandlt (Pr) number is increased. Iwatsu et al. [4] analysed the
influence of the Richardson (Ri = Gr/Re2) number in the cavity flow problem based on
numerical results. They concluded that for Ri < 1 the buoyancy effect is almost neglected
and the flow structure is similar to the one found for isothermal flows, while for Ri > 1 the
buoyancy effect sharply modified the flow structure. More recently, T.S. Cheng [5] studied
the relationship between Nu and Pr,Re and Ri in the cavity flow problem. Based on
numerical results, the author corrected the correlation proposed by Moallemi and Jang [1]
to take into account the sudden decrease in Nu value when increasing Re for Ri > 1 due
to the change in the flow structure. In the present work some of the results found by the
aforementioned authors are employed with the aim of validating a novel meshless strategy
based on the Method of Approximated Particular Solutions (MAPS) for the solution of
mixed convection problems with the Bousinessq approximation.

Meshless methods have been intensively developed during the last two decades due to
its potential characteristics to deal with complex geometry domains without spending too
much CPU time in the pre-processing phase. Among the meshless methods, collocation
schemes have offered high accuracy as well as versatility to enforce boundary conditions
in complex geometries. The Radial Basis Function (RBF) collocation method, originally
suggested by Kansa [6], has been successfully used for the solution of several boundary
value problems governed by different PDEs. However, it is well known that global RBF
collocation methods suffer of a fundamental problem described by Robert Schaback [7]
as the uncertainty relation: Better conditioning is associated with worse accuracy, and
worse conditioning is associated with improved accuracy. This problem can be mitigated
by using integrated RBF approaches such as the indirect RBF (IRBF) collocation method
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Figure 1: Solution domain and boundary conditions

proposed by Mai-Duy and Tran-CongMay [8] and the Method of Approximate Particular
Solutions (MAPS) developed by Chen et al. [9]. In both schemes the RBFs are used to ap-
proximate the highest order derivative in the PDE (IRBF) or the complete PDE (MAPS),
thus the solution is approximated by an integration process, which unlike derivation does
not contain inherent inaccuracy of the approximation.

In previous authors’ work [10] a new meshless method for solving the Navier-Stokes
equations was developed and used to solve some benchmark flow problems such as the
square cavity up to Re = 3200 and the backward facing step at Re = 800. This approach
is based on the Method of Approximate Particular Solutions (MAPS) proposed by Chen et
al. [9]. In order to achieve a more efficient strategy without affecting the accuracy obtained
with the global method, we employ the Schwartz alternating algorithm as it was originally
proposed by Schwarz [11]. This is a suitable option since the MAPS can be employed in
its global version to solve the problem in relatively small overlapped subdomains without
losing accuracy and preserving its stability in terms of the shape parameter value. The
present work is sorted as follows. In the first section the non-isothermal lid-driven cavity
flow problem is detailed as well as the governing equations. Then, a brief description of
the MAPS for solving scalar and the two-dimensional Navier-Stokes equations is made.
Following, the Schwarz Alternating scheme and the decoupling algorithm for solving in
sequential way momentum and energy conservation equations are presented. Finally, the
numerical results are shown and discussed.

2 PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

The square cavity domain of side L and the problem boundary conditions are shown
in Figure 1. The domain is two-dimensional and it is filled with an incompressible fluid.
As can be observed the vertical walls are isolated while the horizontal one at the bottom
is at temperature TC and the upper wall is at temperature TH and moves with horizontal
velocity U .

The incompressible steady Navier-Stokes equations in its primitive variable formulation
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with Boussinesq approximation to take into account the effect of temperature on density,
is given by the following equations

∂uj

∂xj

= 0 (1)

ρuj

∂ui

∂xj

= −
∂p

∂xi

+ µ
∂2ui

∂xj∂xj

+ giβ(T − Tc) (2)

uj

∂T

∂xj

= α
∂2T

∂xj∂xj

, (3)

which are the mass, momentum and energy conservation equations, with i = 1, 2 for
two-dimensional problems. The fluid properties ρ, µ, β and α are, respectively, density,
absolute viscosity, thermal compressibility coefficient and thermal diffusivity, while �g refers
to the gravity vector and TC to the lowest temperature in the system. Considering that
U and L are the characteristic velocity and length and TH is the highest temperature,
the dimensionless numbers that characterise the situation are Re = ρLU/µ, Pr = µ/ρ/α,
Gr = |�g|ρ2β(Th − Tc)L

3/µ2 and Ri = Gr/Re2. Heat transfer through the top (b = L) or
bottom (b = 0) wall is quantified by the local Nu number, which is defined as

Nu(x1, b) =
1

TH − TC

∂T

∂x2

∣

∣

∣

∣

�x=(x1,b)

, (4)

and by its average given by N̄u =
∫ 1

0
Nu(x1, b)dx1

3 METHOD OF APPROXIMATED PARTICULAR SOLUTIONS

The first MAPS version, proposed as a global scheme by Chen et al. [9], is briefly
presented in the first part of this section. This version is employed here in order to solve
the energy conservation equation (3). In the second part, the proposed MAPS version for
solving the isothermal Navier-Stokes equation is presented.

