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Abstract. Our work will show that complex transient coupled problems can be formu-
lated and solved effectively with AceGen and AceFEM using an automatic differentiation
based formulation (ADB-formulation). From scalar pseudo-potential function consistent
tangent matrix for strongly coupled problems can be derived, leading to quadratically
convergent Newton-Raphson type procedure. Another problem considered is the imple-
mentation of finite element. Typically, all equations are written inside a single finite
element and a single pseudo-potential is defined. Such implementation is efficient but
rigid, therefore, a different implementation was considered. Within the second approach
we wrote a separate finite element for each field, but in a way that quadratic convergent
Newton-Raphson procedure is preserved. The paper presents examples where unified and
field-by-field implementations are compared according to computational efficiency. The
results show that with increasing ratio between the complexity of constitutive equations
and discretization, generated code size and evaluation time of implementations become
comparable.

1 INTRODUCTION

With the use of advanced software tools and technologies it is possible to reach au-
tomatisation of finite element method (FEM)[3]. Different approaches and tools have been
developed which enable more effective problem solving. For the formulation of coupled
problems one of the most important software tools is automatic differentiation [2]. The
automatic differentiation procedure (AD) has two possible modes. The first is forward
AD and the second backward AD. Numerical cost of the first is proportional to number
of independent variables, and numerical cost of the second to the number of functions
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differentiated [3]. The result of AD procedure is called ”computational derivative” and is

written as δ̂f(a)

δ̂a
. To establish a relation between different types of differentiations and re-

sult of automatic differentiation, definition of differentiating exceptions is introduced. For

example, formulation δ̂f(a,b(a))

δ̂a

∣∣∣∣
Db
Da

=0

determines that the ”real” dependence b(a) defined

by algorithm is ignored and b is taken as constant.

2 ADB FORMULATION OF GENERAL WEAK FORM AND PSEUDO-
POTENTIAL FORM

For solving physical problems with FEM we need a weak form of differential equation
to describe physical problem. Let us define a general weak form in a shape of∫

Ω

δa(p) · b(p)dΩ + ... = 0 (1)

Where a and b are tensors of arbitrary order, and δa is directional derivative of varia-
tion of tensor a. Because δa is a fictive quantity, we cannot directly apply the automatic
differentiation procedure. Thus it needs to be written in discretized form. Let p be a vec-
tor of unknown quantities of the problem and δa = ∂a(p)

∂p
δp. Discretized form of general

weak form is then written as
∫

Ω

δa(p) · b(p)dΩ + ... =

ntp∑
i=1



∫

Ω

δa(p)

δpi
· b(p)dΩ


 δpi + ... = 0 (2)

From (2) follows ntp algebraic equationsR, which can be solved with standard methods,
e.g. Newton-Raphson method. If the partial derivative (2) is replaced by computational
derivative, the ADB formulation of weak form is obtained as follows

R =

∫

Ω

δa(p)

δp
· b(p)dΩ + ... =

∫

Ω

δ̂a(p)

δ̂p
· b(p)dΩ + ... = 0 (3)

Term δ̂a(p)

δ̂p
is not appropriate for backward differentiation, because cost of differentia-

tion grows linearly with the number of components of tensor a. The uncontrolled growth
of derived expressions can also occur [3]. Formulation (3) needs to be written in appropri-
ate shape, so that as little as possible scalar functions are differentiated. To accomplish
that, scalar product of tensors a and b is introduced, so-called pseudo-potential in the
shape of W (p) = a(p) · b(p). Result is so-called ADB formulation of discretized weak
form:

R =

∫

Ω

δ̂(a(p) · b(p))
δ̂p

∣∣∣∣∣
Db
Dp

=0

dΩ + ... =

∫

Ω

δ̂W (p)

δ̂p

∣∣∣∣∣
Db
Dp

=0

dΩ + ... = 0 (4)
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In equation (4) the introduced differentiation exception Db
Dp

= 0 assures that automatic

differentiation returns equations of problem, which correspond to weak form (3). In
the formulation of finite element method, the contribution of individual element Re to
the global residual R is obtained by numerical integration over element domain, Re =
∑ng

g=1 wgRg, where wg is Gauss weight and Rg is residual calculated in each integration
point and is written as

Rg = Jg
δ̂W (p)

δ̂p

∣

∣

∣

∣

∣

Db
Dp

=0

(5)

where Jg is Jacobian determinant.

