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By modeling the effects of predictor variables as a multiplicative function of
regression parameters being invariant over categories, and category-specific
scalar effects, the ordered stereotype logit model is a flexible regression model
for ordinal response variables. In this article, we propose a generalized estimat-
ing equations (GEE) approach to estimate the ordered stereotype logit model for
panel data based on working covariance matrices, which are not required to be
correctly specified. A simulation study compares the performance of GEE esti-
mators based on various working correlation matrices and working covariance
matrices using local odds ratios. Estimation of the model is illustrated using a
real-world dataset. The results from the simulation study suggest that GEE esti-
mation of this model is feasible in medium-sized and large samples and that
estimators based on local odds ratios as realized in this study tend to be less effi-
cient compared with estimators based on a working correlation matrix. For low
true correlations, the efficiency gains seem to be rather small and if the work-
ing covariance structure is too flexible, the corresponding estimator may even be
less efficient compared with the GEE estimator assuming independence. Like
for GEE estimators more generally, if the true correlations over time are high,
then a working covariance structure which is close to the true structure can lead
to considerable efficiency gains compared with assuming independence.
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1 INTRODUCTION

In applications, it is often of interest to estimate the effects of predictor variables on categorical response variables. One
such example could be the effect of the predictors “consulted medical specialist”, “age”, and other variables on a response
observed on an ordinal scale where patients can tick one of, say four possible answers from “not at all” to “completely”,
when asked how deeply they have been involved in the therapeutic decision process.
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In the cross-sectional context, several models are available to estimate the corresponding parameters of scientific
interest. Examples are cumulative, sequential, adjacent-categories, or baseline category models.1-3 These models account
for the ordinal or nominal character of the response by either restricting the effects of the predictor variables to be iden-
tical over the categories (i.e., the proportional odds property) or allow all regression parameters to vary freely. Stereotype
models differ from the above models by allowing the effects of predictor variables to be specific for each possible category
of the response variable but in a parsimonious way.4

The ordered stereotype model assumes that the effects of the predictor variables are proportionally changing depend-
ing on the response category. This is modeled by introducing a scalar parameter that is specific to each category and is
multiplied with the vector of regression parameters. Hence, this model is more flexible than models that restrict the effects
of the predictors to be the same for the different categories but more parsimonious than the unrestricted models with
freely varying regression parameters. The ordinal nature of the response in the ordered stereotype model is guaranteed by
constraints on the order of these scalar parameters.1,4-7 Thus, by introducing the interaction of regression parameters and
category-specific effects underlying the ordering constraints, the ordered stereotype model allows a flexible interpreta-
tion of the effects of predictors but still respects the ordinal nature of the response. In contrast to other models for ordinal
responses which can be derived from latent one-dimensional processes, the ordered stereotype model can be motivated
by a latent but inherently multidimensional nature of the response variable.4 The price for the increased model flexibility
is that estimation of the model is not straightforward due to the multiplicative structure of the parameters.

To estimate cross-sectional-ordered stereotype models, maximum likelihood4 (ML) or generalized least squares8 (GLS)
methods have been proposed. This can be realized via general software to maximize a likelihood function,8 usually using
numerical derivatives, or by embedding the ordered stereotype models into a more general class of models. For example,
stereotype models can be interpreted as a subclass of generalized or multivariate nonlinear models8,9 and estimated, for
example, using the gnm package9 as part of the R system,10 as restricted versions of multinomial models11 or as special
cases of the class of reduced-rank vector generalized models,12 which simplifies to a reduced-rank multinomial logit
model. Finally, the packageordinalgmifs13 as part of the R system10 allows fitting ordered stereotype models when the
number of parameters exceeds the sample size, using the generalized monotone incremental forward stagewise method
and imposing penalties to a set of specified predictors. This package can also be used in the case of non-high-dimensional
data without specifying any penalty on the predictors in the model fitting process.

Estimation of ordered stereotype panel models or models for clustered data is, however, scarce. Notable exceptions
propose to estimate the ordered stereotype panel model either via GLS14 or ML14,15 using existing software. For consistent
estimation of the parameters of interest and their (co)variances, the GLS approaches require that the mean and association
structure of dummy variables representing the possible values of the ordered response variable are correctly specified.
For ML estimation, correct specification of the high-dimensional distribution of the response variables over time and
numerical calculation of high-dimensional integrals is required. Although the latter is no obstacle anymore with today's
computing capacity, the former is a strong requirement.

The generalized estimating equations (GEE) approach was proposed as an extension of generalized linear models to
panel data.16 Assuming a marginal generalized linear model for the one-dimensional response variable at each time point,
the parameter estimators of the mean structure are consistent and asymptotically normally distributed under weak regu-
larity conditions. A crucial condition is that the mean structure is correctly specified. Dependencies over time are modeled
via a “working” correlation matrix avoiding computer-intensive estimation procedures for nonlinear models. For the esti-
mators of the mean structure to be consistent and asymptotically normally distributed, however, correct specification of
the working correlation matrix is not required.

GEE estimation of models for one-dimensional response variables at each time point has soon been generalized to
vector-valued response variables. Hence, GEE estimation of models for clustered nominal response variables has been
proposed17,18 just as estimation of models that include clustered ordinal response variables17,19-22—usually assuming a
cumulative ordinal model.2 However, to the best of our knowledge, estimation of the ordered stereotype logit model for
panel data that is robust against a misspecified association structure over time has not yet been considered.

Therefore, in this article, we propose estimation of the ordered stereotype model for panel data via GEE. We choose
the GEE approach because it avoids the calculation of high-dimensional integrals and is thus computationally efficient.
In addition, the GEE approach turned out to be an attractive approach as illustrated in several simulation studies:16,22 If
the true associations are weak to moderate, then GEE estimators assuming independence are not only consistent but are
usually efficient relative to ML or GEE estimators that take associations into account. If the true associations are strong,
however, then explicitly modeling any association structure usually leads to more efficient GEE estimators compared
with assuming independence. The observed effects on the relative efficiency may be weak if specific versions of invariant
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covariate designs are considered or may be amplified if the number of observations within each cluster varies.23-26 In
many practical cases, the efficiency loss relative to ML estimators will often be small.

In Section 2, we discuss the ordered stereotype logit model for panel data and in Section 3 its estimation. Sections 3.1
and 3.2 describe estimation of the stereotype model with the help of GEE based on a working covariance matrix. In
Section 3.2, we introduce two ways of modeling the association structure: First, via working correlation matrices and sec-
ond adopting a local odds ratios approach. Section 4 describes a simulation study to illustrate the finite sample properties
of the GEE estimator of the stereotype model under different structures of the working covariance matrix. Application of
the GEE estimator is illustrated using a dataset from a randomized clinical design to evaluate a treatment of rheumatoid
arthritis27 in Section 5. Finally, in Section 6, we discuss the results from the simulation study and the application and
address limitations of the approach.