3.1 MAPS for scalar problems

Let us consider the case of a linear boundary value problem whose partial differential
operator L(.(�x)), or only part of it, is in terms of the radial component of a polar or
spherical coordinate system (i.e. axisymmetric), as:

L(u(�x)) = Lr(u(r)) + L�x(u(�x)) = f(�x), (5)

and
B(u(�x)) = g(�x) ∀�x ∈ Γ (6)

with Lr(u) as the axisymmetric part of the PDE and B as the boundary operator.
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The axisymmetric part of the PDE, is approximated by RBFs, as:

Lr(u(r)) =
N

�

k=1

αkφ(rk) (7)

where the non-homogeneous term in the momentum equation, φ, is defined as the Mul-
tiquadric (MQ) RBF, φ(r) = (r2 + c2)1/2, which only depends on the Euclidean distance

r between a field point �x and a trial point �ξ and the shape parameter c. In consequence,
the field variable can be expressed as

u(�x) =
N

�

k=1

αkû(rk), (8)

with û(r), as the corresponding particular solution of the following non-homogeneous
ordinary differential equation:

Lr(û(r)) = φ(r). (9)

Thus the complete linear PDE operator can be expressed as a function of the RBFs
and the particular solutions in the following way:

L(u(�x)) =
N

�

k=1

αk [φ(rk) + L�x(û(rk))] = f(�x), (10)

By substituting the above approximation for u(�x), equation (8), into the boundary
conditions of the problem, and into the full expression of PDE, the following linear system
of algebraic equations is obtained:



















B[û1,1] · · · B[û1,N ]
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...

gN
b

fN
b
+1
...
fN



















(11)

for Nb boundary points and Ni internal points, with N = Nb+Ni and ûij = û(�xi, �ξj). The
solution of the boundary value problem is achieved after solving the resulting algebraic
system for the coefficients α.
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3.2 Solution of the Navier-Stokes equations by MAPS

Before solving the incompressible and isothermal Navier-Stokes equations by the MAPS,
the procedure presented in [12] is done in order to obtain the particular solutions ûl

i and
p̂l by employing the Oseen’s decomposition formula applied to the Stokes problem. In
this way, the approximated velocity and pressure fields, �u and p, can be expressed as a
linear superposition of N particular solutions located at N trial points �ξk, as:

ui(�x) =
N

�

k=1

αl
kû

l
i(rk) (12)

p(�x) =
N

�

k=1

αl
kp̂

l(rk) (13)

where rk =
�

�

�
�x− �ξk

�

�

�
.

By substituting the above expressions into a linearized version of the momentum equa-
tion (2), given by

µ
∂2ui

∂xj∂xj

− ρu∗
j

∂ui

∂xj

−
∂p

∂xi

= 0, (14)

with �u∗ as the solution at the previous iteration of the Picard algorithm, the following
homogeneous linear superposing of functions, representing the approximated momentum
equation, is obtained:

N
�

k=1

αl
k

�

µ
∂2ul

i(rk)

∂xj∂xj

−
∂pl(rk)

∂xi

− ρu∗
j

∂ul
i(rk)

∂xj

�

=
N

�

k=1

αl
k

�

φ(rk)δil +Θl
i(rk)

�

= 0, (15)

and the last term on the left is

Θl
i(rk) = −ρu∗

m(�x)
∂ul

i(rk)

∂xm

. (16)

The set of equations required to complete the collocation process is obtained by substi-
tuting the approximations (12) and/or (13) into the respective boundary condition. By
collocating the resulting expression at the Nb boundary nodes on Γu, for each of the com-
ponents k = 1, 2, the first two set of lines on the matrix system (17) are found, while
collocation of (15) at the Ni internal nodes, for each of the components k = 1, 2, defines
the last two set of equations of the matrix system









B1 [û1
1, û

1
2, p̂

1] B1 [û2
1, û

2
2, p̂

2]
B2 [û1

1, û
1
2, p̂

1] B2 [û2
1, û

2
2, p̂

2]
[φ+Θ1

1] [Θ2
1]

[Θ1
2] [φ+Θ2

2]









�

[α1]
[α2]

�

=









[g(�x)1]
[g(�x)2]
[0]
[0]









, (17)
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Figure 2: Domain decomposition into overlapped subdomains, a. Two subdomains s = 2, b. Nine
subdomains s = 9

where a general form of the boundary condition Bk [u1, u2, p] = g(�x)k, with Bk as
the boundary operator and gk the corresponding value of the boundary condition, was
employed. Despite the fact that the continuity equation is not explicitly imposed in the
resulting matrix system of equations, the formulation is mass conservative since the used
superposition of particular solutions exactly satisfy the continuity equation.