2.1 General implementation of coupled problems in environments
AceGen/AceFEM

Let us take coupled problem, which is defined by nc unknown fields φ = {φ1,..., φnc}.
According to FEM, φi is interpolated on element domain with the use of interpolation
functionsNj: φ

h
i =

∑nn

j=1 Njp
i
e,j, where p

i
e,j is nodal the unknown of i-th field and j-th node

in e-th finite element and nn the number of element nodes. The number of all unknowns
of finite element is then np =

∑nc

i=1 npi , where npi is the number of unknowns used for
discretisation of i-th field φi. That means the vectorRg, which represents the contribution
of g-th integration point to residual vector of e-th element Re, has np components and
tangent matrix Kg has n2

p components. Consequently, the size of symbolically generated
code of element grows with the square of the number of unknowns of the problem, which
can become unmanageable with the large number of fields of the element. Complexity of
the problem can be reduced in multiple ways.

Instead of explicit expressions for all components of Rg and Kg, we can generate
program code only for characteristic i-th component of residual (Rg,i) and characteristic
i, j-th component of tangent matrix (Kg,i,j) (as described in [4]).

Additionally, we can generate equations that correspond to different fields or sets of
fields of the problem, separately in separated finite elements, and later join them to-
gether when global residual and global tangent matrix are being assembled. With this in
mind, a subset GK ⊆ {1, ..., nc} is defined. It determines fields φ(K) = {φi : i ∈ GK}, and
their corresponding equations will be formulated inside K-th element source code. The un-
knowns of K-th source code are p

(K)
e =

⋃

i∈GK
pi
e, where p

i
e is the vector of unknowns used

to discretize field φi, pe =
⋃nG

K=1 p
(K)
e is the vector of all unknowns on finite elements level

and nG is the number of subsets of φ. Residual and stiffness matrix belonging to subset
GK are defined as: R

(K)
g =

{

Ri
g : i ∈ GK

}

and K
(K)
g =

[

Ki,j
g : i ∈ GK ∧ j ∈ {1,...,nc}

]

.

Accordingly R
(K)
g has dimension n

(K)
p =

∑

i∈GK
npi and K

(K)
g has dimension n

(K)
p × np.

Thus, K
(K)
g is not a square matrix.

According to ADB formulation of weak form shown in previous chapter (2), pseudo-
potential of K-th element is defined as
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W (K)
g =

∑

l∈GK

W (l)
g (pe) =

∑

l∈GK

∑

m

a(l)
m · b(l)

m , (6)

where m goes through a number of terms of weak form that correspond to the l-th field.
Residual and tangent matrix in g-th integration point of K-th element source code are
given as

R(K)
g = Jg

δ̂W
(K)
g (pe)

δ̂p
(K)
e

∣

∣

∣

∣

∣

Db
(l)
m

Dp
(K)
e

=0, ∀l∈GK∧∀m

and K(K)
g =

δ̂R
(K)
g

δ̂pe

(7)

Algorithm 1 ADB formulation of K-th element source code
for g := 1 to ng step 1 do � Loop over elements integration points

Jg := det
(

δX

δΞ

)

� Calculation of Jacobian determinant

b
(l)
m (pe) := ... � Definition of auxiliary functions b

(l)
m , which will be constant when

pseudo-potential is differentiated

W
(K)
g :=

∑

l∈GK

∑

m
a
(l)
m · b(l)

m � pseudo-potential is defined as sum of scalar tensors a
(l)
m and b

(l)
m .

R
(K)
g = Jg

δ̂W (K)
g (pe)

δ̂p
(K)
e

∣

∣

∣

∣

Db
(l)
m

Dp
(K)
e

=0, ∀l∈GK∧∀m
� Differentiation with respect to unknowns of k-th set

with appropriate exceptions

K
(K)
g =

δ̂R(K)
g

δ̂pe
� Differentiation with respect to all unknowns pe of the problem

end for

In general we can separate formulations into two groups: formulations where all equa-
tions are written inside one element (unified approach) and formulation where equations
for each field or group of fields are formulated in separated elements (field-by-field ap-
proach). In the first example it applies nG = 1. Rg and Kg are evaluated in two generic
formulas Rgi and Kgi,j , which are both written inside one element. In the second case

physically separated element is generated for each set φ(K). Each element has n
(K)
p un-

knowns, called primary variables of element pi∈GK
e . In addition, element has access to

other variables p
i∈{1,...,nc}\GK
e through secondary additional nodes. Because there are nG

residuals and nG tangent matrices, we need to generate 2×nG generic formulas in total to
calculate residual and tangent matrix in all elements of sets. These generic formulas are
usually simpler than the formulas in the first case, but at the same time some quantities,
e.g. interpolation functions, need to be calculated several times.