2 THE ORDERED STEREOTYPE LOGIT MODEL FOR PANEL DATA

Let Ỹit be a q-level ordered categorical (ordinal) response with possible realizations ỹit ∈ {1,… , q} (eg, a 5-level Likert
scale defined as “strongly disagree”, “disagree”, “neutral”, “agree”, and “strongly agree”) for unit i, i = 1,… ,n, at time
t = 1,… ,T. The ordered stereotype panel logit model for the probability that Ỹit = k can be characterized by the log odds

log
⎡⎢⎢⎢⎣

Pr
(

Ỹit = k|xit

)
Pr

(
Ỹit = 1|xit

)⎤⎥⎥⎥⎦ = 𝛼k + x′
it𝜙k𝜷, k = 2,… , q, (1)

at each time point t, where 𝛼k, 𝜙k, and (p × 1)-dimensional 𝜷 are usually unknown parameters, the vector xit is a set of
l = 1,… , p predictor variables for unit i at time point t that may include categorical or continuous variables, is invariant
over the categories but may vary over time, and 𝜙k can be interpreted6 as the effect of x′

it𝜷 on the probability of observing
Ỹit = k rather than Ỹit = 1 for k = 2,… , q. Model (1) implies

Pr(Ỹit = 1|xit) = 1 −
q∑

l=2
Pr(Ỹit = l|xit) =

1
1 +

∑q
l=2 exp(𝛼l + x′

it𝜙l𝜷)
,

Pr(Ỹit = k|xit) =
exp(𝛼k + x′

it𝜙k𝜷)

1 +
∑q

l=2 exp(𝛼l + x′
it𝜙l𝜷)

, k = 2,… , q, (2)

𝛼1 = 0 and 𝜙1 = 0. However, to identify the model, one additional restriction is required and we set 𝜙q = 1. Note that
𝜷 is invariant over the categories and thus a monotone ordering constraint on 𝜙k, k = 1,… , q, is required for Ỹit to be
ordinal4—without this constraint, the model would be a model for nominal response variables. We choose28 0 = 𝜙1 ≤

𝜙2 ≤ · · · ≤ 𝜙q−1 ≤ 𝜙q = 1. Note that model (1) could be formulated based on other restrictions as well. For example,
instead of a model implying that 𝛼1 = 0, one could choose a version based on

∑q
k=1 𝛼k = 0. For the version adopted here,

the parameters to be estimated are 𝛼2,… , 𝛼q,𝜙2,… , 𝜙q−1, and 𝜷. It should be noted, however, that if 𝜷 = 0, then the model
is not identified.29

A comparison of graph (A) of the first panel in Figure 1 with the other three graphs illustrates the effect of the non-
decreasing restriction with respect to the parameters 𝜙k, k = 1,… , q, on Ỹit: If the ordering constraints are met, then
the assumed order in the values of Ỹit is justified. Note that when two neighboring 𝜙-parameters have equal values, we
could collapse the corresponding response categories into one single response category as the model still holds with the
corresponding subset of 𝜙-parameters.1

Model (1) defines the first category at each time point as a reference category. The vector of parameters 𝜷 represents the
category-invariant effects of xit on the log odds for the categories k = 2,… , q relative to the reference category Ỹit = 1. The
parameters {𝛼2,… , 𝛼q} can be interpreted as weights assigned to the categories: The larger 𝛼k, the higher the probability of
observing category k relative to the reference category. The parameter 𝛼k affects aspects like skewness and kurtosis of the
probability functions Pr(Ỹit = k′|xit), k ≠ k′ for a given i, t, and k > 1 only via the restriction 1 =

∑q
k=1 Pr(Ỹit = k|xit). For

an illustration, compare graph (B) in the first panel of Figure 1 with graph (C) in the second panel. Finally, {𝜙1, 𝜙2,… , 𝜙q}
are category-specific parameters that affect the probabilities of observing Ỹit = k depending on x′

it𝜷. Thus, they have a
stronger effect on the position and shape of the probability functions Pr(Ỹit = k|xit) for k = 2,… , q − 1. A comparison of
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(A) (B)

(C) (D)

F I G U R E 1 Illustration of effects of 𝛼k and 𝜙k as a function of 𝜂 = 𝜷′x

graphs (A) and (B) in the first panel and graph (D) in the second panel of Figure 1 illustrates this effect. Note that the
assumptions of invariant parameters 𝛼k, 𝜙k, and 𝜷 over time can easily be relaxed.

3 GEE ESTIMATION

3.1 The estimating equations

Treating the ordered stereotype panel model as a multinomial model with restrictions on the parameters, we adopt the
GEE approach16 to estimate the parameters in a parsimonious way, avoiding numerical integration and correct specifica-
tion of high-dimensional distributions. This approach requires only the correct specification of the mean structure of the
dummy variables representing Ỹit. However, since the variance estimator16 for n → ∞ turned out to underestimate the
true variances in small to medium-sized samples, we propose an analytical correction for finite samples.

Define

Yitk =
{

1 if Ỹit = k,
0 else,

for k = 2,… , q and let Yit = (Yit2,… ,Yitq)′ and Yi = (Y′
i1,… ,Y′

iT)
′. Define

𝜇itk =
exp(𝛼k + x′

it𝜙k𝜷)

1 +
∑q

l=2 exp(𝛼l + x′
it𝜙l𝜷)

, k = 1,… , q,

and let 𝝁it = (𝜇it2,… , 𝜇itq)′ and 𝝁i = (𝝁′
i1,… ,𝝁′

iT)
′. The marginal distribution of Yit is multinomial and we assume that

variables Yi are independent conditional on the predictor variables xi′1,… , xi′T , for all i, i′ = 1,… ,n and t = 1,… ,T.
Let 𝜽 = (𝜶′,𝝓′, 𝜷′)′, where 𝜶 = (𝛼2,… , 𝛼q)′ and 𝝓 = (𝜙2,… , 𝜙q−1)′, be the parameters of scientific interest. The GEE

estimator 𝜽̂ solves the estimating equations

0 =
∑

i
DiW−1

i (Yi − 𝝁i), (3)

where Di = 𝜕𝝁i∕𝜕𝜽 and Wi = V1∕2
i RV1∕2

i is the working covariance matrix. The positive definite matrix Vi is the covari-
ance matrix of variables Yit treated as independent over time, that is, Vi = bdiag(diag(𝝁i1) − 𝝁i1𝝁

′
i1,… , diag(𝝁iT) −
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𝝁iT𝝁
′
iT), where bdiag() denotes a block-diagonal and diag() denotes a diagonal matrix. V1∕2

i denotes the symmetric square
root of Vi and R is a “working” correlation matrix, which depends on a “nuisance” parameter 𝝃 that is not of scientific
interest16 but accounts for (linear) dependencies in Yit|xi1,… , xiT over time, t = 1,… ,T.