4 SOLUTION ALGORITHMS

In the first part of this section the Schwarz Alternating Method is explained for its
application to solve isothermal Navier-Stokes equation. A similar algorithm which is not
shown here for brevity is used when solving the energy equation. The decoupled algorithm
for solving the PDE system (mass, momentum and energy equations) is then detailed in
the second part.

4.1 Schwarz Alternating Method

The Schwarz Alternating Method is a suitable strategy to improve the computational
efficiency of the MAPS since local problems can be solved as though it were a global
problem which only depends on the neighbouring subdomains by the boundary conditions.
Let’s suppose a rectangular domain split in two subdomains (Ω1 and Ω2) as it is shown
in Figure 2a. The original Navier-Stokes problem can be rewritten as follows

ρu∗
j

∂uk
i

∂xj

= −
∂pk

∂xi

+ µ
∂2uk

i

∂xj∂xj

∀�x ∈ Ωk, (18)

uk
i = uib ∀�x ∈ Γ, (19)

where the superscript k refers to the corresponding subdomain. The Schwarz solution
is achieved by solving, in first place, the above equations for k = 1 and the boundary
condition given by u1

i = u2
i ∀�x ∈ Γ12, then for k = 2 and the boundary condition
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u2
i = u1

i ∀�x ∈ Γ21, and so on until the L2-norm of the difference between successive solu-
tions go less than the specified tolerance. Since we are only dealing with Dirichlet bound-
ary conditions, an additional equation must be solved after solving the Navier-Stokes
equations in order to guarantee continuity of pressure throughout the global domain. Re-
garding pressure particular solution is obtained by integration, the approximated pressure
is expressed as:

pm(�x) =
Nm∑
k=1

αlm
k p̂l

(∥∥∥�x− �ξk

∥∥∥
)
+ cm (20)

with the superscript m = 1, 2 indicating the corresponding subdomain and cm as the
integration constant. The following equation is obtained after evaluating the pressures at
some point �x12 in the overlapping zone Ω12:

c2 − c1 =
N1∑
k=1

αl1
k p̂

l
(∥∥∥�x12 − �ξk

∥∥∥
)
−

N2∑
k=1

αl2
k p̂

l
(∥∥∥�x12 − �ξk

∥∥∥
)
. (21)

The above equation can be solved after fixing the value of one of the integration con-
stants. In case of splitting the domain into more than two subdomains, as shown in Figure
2b for s = 9 with s as the number of subdomains, the solution is obtained by solving the
problem given by equations (18) to (19). In this case the superscript k changes in the se-
quential order shown in Figure 2b and the solution k+1 is obtained by using the boundary
conditions with the variable value available in memory either after obtaining a solution
for the j = 1, . . . , i − 1 subdomains or as the initial value in the first Schwarz iteration.
The matching equation for pressure (21) becomes an overdetermined equation system
with s − 1 variables (integration constants) and one equation for each overlapped zone
in the domain. For better understanding of the Schwarz scheme, the algorithm employed
for solving a generic PDE with dependent variable φ is presented:

• After setting an initial guess φ0(�x), compute the interpolation matrix on the left
hand side of equation (17) when solving the Navier Stokes equations or (11) in case
of scalar problems, for each of the s subdomains.

• For each subdomain (l = 1, . . . , s) calculate the column vector on the RHS of equa-
tion (17) or (11) with the variable values available in memory and solve the equation
system to obtained α coefficients.

• For each subdomain (l = 1, . . . , s) reconstruct φ and store its value in memory

• Evaluate the L2-norm of the difference between the values of the variable φ at the
present and previous Schwarz iterations (||φn − φn−1||). If it is less than or equal to
the set tolerance tolsc, for all of the variables, stop the Schwarz algorithm, if not go
to the second step with φn−1 = φn.
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Figure 3: Velocity profiles for Gr = 100 and Re = 400(∗) and Re = 1000(◦) in comparison to the
numerical solution reported by Iwatsu et al. [4], a. u1 velocity on x1 = 0.5, b. u2 velocity on x2 = 0.5

4.2 Sequential solution procedure

The following algorithm is implemented for solving in a decoupled way the equations
1,2 and 3:

• By using the MAPS as explained in section 2.2, solve the following form of the
momentum equation in order to obtain the fields �uk and pk based on the guess (first
iteration) or the previous iteration variable values �uk−1 and T k−1

µ
∂2uk

i

∂xj∂xj

− ρuk−1
j

∂uk
i

∂xj

−
∂pk

∂xi

= giρβ(T
k−1 − Tc). (22)

• By employing the MAPS for scalar problems (section 2.1) and with the velocity
obtained in the previous step, solve the following form of the energy equation in
order to obtain the updated temperature value (T k)

α
∂2T k

∂xj∂xj

− uk
j

∂T k

∂xj

= 0. (23)

• If
∥∥φk − φk−1

∥∥ < tolpi for all φ = �u,p,T , stop, if not make φk+1 = φk and go to the
first step.