3 Thermo-Hydro-Mechanical coupled problem

3.1 Weak form of THM coupled problem

At THM formulation porous medium is used, so such material model must be used
that account for solid, water and air. Labels w and s relate to liquid and solid material

4
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phases. Unlabelled material quantities refer to effective or averaged quantities of one-
phase medium φ =

∑
niφi, where ni is volume fraction and φi material quantity of

phases w and s. Weak form of balance equation for the case of NeoHooke type large
strain material [8, 7, 5] can be given with equation:∫

Ω

δE : SdΩ−
∫

Ω

δE : SpwdΩ−
∫

Ω

ρδu · gdΩ−
∫

Γq
u

δu · tdΓq
u = 0 (8)

Where S is total second Piola-Kirchoff stress tensor, Spw volumetric second Piola-
Kirchoff stress tensor caused by water pore pressures pw, calculated as Spw = −αbJC

−1(pw−
p0), where J is the jacobian determinant, C the right Cauchy-Green deformation tensor
and αb Biot’s coefficient. E is Green-Lagrange strain tensor referring to initial config-
uration. Operator ”:” denotes matrix product A : B = tr(ATB) = tr(ABT ), also
known as Frobenius inner product or matrix contraction. I is identity matrix of dimen-
sion 3 × 3. Because plasticity is considered, hyper-elastic constitutive equations must
be supplemented by additional non-linear coupled equations, forming relation between
time dependent history variables h and constitutive equations. The constitutive model
considering termo-plasticity is taken from [7] and suplemented with equatons of effective
stresses of [5].

Weak form of differential equation of non-stationary heat flow is given by [6] and
contribution to temperatures from mechanical work by [7], and is written:

∫

Ω

(ρc)
∂T

∂t
δTdΩ +

∫

Ω

kT∇δT · ∇TdΩ−
∫

Ω

(Q+Qw) δTdΩ

+

∫

Ω

δT (−Dmech +H)dΩ−
∫

Γq
T

δT
(
qT + αc (T − T∞)

)
dΓq

T = 0
(9)

Where T is temperature, kT effective heat conductivity, Q internal heat source, qT

surface heat source and (ρc) averaged heat capacity, where c is specific heat capacity
and ρ density. Term αc (T − T∞) accounts for heat convection and radiation on surface.
Therefore, temperature on the surface tends towards temperature T∞, where αc is pseudo
convective coefficient. Conversion of mechanical elastic and plastic work into heat is
covered by mechanical dissipation Dmech and elastic-plastic structural heating H, given
by [7]. Term Qw = −ρwcw kw

µw (−∇pw + ρwg) · ∇T is added to inner heat source q, to
capture the influence of liquid pressures.

Weak form of water flow on porous medium is taken from [6]. It is obtained from mass
balance equation for compressible liquid water. The used governing equation of one-phase
liquid flow in saturated porous medium is written as:
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∫

Ω

δpw

(
αb − n

Ks
+

n

Kw

)
∂pw
∂t

dΩ +

∫

Ω

kw
µw

∇δpw · ∇pwdΩ +

∫

Ω

δpwαbtr

(
∇∂u

∂t

)
dΩ

−
∫

Ω

δpwα
∂T

∂t
dΩ−

∫

Ω

kw
µw

ρw∇δpw · gdΩ +

∫

Γq
w

δpw
qw
ρw

dΓq
w = 0

(10)

Where pw is water pressure in medium, n porosity of medium, Kw bulk modulus of wa-
ter, kw is intrinsic permeability and µw dynamic viscosity of liquid. Term

∫
Ω
δpwαbtr(∇∂u

∂t
)dΩ

in equation (10) contributes to change in pressures due to speed of deformation and term
−
∫
Ω
δpwαt

∂T
∂t
dΩ contributes to pressure changes due to temperature expansion of medium

and liquid, where αt is average thermal expansion coefficient of medium.