Generally, estimating equations (3) need to be solved iteratively. Given estimate 𝝃̂j at iteration j, an estimate for 𝜽, 𝜽̂j,
is computed as16

𝜽̂j = 𝜽̂j−1 −
⎡⎢⎢⎣
(∑

i
DiW−1

i D′
i

)−1 ∑
i

DiW−1
i (Yi − 𝝁i)

⎤⎥⎥⎦𝜽=𝜽̂j−1,𝝃=𝝃̂j−1

, (4)

where −
∑

iDiW−1
i D′

i approximates the derivative of
∑

iDiW−1
i (Yi − 𝝁i) with respect to 𝜽. To calculate an estimate for 𝜽̂,

we adopt the strategy of alternating between a modified Fisher scoring to estimate 𝜽 and estimation of 𝝃.
If the model of the mean 𝝁i is correctly specified for all i = 1,… ,n, that is, if E(Yitk|xit) = 𝜇itk at the true value 𝜽0,

then under some additional regularity conditions, 𝜽̂ is consistent and asymptotically normally distributed,16,30,31 and its
covariance matrix can be estimated by

V̂ar(𝜽̂|X) =

(∑
i

D̂iŴ
−1
i D̂

′
i

)−1 ∑
i

D̂iŴ
−1
i ŜiŴ

−1
i D̂

′
i

(∑
i

D̂iŴ
−1
i D̂

′
i

)−1

, (5)

where

Ŝi = (Yi − 𝝁̂i)(Yi − 𝝁̂i)′||𝜽=𝜽̂,
D̂i is Di evaluated at 𝜽 = 𝜽̂ and Ŵi is the working covariance matrix evaluated at 𝜽 = 𝜽̂ and the estimated association

parameters 𝝃̂, the latter being equal to zero if independence is assumed.
However, an outstanding characteristic of the stereotype model is that the means 𝜇itk are functions of the product of

parameters 𝜙k and 𝜷. As a consequence, Di = 𝜕𝝁i∕𝜕𝜽 is actually Di = D(1)D(2),i,

D(1) = 𝜕 𝜻∕𝜕 𝜽 =

( Iq−1 0(q−1)×p(q−1)
0(q−2)×(q−1) (Iq−2 0(q−2)×1)⊗ 𝜷′

0p×(q−1) (𝝓′ 1)′ ⊗ Ip

)
,

D(2),i = 𝜕 𝝁i∕𝜕 𝜻 = X̃
′
iVi, X̃i =

(
1T ⊗ Iq−1 Xi

)
, Xi =

(Iq−1 ⊗ x′
i1

⋮
Iq−1 ⊗ x′

iT

)
,

where 𝜻 = [𝜶′ (𝝓′ 1)⊗ 𝜷′]′, ⊗ is the Kronecker product, 1J is a (J × 1) vector of ones, IJ is the (J × J) identity matrix ,
and 0J×K is a (J × K) matrix of zeros.

Treating the covariance matrix Wi as fixed at the observed values, the derivative of estimating equations (3) with
respect to 𝜽 is

𝜕

𝜕 𝜽

∑
i

DiW−1
i (Yi − 𝝁i) =

𝜕 D(1)

𝜕 𝜽

∑
i
[I(2q−3+p) ⊗ X̃

′
iViW−1

i (Yi − 𝝁i)]

+
∑

i

𝜕 Vi

𝜕 𝜽
[X̃iD′

(1) ⊗ ViW−1
i (Yi − 𝝁i)] −

∑
i

DiW−1
i D′

i . (6)

A major difference between the models for which GEE was proposed16 and the ordered stereotype model is D(1), a
matrix which would be equal to the identity matrix in most cases, but is a function of parameters 𝝓 and 𝜷 in case of the
stereotype model. Consequently, the first term on the right-hand side of (6) would be zero in standard GEE situations.
Because the estimating equations (3) are solved with Di = D(1)X̃

′
iVi in case of the stereotype model, which does not imply

that
∑

iX̃
′
iViW−1

i (Yi − 𝝁i) is zero at the estimates 𝜽̂ and 𝝃̂ in finite samples, the first term on the right-hand side of (6) may
not vanish. The second term on the right-hand side, which is ignored in (4) and (5), may also not vanish in small samples.
Hence, −

∑
iDiW−1

i D′
i may not be a close approximation to 𝜕

[∑
iDiW−1

i (Yi − 𝝁i)
]
∕𝜕 𝜽 in small to medium-sized samples.

Therefore, to calculate 𝜽̂ and to estimate its variance, we use the first and the second term in addition to the last term
on the right-hand side of (6). Both terms are given in the Appendix A1. It should be noted, however, that although the
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approximation −
∑

iDiW−1
i D′

i is negative definite as long as 𝜽 does not take extreme values and the working correlation
matrix is positive definite, (6) may not be negative definite for values of 𝜽 outside a close neighborhood of the solution 𝜽̂.

Denote the derivative (6) as An. Then the GEE estimator of the ordered stereotype panel model can be calculated by
replacing −

∑
iDiW−1

i D′
i in (4) by An. In case of convergence problems, approximation −

∑
iDiW−1

i D′
i may be used instead

of An until convergence and then be replaced by An for a few additional iteration steps until the convergence criterion is
again met. This strategy requires usually more iterations but will more likely converge to a solution of (4). The variance
of 𝜽̂ is estimated by replacing −

∑
iDiW−1

i D′
i in (5) by An.

The ordinal nature of the stereotype model is guaranteed by the restriction 0 ≤ 𝜙2 ≤ · · · ≤ 𝜙q−1 ≤ 1, where at least
two inequalities must be strict inequalities. These restrictions are neither necessary for the model to be a valid model
nor is it required for the algorithm to solve the estimating equations. The ordering only ensures that the categorical
response variable is ordered for the dataset at hand. The computed estimates 𝜙k are realizations of estimators for which
only asymptotic properties are available. In the GEE case, the asymptotic distribution of the estimators is the normal
distribution. Thus, in finite samples confidence intervals for𝜙k may overlap,1,4 may cover negative values, or values larger
than one even if the above restrictions are met for the underlying true data generating process. Consequently, it can also
not be ruled out that the above ordering is violated during some iterations in the estimation process. Thus, in applications
it might be of interest to test whether the response is in fact ordinal.4,8 Therefore, we did not enforce the restrictions on
the parameter estimates 𝜙k, k = 2,… , q − 1, by the estimation algorithm.32

3.2 The working covariance matrix

For a consistent estimation of the mean structure parameter 𝜽, a correct specification of the underlying association struc-
ture of Yi|Xi is not necessary and, if the observations are assumed to be correlated, 𝝃̂ needs only be consistent16 for some
𝝃. However, the choice of the working association structure may have an effect on the relative efficiency of 𝜽̂. To the
best of our knowledge, there do not appear to exist simulation studies that consider GEE estimation of stereotype panel
models, but simulation studies based on various other models suggest that if the true associations are weak or moder-
ate, which is the case in many applications, then the choice of the working association structure seems to play only a
minor role especially in sufficiently large samples.18,33 If associations are strong, then efficiency improvements can be
substantial.16,18,25,26,34 On the other hand, it has been shown, that these effects depend on the amount of variation in clus-
ter sizes and the covariate design, where for specific designs of invariant predictors, the choice of the working association
structure may play only a minor or no role at all.18,23-26

In the context of models with binary response variables and working correlation matrices, it has been pointed out that
the range of possible correlations is restricted35 and alternatives to a working correlation matrix have been proposed based
on global or local odds ratios to model associations.18,36 It is, however, not quite clear what the practical consequences of
violations of the corresponding restrictions are. Adopting an approach to estimate the correlation structure parameters 𝝃
in a binary model in a simulation study, it turned out that violations of the restrictions were associated with convergence
problems, like multiple solutions of the estimating equations or negative estimated variances for single parameters of
scientific interest.37 In this study, extreme situations with sample sizes as small as n = 20 and T = 4 were simulated.
Another simulation study with n ranging from 50 to 1000 and T = 5 reported rather high percentages of violations of up to
47% in a binary model but convergence problems only in one out thousands of simulated datasets and no negative variance
estimates.38 Therefore and because of its simplicity and computational efficiency, we adopt the working correlation matrix
approach,16 but compare it with an approach using local odds ratios.18,39