5 NUMERICAL RESULTS

Numerical results were obtained for Re = 400, 1000 and Gr = 1× 102, 1× 104 with a
41× 41-point nodal distribution refined towards the boundaries and c = 0.01 for velocity
and temperature approximation. Besides, the domain is split into s = 4 × 4 overlapped
subdomains in order to applied the Schwarz alternating algorithm. As shown in Table 1,
the mentioned dimensionless numbers were achieved by combining some values of the fluid
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Table 1: Properties and Dimensionless number values for the solved cases

Quantity Case 1 Case 2 Case 3 Case 4

ρ (kg/m3) 4.00× 102 4.00× 102 1.00× 103 1.00× 103

β (1/oC) 6.25× 10−5 6.25× 10−3 1.00× 10−5 1.00× 10−3

α (m2/s) 3.52× 10−3 3.52× 10−3 1.41× 10−3 1.41× 10−3

Re 4.00× 102 4.00× 102 1.00× 103 1.00× 103

Gr 1.00× 102 1.00× 104 1.00× 102 1.00× 104

Ri 6.25× 10−4 6.25× 10−2 1.00× 10−4 1.00× 10−2
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Figure 4: Numerical results for Gr = 100 and Re = 400 in comparison to the numerical solution reported
by Iwatsu et al. [4], a. T on x1 = 0.5, b. Nu on x2 = 0.0 (◦) and x2 = 1.0 (∗)

properties since boundary conditions different to zero were fixed as the unity, i.e. U = 1
and TH = 1. The fixed properties were µ = 1kg/m/s, Pr = 0.71 and �g = (0,−10)m/s2.

In Figure 3, the obtained velocity profiles are compared to the ones attained by Iwatsu
et al. [4]. Numerical results are in good agreement to the reference solution regarding that
the nodal distribution used here (41 × 41) is coarser than the one used by Iwatsu et. al
(128×128). For Re = 400 and 1000 and Gr = 100, the buoyancy effect is not predominant
since Richardson numbers are, respectively, Ri = 6.25×10−4 and 1.00×−4, which are much
less than the unity. Therefore, the velocity field is close to the isothermal pattern. Despite
of the coarseness of the nodal distribution employed, accurate results were found for
temperature (Figure 4a) and the local Nu on the bottom and top boundaries (Figure 4b).
Since local Nu is calculated based on the temperature derivatives, it is not as accurate
as temperature profile, increasing the difference towards the corners in the case of the
top boundary profile and near to the centre for the bottom boundary. Nevertheless, the
highest difference between the obtained and the reference average Nu values, presented
in Table 2 for the top boundary, are 2.54% and 9.42% when comparing to the results
reported in [4] and [5], respectively. By using the aforementioned solution algorithm, the
highest Ri values achieved before the Picard iterations diverge, were Ri = 6.25 × 10−2

and 1.00 × 10−2 with Re = 400 and 1000 (Gr = 1 × 104), respectively. In consequence,
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Table 2: Average Nusselt number on top boundary

Re Reference Grid Gr

1× 102 1× 104

400 Iwatsu et al. [4] 128× 128 3.84 3.62
Cheng [5] 128× 128 4.14 3.90
Present 41× 41 3.75 3.63

1000 Iwatsu et al. [4] 128× 128 6.33 6.29
Cheng [5] 128× 128 6.73 6.68
Present 41× 41 6.20 6.13
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Figure 5: Approximated streamlines (a.) and temperature contours (b.) for Gr = 1×104 and Re = 1000

the approximated streamlines and the temperatures contours, shown for Re = 1000 in
Figure 5, present a forced convection-dominated behaviour since the buoyancy effect is
not notorious. The flow structure and temperature contours are in good agreement with
the results reported by Moallemi and Jang [1] in their Figure 2.

6 CONCLUSIONS

- The Method of Approximate Particular Solutions in conjunction to the Schwarz
alternating algorithm were used to solve the two-dimensional mixed heat convection
lid-driven cavity flow problem at Re = 400 and Re = 1000 for low Ri. The obtained
results are in good agreement to the ones reported in literature, despite the nodal
distributions used are much coarser than the ones employed by the reference authors.

- Future authors’ work will be focused on obtaining results for higher Ri both by
using denser nodal distribution and by implementing a more stable algorithm for
the decoupled solution of the momentum and energy conservation equations.
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