3.2 Implementation of THM finite element

Weak form of coupled thermo-hydro-mechanical problem is defined with equations (8),
(9) and (10). Variables of the problem are chosen as φ = {u, v, pw, T}, where u, v and w
are displacements, T temperature of medium and pw pressure of liquid in pores. For this
paper we will consider three different implementations of THM finite element shown on
example of 4-node isoparametric quadrilateral element (Figure 1).

u4, v4, p4, T4

u1, v1
T1p1u2, v2

u3, v3u4, v4

T2

T3
T4

p2

p4 p3

A.1) ϕ =ϕ(1)={u, v, pw,T }

B)
u1, v1, p1, T1

u3, v3, p3, T3

A.2) ϕ =ϕ(1)={u, v, pw,T}

ϕ(3)={T}ϕ(2)={pw}ϕ(1)={u,v}

w w

w

ww

w
w

4

1 2

3

4

1 2

3
4

1 2

3
4

1 2

3

u2, v2, p2, T2
w

u4, v4, p8, T12

u2, v2, p6, T10

u3, v3, p7, T11

w

ww
4 8 12

1 5 9 2 6 10

3 7 11

u1, v1, p5, T9
w

Figure 1: Three different implementations of finite elements considered (A.1, A.2 and B)

A.1) First standard finite element implementation is chosen with four nodes and all
equations defined in a single element. Vector of unknown scalar fields is therefore
φ = φ(1) = {u, v, pw, T}. Pseudo-potential is written as a sum of pseudo potentials
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of physical fields W = W u +W pw +W T (defined later in chapter (3.3)) (”Unified
approach”).

A.2) Implementation A.2 is from the aspect of the derivation of Rg and Kg equivalent to
implementation A.1. Difference between A.1 and A.2 is in organisation of element
nodes. Separate node is defined for each physical field, totalling to 12 nodes.

B) Three subsets of φ are defined: φ(1) = {u, v}, φ(2) = {pw} and φ(3) = {T}. They are
discretised by sets of unknowns of variables defined in three separate elements, each
with its own vector of nodal unknown degrees of freedom p

(i)
e . Pseudo potential is

defined for each element, i.e. W (1) = W u, W (2) = W pw in W (3) = W T .

For implementations A.1 and A.2, K inR are derived in one element from single pseudo

potential: Rg =







Ru
g

Rpw
g

RT
g







and Kg =





Kuu
g Kupw

g KuT
g

Kpwu
g Kpwpw

g KpwT
g

KTu
g KTpw

g KTT
g





In case B, there are three separate residuals Ru
g , R

pw
g and RT

g and tangent-stiffness

matrices: Ku
g =

[

Kuu
g Kupw

g KuT
g

]

, Kpw
g =

[

Kpwu
g Kpwpw

g KpwT
g

]

and

KT
g =

[

KTu
g KTpw

g KTT
g

]

.

3.3 Pseudo-potential of THM problem

For each of the weak forms defined in chapter 3.1, a proper pseudo potential can be
written, which is derived as sum of products of auxiliary functions bl

m and functions
al
m (see chapter 2). Additionaly, the ADB formulation of spatial gradient is defined as

∇x(�) = δ̂�
δ̂x

∣

∣

∣

∣

DΞ
Dx

=J−1
g F−1

, where Ξ = {ξ, η, ζ} are reference coordinates which are expressed

in shape functions Ni = Ni (ξ, η, ζ) (e.g. NQ1

i = 1/4{(1 − η)(1 − ξ), ..., (η + 1)(1 − ξ)}
). Jg = δ̂X

δ̂Ξ
is Jacobian matrix of transformation from Ξ to X and x is vector of spatial

coordinates. Material gradient can be derived similarly as ∇X(�) = δ̂�
δ̂X

∣

∣

∣

∣

DΞ
DX

=J−1
g

.

3.3.1 Pseudo-potential of mechanical problem

Let us take weak form of balance equation (8). The corresponding pseudo-potential
has the form of W u

g = Wu + bu
1 : E − bu

2 · u, where bu
1 = Spw and bu

2 = ρg are auxiliary
variables, which must be kept constant during automatic differentiation of R. This will
be achieved with appropriate ADB formulation shown below. Wu is elastic strain energy
function, describing appropriate material model, in our case elastic and hyperelastic.
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3.3.2 Pseudo potential of temperature conduction problem

Similarly as for mechanical problem, we define pseudo potential of non-stationary heat
conduction from (9) in the shape of: W T

g = bT
1 · ∇x (T ) + bT2 T , where bT

1 and bT2 are
auxiliary variables.