3.2.1 Working correlation matrix

In the cross-sectional case with ordered or unordered categorical variables, the covariance matrix of the binary indicators
(Yik,Yik′ ) is given by

V̂i = bdiag[diag(𝝁̂i1) − 𝝁̂i1𝝁̂
′
i1,… , diag(𝝁̂iT) − 𝝁̂iT𝝁̂

′
iT],

where V̂i = V̂i(𝜽̂) and 𝝁̂i = 𝝁̂i(𝜽̂). In the case of panel data, however, variables Yitk and Yit′k′ , t, t′ = 1,… ,T and k, k′ =
2,… , q, are not independent for different t, t′.
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Assuming independence in the ordinal model for panel data amounts to adopting the identity matrix as the working
correlation and V̂i as the working covariance matrix. The GEE estimator calculated under the independence assumption
will be denoted as GEEI .

In the panel data context, this assumption is not plausible and, if wrong, may lead to inefficient estimators. There are
several possible ways to proceed, depending on the permitted flexibility of the working correlation matrix to be estimated.
Note that the (q − 1)T × (q − 1)T working correlation matrix consists of T(T − 1)∕2 off-diagonal (q − 1) × (q − 1)matrices,
whose structures need to be modeled. Thus, the number of parameters to be estimated may vary between one and (q −
1)2T(T − 1)∕2. We consider two basic strategies to generate a working correlation matrix that differ with respect to the
flexibility of the working correlation structure and the number of parameters to be estimated. Both simplify to the above
block-diagonal matrix V̂i under the independence assumption. Under both strategies, four different association structures
are modeled, that is, an equicorrelation structure, an autoregressive structure of order one (AR(1)), a Toeplitz structure
and an unstructured correlation matrix.

In all cases, we first calculate an unstructured covariance matrix of the residuals over all units,

Û =
⎛⎜⎜⎝

Û11 … Û1T
⋮ ⋱ ⋮

ÛT1 … ÛTT

⎞⎟⎟⎠ = 1
n

n∑
i=1

Ŝi,

with [(q − 1) × (q − 1)]-blocks Ûtt′ representing moment estimates of covariances cov(Yitk,Yit′k′ ) if t ≠ t′ and variances
and covariances if t = t′. A correlation matrix R̂ common to all units that captures associations over time is then
calculated as

R̂ = bdiag
(

Û
−1∕2
11 ,… , Û

−1∕2
TT

)
Û bdiag

(
Û

−1∕2
11 ,… , Û

−1∕2
TT

)
,

where Û
−1∕2
tt denotes the inverse of the symmetric square root of Ûtt, the tth (T × T) matrix on the diagonal of Û. Thus,

R̂ =
⎛⎜⎜⎝

R̂11 … R̂1T
⋮ ⋱ ⋮

R̂T1 … R̂TT

⎞⎟⎟⎠ ,
with elements R̂tt′ = Û

−1∕2
tt Ûtt′Û

−1∕2
t′t′ . The diagonal block matrices reduce to [(q − 1) × (q − 1)]-identity matrices.

The two basic strategies of generating working correlation matrices differ systematically with respect to the treatment
of the off-diagonal elements of the [(q − 1) × (q − 1)] matrices R̂tt′ . Note that due to the symmetry of correlation matrices
we only need to consider either the block matrices R̂tt′ in the upper (t < t′) or R̂t′t the lower (t > t′) triangular part of R̂.

Under the restrictive within-blocks strategy, we calculate the mean of all off-diagonal elements of those block matri-
ces R̂tt′ , t < t′, which are, given the adopted working correlation structure, assumed to be equal using the Fisher (and its
inverse) transformation. If an unstructured correlation matrix is assumed, then all matrices R̂tt′ are considered indepen-
dently from each other. In this case, for each block matrix, an individual mean of the off-diagonal elements is calculated
and used as an estimate of the off-diagonal correlations in this block. For example, a (3 × 3) block R̂tt′ with correlations
rtkt′k′ , where t < t′,

R̂tt′ =

( − rt2t′3 rt2t′4
rt3t′2 − rt3t′4
rt4t′2 rt4t′3 −

)
, becomes Rtt′ =

( − rtt′ rtt′

rtt′ − rtt′

rtt′ rtt′ −

)

under the restrictive strategy, where rtt′ is the mean of the correlations rtkt′k′ , k ≠ k′. If an AR(1)- or a Toeplitz structure is
assumed, then the mean over all off-diagonal elements of all block matrices R̂tt′ , t < t′, for fixed Δ = |t − t′| is calculated,
where Δ = 1, 2,… ,T − 1. Assuming an equicorrelation structure amounts to calculating the mean of all off-diagonal
elements of all block matrices R̂tt′ , t < t′.

Calculation of the diagonal elements of each R̂tt′ under the restrictive within-blocks strategy depends on the adopted
working correlation structure. If an unstructured, a Toeplitz or an equicorrelation structure is assumed, then the diagonal
elements of the blocks Rtt′ of the working correlation matrix are the means of the diagonal elements of all blocks R̂tt′ ,
t < t′, assumed to be identical. If an AR(1)-structure is assumed then the diagonal elements are given by 𝜉Δ, where 𝜉 is
the solution to min𝜉

∑T−1
t=1

∑T
t′=t+1

∑q
k=2 (rtkt′k − 𝜉Δ)2.
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Under the flexible within-blocks strategy, the step of generating identical off-diagonal elements within the blocks Rtt′

is avoided. The off-diagonal elements within blocks Rtt′ are given by rtkt′k′ . Similarly, the diagonal elements within blocks
Rtt′ are not restricted to be equal if the working correlation matrix that is assumed to be unstructured has a Toeplitz or
an equicorrelation structure. In case of an AR(1)-structure, the diagonal elements are calculated as under the restric-
tive within-blocks strategy and thus are all equal. The number of correlation structure parameters varies considerably,
depending on the within-blocks strategy and the working association structure. For example, the assumption of a flexible
within-blocks unrestricted structure implies that all elements in all blocks Rtt′ may differ. Hence, the number of correla-
tion parameters to be estimated is (q − 1)2T(T − 1)∕2. On the other hand, if an equicorrelation structure under the flexible
within-blocks strategy is assumed, then all blocks Rtt′ are equal. In that case, only (q − 1)2 parameters are required. Under
the restrictive within-blocks strategy, assuming an equicorrelation matrix requires estimation of only two parameters.

Working correlation matrices R̂ calculated assuming independence, an unstructured, Toeplitz, AR(1) or equicorrela-
tion matrix will be indicated by subscripts I,U,T,A, and E, respectively. Superscripts R and F will denote the restrictive
and the flexible within-blocks version. Finally, individual working covariance matrices are generated by

Ŵ
m
l,i = V̂

1∕2
i R̂

m
l V̂

1∕2
i ,

where l ∈ {I,U,T,A,E}, m ∈ {R,F}, and V̂
1∕2
i = bdiag(V̂

1∕2
i1 ,… , V̂

1∕2
iT ). GEE estimators will be indicated correspondingly

as GEEm
l , where the superscript is ignored in case of the GEEI estimator.