bT
1 = kT∇x (T ) (11)

bT2 =
(ρc)

∆t
(T − Tp) + ρwc

w
p

kws

µw

(−∇x (pw) + ρwg) · ∇x (T )−Dmech +H−Q (12)

3.3.3 Pseudo potential of liquid flow

As for previous cases, the auxiliary variables are defined as:

bpw
1 =

ks
µw

∇x (pw)−
ks
µw

gρw (13)

bpw2 =
αb

∆t
tr

(

F−1 − F−1
n

)

+

(

αb − n

Ks

+
n

Kw

)

1

∆t
(pw − pwp)−

α

∆t
(T − Tp) (14)

Pseudo potentials then follows from (10) as W pw
g = bpw

1 · ∇x (pw) + bpw2 pw.

3.4 ADB formulation of residuals of THM problem

In case of A.1 and A.2 implementations, there is one pseudo potential per integration
point Wg = W u

g +W T
g +W pw

g . Residual of subsets GK , R
(K)
g can then be written in the

ADB formulation as

Rg = Jg
δ̂Wg

δ̂pe

∣

∣

∣

∣Dbu
1

Dpe
=0,

Dbu
2

Dpe
=0,

Dhg
Dpe

=0,DTc
Dp

=0,DF−1

Dpe
=0,

DF−1
n

Dpe
=0,

DbT
1

Dpe
=0,

DbT2
Dpe

=0,
Db

pw
1

Dpe
=0,

Db
pw
2

Dpe
=0

(15)

For case B, there are three separate pseudo potentials, one for each element and accord-
ingly three residuals, written in the ADB formulation as:

Ru
g = Jg

δ̂W u
g

δ̂pu

∣

∣

∣

∣Dbu
1

Dpe
=0,

Dbu
2

Dpe
=0,

Dhg
Dpe

=0,DTc
Dp

=0

,

RT
g = Jg

δ̂W T
g

δ̂pT

∣

∣

∣

∣DbT
1

Dpe
=0,

DbT2
Dpe

=0,DF−1

Dpe
=0

,

Rpw
g = Jg

δ̂W pw
g

δ̂ppw

∣

∣

∣

∣Db
pw
1

Dpe
=0,

Db
pw
2

Dpe
=0,DF−1

Dpe
=0,

DF−1
n

Dpe
=0

(16)
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4 EXAMPLES

4.1 Example introduction

Unified (A.1) approach and field-by-field (B) approach will be compared according to
numerical efficiency on 56 simulations. Four constitutive material models will be used:
linear elastic (LE), small strain elasto-plastic (LP), hyper-elastic (HY) and finite strain
elasto-palstic (JC). Four combinations of physical fields ”D”, ”DT”, ”DW” and ”DTW”
will be compared, where ”D” is mechanical, ”T” temperature and ”W” hydrous field. Each
model and example will be formulated for 2D domain using quadrilateral (Q1) and for
3D domain using hexahedral (H1) element with first order interpolation. All simulations
are made using the same topology, initial and boundary conditions and material data,
appropriately administered for 2D and 3D models and used fields.

The test example is a block with dimensions of 2× 3× 2. 2D model has dimension of
2× 2 with the thickness of 3 units, discretized with mesh of 80× 40 = 3200 elements per
subset GK . The mesh of 3D model is discretized with the mesh of 16 × 8 × 16 = 2048
elements per subset GK .

4.2 Comparison of Computational efficiency

We compared the code size of elements defined in individual example. For A.1 approach
only one element was defined per simulation, but for B approach two to three separate
elements have to be defined. The total code size is therefore a sum of code sizes of element
source codes of each subset GK . Secondly, we are interested in evaluation time. We cannot
compare different models directly. However, we can compare the time needed to assemble
element tangent matrices K and residuals R of all subsets GK . As above, this means that
we must summarize the contribution of all elements defined for each subset GK .