3.2.2 Association structure based on local odds ratios

To avoid possible problems of inconsistencies of the marginal distributions 𝝁i and the distribution implied by the working
covariance matrix if a working correlation matrix is adopted, we in addition adopt a local odds ratios approach to model
the association structure.18

In a first step, (q − 1)2T(T − 1)∕2 local odds ratios 𝜗tkt′k′ are estimated, where t < t′, t = 1,… ,T − 1, t′ = 2,… ,T, and
k, k′ = 2,… , q, based on the corresponding (q − 1) × (q − 1) blocks of a [(q − 1)T × (q − 1)T] contingency table of variables
Yi, i = 1,… ,n, ignoring any predictor variables and assuming independence over the T(T − 1)∕2 blocks.

In a second step, one out of four versions of Goodman's40 row and column (RC) effects model is estimated, where the
log of the local odds ratios is modeled via

log 𝜗tkt′k′ = 𝜉tt′ (𝜈tt′
t(k−1) − 𝜈tt′

tk))(𝜈
tt′
t′(k′−1) − 𝜈tt′

t′k′ ),

𝜉tt′ is a parameter representing the association strength between Yit and Yit′ , and 𝜈tt′
tk are scores assigned to the kth response

category at time point t if the time pair t, t′ is considered.18 The four different models imply four different association
structures.

A parsimonious uniform structure is realized by assigning fixed unit-spaced values to the score parameters 𝜈tt′
tk and

assuming 𝜉 = 𝜉tt′ for all t, t′.18 This implies equal association strength over categories and time, log𝜗tkt′k′ = 𝜉. Allowing
log 𝜗tkt′k′ = 𝜉tt′ , that is, the association strength to vary over the T(T − 1)∕2 blocks, but be invariant over categories within
blocks, models an association structure denoted as category exchangeability.18

Restricting 𝜉 = 𝜉tt′ , 𝜈k = 𝜈tt′
tk for all t, t′, k and assuming that 𝜈k are also unknown parameters to be estimated, implies

an association structure denoted as time exchangeability.18 This model allows the association strength to vary with the
involved categories but assumes symmetry in the sense that 𝜗tkt′k′ = 𝜗tk′t′k, and allows no time dependence in the variables
Yit. A fourth model denoted as RC model18 allows in addition the association strength to vary over time. This model is
given by log 𝜗tkt′k′ = 𝜉tt′ (𝜈tt′

k−1 − 𝜈tt′
k )(𝜈tt′

k′−1 − 𝜈tt′
k′ ), where the parameters 𝜈tt′

k are unknown and need to be estimated. Thus,
this structure is very flexible but requires estimation of many parameters.

In a third step, based on the local odds ratios, the individual bivariate probabilities are estimated18 and then
adapted to be consistent with the estimated marginal distributions of Yi, i = 1,… ,n, using the iterative propor-
tional fitting (IPF) algorithm.41 Note that the association structure is estimated ignoring the predictors and hence
this step can be performed before the iterations to calculate the GEE estimator start. The IPF step, however, is
applied in each iteration. If a model for ordinal responses is estimated and it can be assumed that the true asso-
ciation structure is close to being time and category exchangeable, then the uniform association structure may be
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appropriate.18 Furthermore, results from a simulation study imply that convergence problems can be expected to
increase with increasing flexibility of the association structure. The RC structure is only recommended for large
sample sizes,18 like n = 500. The results of this three-step approach are individual estimated working covariance
matrices Ŵi.

In the simulation study to be described in the next section, we compare GEE estimators based on a working corre-
lation matrix with GEE estimators using the local odds ratios approach. The two approaches do not generate working
covariance matrices that are easily comparable. However, with respect to their flexibility, the GEE estimator based on the
uniform structure can be compared with the GEE estimator assuming the equicorrelation structure under the restric-
tive within-blocks strategy and the GEE estimator assuming time exchangeability with the GEE estimator based on the
equicorrelation structure under the flexible within-blocks strategy. The GEE estimator assuming category exchangeabil-
ity can be compared with the GEE estimator with an unrestricted correlation structure under a restrictive within-blocks
strategy and the GEE estimator calculated under an RC strategy can be compared with a GEE estimator with an unre-
stricted correlation structure under a flexible within-blocks strategy. The GEE estimators using the uniform, the category
exchangeable, the time exchangeable, and the RC structure will be denoted by GEEUN, GEECE, GEETE, and GEERC,
respectively.

4 SIMULATION STUDY

4.1 Design of the study

In this section we present the results of a simulation study to evaluate the finite sample properties of the GEE estimator
adopting different working covariance structures. All programs were written and run under R versions10 3.5.3 to 3.6.2
and are available from the corresponding author upon request.

For the main part of the study, we generated data for n = 50, 100, 200, 300, 500 and n = 1000 units, observed at
T = 5 time points. For every unit we simulated a response variable with q = 4 possible values at each time point in
each of 1000 simulations. To approximate an applied situation we generated three predictor variables from different dis-
tributions with low to medium associations between them and over time. The predictor values were held fixed over
the simulations. The first predictor was generated from a normal distribution and was correlated over time within
each unit with correlation 0.3. The second predictor was a binary variable which was correlated with the first predic-
tor with correlation of approximately 0.35 and correlations close to zero over time. The third predictor was generated
from a 𝜒2-distribution with three degrees of freedom, again correlated over time with correlation 0.4, but indepen-
dent from the first two predictor variables. The true values 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, and 𝜷 = (−.5 1 − .1)′ were
chosen such that the fraction of observations in each category of the response variable at all time points was well
above zero.

To study the effect of time-invariant and unit-invariant predictor variables on the relative efficiency of GEE estima-
tors, we generated datasets as described above but with three predictors generated independently from each other from a
standard normal distribution. The first variable was generated independently over time and units, the second was invari-
ant over time but varying over units, and the third predictor was invariant over units but varied over time. As true values
for 𝜷 we chose 𝜷 = (1 1 1)′.

To simulate the response variables from the required distributions, variable values were generated in every sim-
ulation in two steps. First, nT (pseudo) random numbers were generated from a multivariate normal distribution
with mean zero and one of two different (T × T)-dimensional covariance matrices independently for each category
k = 1,… , q. The covariance matrices were both positive definite and equal to Toeplitz correlation matrices with elements
(1.0, 0.4, 0.3, 0.2, 0.1) under the low-correlation condition and (1.0, 0.9, 0.8, 0.7, 0.6) under the high-correlation condition.
In the next step, the generated values were transformed into quantiles of a type I extreme value (or Gumbel) distribution
with location parameter equal to zero and scale parameter equal to one by a probability integral transformation. Given
predictor variables and true values for 𝜶, 𝝓, and 𝜷, the values of the linear predictor as given by the right-hand side of (1)
was calculated. Then, for each i and t, the category for which this value was maximum was selected to be the observed
value of Ỹit. The probability of observing the maximum given the predictor variables can be shown to be equal to (2) if
the error variables are independent and follow a type I extreme value distribution.42

It should be noted that the correlations under the low- and the high-correlation conditions are not equal to the corre-
lations of the observed Yitk,Yit′k′ |Xi. Instead they are the correlations of corresponding response variables given predictor
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variables in a latent model. The correlations in the observed variables Yitk,Yit′k′ |Xi will be somewhat lower and are not
decreasing according to the same relationships as in the latent model.

Both the low- and the high-correlation conditions were realized for each sample size condition. Estimators adopted
in the main study are GEEI , GEEF

E, GEER
E, GEEF

A, GEER
A, GEEF

T , GEER
T , GEEF

U , GEER
U , GEEUN, GEECE, GEETE and GEERC

under each condition. The effects of time- and unit-invariant predictors are studied based on GEEI , GEER
T and GEER

U
estimators.

4.2 Notes on the estimation strategy

As noted in the literature,6,8 the starting values should be chosen carefully to prevent the estimation algorithm from
nonconvergence. Thus, we adopted a three-step strategy to generate starting values. In a first step, starting values for
a multinomial panel model are generated. As suggested by a reviewer, we used 𝜏k = log

(∑
t
∑

iYitk
)
∕
(∑

t
∑

iYit1
)
, k =

2,… , q, as starting values for the constants. Starting values for the p regression coefficients restricted to be identical for
all categories and time points, 𝜸̃, were generated randomly from the uniform(−1,1) distribution and then transformed
such that |x′

it||𝜸̃| < 3 for all i, t. In the second step, a GEE estimator for a multinomial panel model is estimated.8 If
the working correlation matrix approach was chosen to estimate the stereotype model, then the corresponding working
correlation matrix is adopted to estimate the multinomial model. In case of the local odds ratios approach, we adopt the
time-exchangeable association structure in this second step. Let the estimates from this step be denoted as 𝜿 = (𝝉̂ ′ 𝜸̂′)′
and its estimated covariance matrix be Ĉov(𝜿). Starting values for 𝜽 are then generated in a third step as the solution
to min𝜽(𝜿 − 𝜾)′Ĉov(𝜿)−1(𝜿 − 𝜾), where 𝜾 = 𝜾(𝜽) = (𝜶′ (𝝓′ 1)⊗ 𝜷′)′. The maximum number of iterations in the second and
third step and the estimation procedure for the stereotype model was restricted to 200. Iterations stop if the maximum
absolute difference of estimates in consecutive iterations is below 10−6.

The working covariance matrices based on the approach using local odds ratios are generated using adapted
functions from the R package10 multgee39 called with the default values. A strong constraint of this approach
is that individual covariance matrices need to be inverted. To prevent the algorithm from too many nonconverg-
ing runs, we implemented a two-step approach. If an individual estimated covariance matrix is singular then, in a
first step, diagonal values close to zero are forced toward larger values. If an inverse of the resulting matrix does
still not exist, a generalized inverse of the original matrix is calculated. Both events are indicated by a warning
message.

To fit the stereotype model to the arthritis dataset, we generated the starting values as described above for all but one
GEE estimator: for the GEECE estimator we used the GEEUN estimates as starting values. Because the starting values
for the 𝜷 parameters are randomly selected, we needed several draws for some of the GEE estimators to converge. Fur-
thermore, the strategy of first using the approximation to the first derivative and then, after convergence, to adopt the
derivative derived in Section 3.1 and iterate again until convergence, turned out to be tolerant with respect to the starting
values. Hence this strategy is utilized for the real data example.

4.3 Simulation results

In this section, we present detailed results only for n = 200 and n = 500. Results for n = 50, 100, 300 and n = 1000 can be
found in the supplementary material.

The estimation results are collected over 1000 simulations under each of the conditions defined by the samples sizes
and the association strength (low- and high-correlation conditions). Pseudo random numbers were generated using the
same seed under all realized conditions. To compare the results, we calculated the estimated bias as the difference between
the true values and the means of the estimates over the simulations, the SDs of the estimates relative to the SD of the
GEEI estimates over the simulations, and the actual coverage rates of the true values for symmetric 0.95-level confidence
intervals assuming normality. Estimated biases for n = 200 and n = 500 under the low- and high-correlation conditions
can be found in Tables 1 and 2, relative SDs in Tables 3 and 4, respectively. The actual coverage rates are presented in
Figures 2 and 3. The results in these tables and figures are based on 1000 simulations for most estimators. Exceptions are
the GEEI , the GEEUN, the GEECE, and the GEETE estimators with 997 to 999 successful simulations if n = 200. Results
for the GEERC estimator under the high-correlation condition are omitted because the estimation algorithm converged
only in 48 and 55 out of 1000 simulations.



SPIESS et al. 1929

T A B L E 1 Estimated bias over 1000 simulations for n = 200 and n = 500 under the low-correlation condition, rounded to three
decimal places

GEEI GEEF
E GEER

E GEEF
A GEER

A GEEF
T GEER

T GEEF
U GEER

U GEEUN GEECE GEETE GEERC

n = 200

𝛼2 0.010 0.008 0.009 0.008 0.009 0.008 0.008 0.007 0.011 0.010 0.011 0.009 0.011

𝛼3 0.013 0.011 0.011 0.011 0.011 0.010 0.011 0.009 0.014 0.013 0.016 0.012 0.016

𝛼4 0.008 0.004 0.005 0.004 0.005 0.004 0.005 0.003 0.008 0.008 0.012 0.006 0.013

𝜙2 −0.006 −0.005 −0.006 −0.006 −0.005 −0.005 −0.005 −0.008 −0.006 −0.006 −0.007 −0.004 −0.006

𝜙3 −0.001 −0.002 −0.001 −0.003 −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 0.001

𝛽1 −0.007 −0.005 −0.006 −0.006 −0.006 −0.005 −0.006 −0.004 −0.004 −0.005 0.004 −0.002 0.013

𝛽2 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.010 0.009 −0.011 0.009 −0.025

𝛽3 −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 0.000 0.000 −0.001 0.001 −0.001 0.003

n = 500

𝛼2 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.003

𝛼3 0.005 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.005 0.005 0.006 0.004 0.007

𝛼4 0.008 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.009 0.006 0.010

𝜙2 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001

𝜙3 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002

𝛽1 −0.003 −0.002 −0.002 −0.003 −0.003 −0.002 −0.002 −0.002 −0.002 −0.002 0.001 0.000 0.007

𝛽2 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.002 −0.005 0.001 −0.016

𝛽3 −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 0.001

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (−.5 1 − .1)′. n = 200: Results for GEEI and GEEUN are based on 999, those for GEECE on 998
simulations.
Abbreviation: GEE, generalized estimating equations.

The results in Table 1 do not imply systematic biases in the different GEE estimators under the low-correlation con-
dition. The estimated biases are almost of the same order for all GEE estimators with a tendency of larger estimated
biases for single elements of the GEERC estimator. As expected, the estimated biases tend to be smaller for the larger
sample size. The pattern of results for the high-correlation condition presented in Table 2 is very similar to the pat-
tern in Table 1 for all but the GEERC estimator. Again, the estimated biases are not large in general and are of the
same order for the different GEE estimators. Under the larger sample size n = 500, they tend to be smaller compared
with n = 200.