Table 1: Comparison of code size in KBytes

Approach A.1 B
Element D DT DW DTW DT DW DTW

Q1-LE 6457 10105 10969 17721 11767 13406 25549
Q1-LP 14989 20223 20156 28340 21997 22862 36664
Q1-HY 8755 13715 15428 23068 16589 18186 33146
Q1-JC 54704 70666 63409 81667 73626 66571 92874
H1-LE 20084 27136 29588 40720 30198 35056 53598
H1-LP 34318 43459 44622 58194 47845 49896 70533
H1-HY 25876 36212 48669 62019 43142 55888 82532
H1-JC 112327 131085 140333 157384 139097 147326 181863

First we can compare the code size of elements. The code size values are listed in
Table 1. Growth of code can be observed with increasing number of fields, topology
dimension and constitutive model complexity. All field-by-field approach simulations

9
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have larger total code sizes than their unified counterparts. This is expected, because
some equations that are identical in all elements must be calculated for each individual
element separately. These equations can represent considerable percent of code, if element
constitutive equations are simple, which causes larger differences between code of A.1 and
B.

When code size of elements is compared for unified and field-by-field approach, it can
be observed that for linear elastic and hyperelastic models the code size of approach B
is larger for factors from 1.11 (Q1-LE: DW) to 1.44 (Q1-LE: DTW), but when plastic
models are considered, increase in code size is for smaller values between 1.04 (H1-LP:
DW) and 1.28 (Q1-LP: DTW).

Here the influence of the number of fields on code size is compared. When the code
size of mechanical element is comparable to the code size of temperature and pressure
elements (e.g. for non plastic models), adding all physical fields increases the code by
values from 2.03 to 2.74 for approach A.1 and for approach B from 2.67 to 4, but when
mechanical element is more complex (e.g. plastic models), the addition of physical fields
increases the code by smaller values than before, in approach A.1 from 1.4 to 1.9 and
B from 1.6 to 2.4. The complexity of material model has the largest effect on code size
increase, because for finite strain elasto plastic models, the code size is by factors 3.4
(when all fields are present) to 8.5 (when only one field is present) larger than for linear
elastic models.

Table 2: Comparison of normalised element assembly times .

Approach A B
Element D DT DW DTW DT DW DTW

Q1-LE 1. 1.43 1.39 3.69 2.14 2.76 5.52
Q1-LP 1.53 2.56 2.28 4.87 2.97 3.35 6.31
Q1-HY 1.18 2.46 2.42 5.13 3.17 3.16 7.13
Q1-JC 3.23 6.02 4.87 9.07 7.03 5.2 10.3
H1-LE 5.16 10.8 10.4 22.8 13.2 24.6 26.6
H1-LP 7.92 15.1 13.7 28. 17.3 26.8 28.8
H1-HY 9.07 21. 30.2 52.3 21.5 28.1 47.3
H1-JC 21.1 38.7 45.2 67.4 40.5 43. 68.5

A.1 and B approaches return identical results in the same number of steps and itera-
tions. The number of steps was 133 for all examples, but the average number of iterations
per step increased from 1 (linear elastic with one field) to 3.3 (finite strain elasto plastic
with all fields), because the problem becomes non-linear. Once assembled, global matri-
ces have the same dimensions and values in both A.1 and B approaches, only different
organisation of degrees of freedom. Therefore, the main difference comes from assembly
time of matrices. Normalized element assembly times are given in Table 2. Generally,
element assembly times of tangent matrices and residuals for one iteration are smaller for
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approach A.1. The difference in time comes from larger total code size of B as described
above. The largest difference between A.1 and B is for models Q1-LE with two physical
fields. With increasing complexity and number of physical fields the difference becomes
lower and approaches 1. In some cases (e.g. ”H1-HY: DTW”), the factor goes below 1,
which is a consequence of optimisation procedure of source code, which works better on
smaller source codes.

The results lead to the conclusion that formulation with field-by-field approach is ap-
propriate to use for solving strongly coupled problems. A major disadvantage shows only
in larger code size and consequently longer assembly, times when the number of physical
fields is small and constitutive equations are simple, but on the other hand, when complex
model is used with more fields, the assembly times become comparable.

5 CONCLUSIONS

We have shown that with an appropriate automatic differentiation based formulation
of the problem and physically separated (field-by-field) implementations of equations,
it is possible to efficiently describe coupled problems of arbitrary complexity in a way
that quadratic convergent Newton-Raphson procedure is preserved. Proposed field-by-
field implementation was also numerically compared to the standard unified. The code
size is on average by 17% larger and element assembly time by 30% longer than that of
unified, but with increasing complexity of material model (e.g. finite strain), and number
of physical fields, the difference drops to 16% for size, while the assembly times become
practically identical. Since the goal is to be able to solve strongly coupled problems with
arbitrary number of physical fields, the difference will decrease further with increasing
complexity of problem.
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