Table 3 presents SDs of the various GEE estimators relative to the GEEI estimator under the low-correlation con-
dition. The results suggest that all GEE estimators assuming some association tend to be more efficient than the GEE
estimator assuming independence. These efficiency gains are not large and the differences between the various GEE
estimators are small. Comparing the results of GEE estimators based on a working correlation matrix implies that the
variances of those using a flexible correlation structure tend to be larger compared with those using a restrictive struc-
ture. The most efficient estimator, at least with respect to the 𝜷 parameters, of those that are based on local odds ratios
tends to be the GEECE estimator which allows time varying association parameters. The most efficient estimator tends
to be the GEER

T estimator which is able to reproduce a correlation structure of decreasing correlations over increasing
time distances, allows different correlations rtkt′k and rtkt′k′ but at the same time requires estimation of less parame-
ters compared with GEEF

T , GEER
U , or GEEF

U estimators. The AR(1) structure is less flexible than a Toeplitz structure,
which explains why the GEER

A estimator is less efficient than the GEER
T estimator given the simulated true correlation

structure.
Table 4 implies that the efficiency gains can be considerably larger if the true correlations are higher at least for

sample sizes n = 200 and n = 500. Again, however, the GEE estimators based on a flexible correlation structure tend
to have larger variances compared with those calculated under a restrictive strategy. These differences tend to increase
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T A B L E 2 Estimated bias over 1000 simulations for n = 200 and n = 500 under the high-correlation condition, rounded to three
decimal places

GEEI GEEF
E GEER

E GEEF
A GEER

A GEEF
T GEER

T GEEF
U GEER

U GEEUN GEECE GEETE

n = 200

𝛼2 0.015 0.011 0.012 0.009 0.010 0.009 0.010 0.009 0.014 0.012 0.015 0.014

𝛼3 0.022 0.013 0.014 0.013 0.012 0.012 0.013 0.015 0.018 0.018 0.022 0.017

𝛼4 0.015 0.003 0.005 0.004 0.003 0.003 0.004 0.005 0.010 0.011 0.015 0.008

𝜙2 −0.008 −0.008 −0.007 −0.010 −0.011 −0.008 −0.009 −0.010 −0.013 −0.006 −0.006 −0.009

𝜙3 0.003 0.000 0.001 −0.001 −0.002 0.000 −0.001 −0.003 −0.004 0.003 0.002 0.000

𝛽1 −0.011 −0.007 −0.007 −0.005 −0.004 −0.005 −0.004 0.006 0.005 −0.010 0.005 −0.006

𝛽2 0.016 0.017 0.017 0.013 0.012 0.012 0.012 −0.011 −0.006 0.015 −0.015 0.014

𝛽3 −0.004 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.002 0.002 −0.003 0.000 −0.002

n = 500

𝛼2 0.001 −0.002 −0.002 −0.002 −0.002 −0.002 −0.002 −0.003 0.000 −0.001 0.000 0.000

𝛼3 0.005 0.000 0.000 −0.001 −0.001 −0.001 0.000 −0.001 0.002 0.002 0.004 0.003

𝛼4 0.009 0.003 0.003 0.002 0.002 0.003 0.003 0.004 0.005 0.006 0.008 0.006

𝜙2 −0.001 0.002 0.002 0.000 −0.001 0.001 0.000 0.000 −0.001 0.001 0.000 0.000

𝜙3 0.000 0.002 0.002 0.001 0.001 0.001 0.001 0.000 −0.001 0.002 0.001 0.001

𝛽1 −0.006 −0.003 −0.003 −0.003 −0.003 −0.002 −0.002 0.002 0.001 −0.005 0.001 −0.003

𝛽2 0.003 0.007 0.006 0.006 0.006 0.005 0.005 −0.004 −0.002 0.006 −0.006 0.002

𝛽3 −0.002 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 −0.001 0.000 −0.001

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (−.5 1 − .1)′. n = 200: Results for GEEI are based on 999, those for GEEUN and GEETE on 998 and
for GEECE on 997 simulations. Results for GEERC are omitted due to massive convergence problems.
Abbreviation: GEE, generalized estimating equations.

from the GEE estimators assuming an equi-, AR(1), Toeplitz to the GEE estimators assuming an unrestricted working
correlation matrix. Like under the low-correlation condition, GEE estimators using local odds ratios seem to be less
efficient compared with those based on a working correlation matrix. The most efficient estimator is again the GEE
estimator assuming a restrictive Toeplitz structure. The closer the structure of the adopted working correlation matrix
to the true underlying correlation structure, the more efficient the GEE estimator, although the extra flexibility of the
unrestricted version of the corresponding estimator does not pay, very likely due to the additional number of parame-
ters to be estimated. In summary, the pattern of results is similar, but more pronounced than under the low-correlation
condition if n = 200.

The coverage rates presented in the left column of Figure 2 imply that under the low-correlation condition most of
the coverage rates are within a symmetric 0.99-probability interval (dashed lines) around the value 0.95 based on 1000
independent Bernoulli trials. Hence, with but one exception, there is no evidence of systematic over- or undercover-
age. The exception is GEEF

U which involves the estimation of many correlations and is associated with systematically
lower—and for four parameters too low—coverage rates compared with the other GEE estimators. Note that the results
for GEERC are only shown for the low-correlation condition with a slightly too low coverage rate for one 𝛽 parameter.
Under the high-correlation condition (right column) again GEEF

U shows undercoverage but so do the estimators GEEUN
and GEECE for one 𝛽 parameter each, although less pronounced. The coverage rates for all other estimators are in an
acceptable range.

Figure 3 presents the results for sample size n = 500. In this case, the coverage rates of all GEE estimators under the
low- and high-correlation conditions are in an acceptable range. Under the high-correlation condition, no results are
shown for GEERC due to massive convergence problems.

The results based on n = 50, 100, 300 and n = 1000 can be found in the supplementary material. Results for GEERC
are only available for sample sizes of n > 100 under the low-correlation condition. In samples of sizes n = 50 and
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T A B L E 3 SD of estimates relative to assuming independence over 1000 simulations for n = 200 and n = 500 under the
low-correlation condition, rounded to three decimal places

GEEF
E GEER

E GEEF
A GEER

A GEEF
T GEER

T GEEF
U GEER

U GEEUN GEECE GEETE GEERC

n = 200

𝛼2 0.984 0.981 0.976 0.977 0.975 0.975 0.987 0.980 0.989 0.983 0.994 0.985

𝛼3 0.985 0.978 0.971 0.966 0.970 0.966 0.978 0.969 0.982 0.969 0.993 0.990

𝛼4 0.985 0.976 0.980 0.972 0.979 0.967 0.985 0.965 0.980 0.962 0.992 0.971

𝜙2 0.957 0.957 0.961 0.960 0.958 0.951 0.998 0.963 0.996 1.012 0.983 1.002

𝜙3 0.948 0.945 0.964 0.955 0.954 0.941 0.979 0.949 1.004 1.020 0.974 0.971

𝛽1 0.966 0.966 0.975 0.964 0.970 0.955 0.999 0.961 0.968 0.962 0.982 0.981

𝛽2 0.961 0.963 0.983 0.975 0.972 0.963 0.990 0.967 0.978 0.967 0.979 0.972

𝛽3 0.953 0.947 0.959 0.950 0.954 0.942 0.973 0.944 0.952 0.934 0.980 0.954

n = 500

𝛼2 0.997 0.994 0.993 0.991 0.991 0.989 1.001 0.995 0.993 0.991 1.001 1.009

𝛼3 0.984 0.982 0.983 0.982 0.981 0.978 0.988 0.979 0.983 0.978 0.997 0.993

𝛼4 0.978 0.976 0.980 0.977 0.973 0.971 0.985 0.973 0.976 0.970 0.993 0.989

𝜙2 0.963 0.959 0.958 0.955 0.953 0.948 0.961 0.950 0.998 1.004 0.988 0.979

𝜙3 0.961 0.958 0.971 0.966 0.962 0.955 0.965 0.955 0.996 1.002 0.989 0.993

𝛽1 0.974 0.973 0.980 0.976 0.971 0.968 0.974 0.970 0.971 0.967 0.978 0.972

𝛽2 0.961 0.960 0.970 0.966 0.955 0.952 0.963 0.952 0.966 0.960 0.980 0.971

𝛽3 0.965 0.962 0.964 0.961 0.958 0.955 0.969 0.958 0.966 0.958 0.988 0.969

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (−.5 1 − .1)′. n = 200: Results for GEEI and GEEUN are based on 999, those for GEECE on
998 simulations.
Abbreviation: GEE, generalized estimating equations.

n = 100, the model for the association structure was only weakly or not identified. In larger samples, the number of
successful simulations varied between 52 and 55 under the high-correlation condition. Hence, these results will not
be considered.

In general, under the low- and high-correlation condition, the estimated biases tend to decrease as the sample size
increases. It should be noted, however, that the results for n = 50 are more volatile than for the other sample sizes
and are based on only 867 to 925 successful simulations under the low-correlation condition and 601 to 875 successful
simulations under the high-correlation condition for the GEE estimators based on a working correlation matrix. The
number of successful simulations for estimators based on local odds ratios varied between 809 and 866 under the low
and 568 and 747 under the high-correlation condition. Hence, for n = 50, conclusions about finite sample properties can
only be drawn with great caution. A general statement that seems to be warranted even in this case is that under the
high-correlation condition considerable efficiency gains are possible if an association structure is modeled, but cover-
age rates may only be acceptable for very restrictive association structures, like those adopted for the GEER

U or GEEUN
estimators.

The number of successful simulations for n = 100 under the low (high)-correlation condition varied between 989 and
998 (973 and 997) if a working correlation structure is adopted and between 982 and 992 (914 and 956) if local odds ratios
are modeled. Therefore, these results may be interpreted but with caution.

Under both the low- and high-correlation conditions, the order of the estimated biases are roughly equal for the
different GEE estimators. There are only single slightly larger estimated biases for n = 100 and the GEEI , GEEF

U and
GEER

U , GEECE and GEERC estimators.
Under the low-correlation condition, systematic, if only small to medium, efficiency gains can be observed from

about n = 100 on if an association structure is explicitly modeled. This is different under the high-correlation condi-
tion, where the efficiency gains of GEE estimators based on working association structures closer to the true structure
are more pronounced and tend to be much larger, with an advantage of the GEE estimators based on a working
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T A B L E 4 SD of estimates relative to assuming independence over 1000 simulations for n = 200 and n = 500 under the
high-correlation condition, rounded to three decimal places

GEEF
E GEER

E GEEF
A GEER

A GEEF
T GEER

T GEEF
U GEER

U GEEUN GEECE GEETE

n = 200

𝛼2 0.953 0.950 0.936 0.934 0.942 0.935 0.959 0.944 0.966 0.962 0.973

𝛼3 0.916 0.910 0.899 0.896 0.899 0.892 0.908 0.895 0.925 0.911 0.955

𝛼4 0.865 0.858 0.853 0.851 0.848 0.839 0.860 0.844 0.870 0.846 0.927

𝜙2 0.718 0.713 0.733 0.724 0.701 0.693 0.730 0.706 0.910 0.918 0.810

𝜙3 0.699 0.695 0.688 0.680 0.661 0.659 0.681 0.665 0.921 0.925 0.822

𝛽1 0.739 0.735 0.737 0.731 0.711 0.703 0.714 0.698 0.779 0.737 0.876

𝛽2 0.794 0.794 0.776 0.774 0.759 0.757 0.762 0.748 0.832 0.796 0.894

𝛽3 0.698 0.693 0.699 0.692 0.674 0.668 0.683 0.669 0.727 0.694 0.871

n = 500

𝛼2 0.970 0.967 0.953 0.951 0.951 0.949 0.958 0.950 0.971 0.964 0.986

𝛼3 0.912 0.911 0.918 0.918 0.907 0.905 0.915 0.906 0.926 0.919 0.955

𝛼4 0.861 0.859 0.858 0.857 0.844 0.841 0.853 0.843 0.865 0.847 0.931

𝜙2 0.715 0.713 0.685 0.685 0.675 0.673 0.691 0.683 0.919 0.921 0.811

𝜙3 0.740 0.738 0.711 0.703 0.691 0.685 0.706 0.695 0.926 0.926 0.883

𝛽1 0.707 0.708 0.716 0.716 0.686 0.687 0.694 0.688 0.739 0.724 0.867

𝛽2 0.766 0.767 0.779 0.778 0.743 0.743 0.751 0.747 0.800 0.782 0.878

𝛽3 0.706 0.704 0.679 0.676 0.660 0.657 0.667 0.658 0.734 0.691 0.878

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (−.5 1 − .1)′. n = 200: Results for GEEI are based on 999, those for GEEUN and GEETE on 998
and for GEECE on 997 simulations. Results for GEERC are omitted due to massive convergence problems.
Abbreviation: GEE, generalized estimating equations.

correlation structure compared with those using local odds ratios. One explanation for these latter findings for the local
odds ratios versions may be the fact that the association parameters are estimated before any GEE estimates are calcu-
lated ignoring any predictor variables. The corresponding association structure may thus deviate markedly from the true
structure. A general tendency under the high-correlation condition is that the flexible versions of the working correlation
structures lead to less efficient estimators as the restrictive versions but these differences seem to vanish with increasing
sample size.

For most GEE estimators, the coverage rates are acceptable or close to acceptable from n = 100 on under both
correlation conditions. This tends to be true for all estimators from n = 300 on under the low but also under the
high-correlation condition. Below this sample size, the very flexible GEEF

U estimator is associated with coverage rates that
are systematically too low.

Taken together, the results imply that at least for the situations simulated, the proposed GEE estimators allow valid
inferences from approximately n = 100 on if the working association structure does not require the estimation of too
many parameters.

From the above findings, one may expect that for situations with invariant predictors, the general pattern of results
with respect to efficiency of the estimators can be inferred from comparisons of results based on sample sizes n = 200
and n = 500 and estimators GEEI , GEER

T , and GEER
U . Thus, Table 5 presents biases and relative SDs of the estimates for

the low-correlation condition, Table 6 those for the high-correlation condition from the simulations based on invariant
predictors.

The estimated biases differ depending on the sample size but also on the predictor variable. As before, estimated biases
are smaller for larger sample sizes. In addition, if n = 200, the estimated bias for 𝛽2 weighting the time-invariant predictor
tends to be larger than for the other two 𝛽 parameters. With respect to the relative SDs, the results in Tables 5 and 6 suggest
that the efficiency gain of GEER

T or GEER
U compared with GEEI is largest for 𝛽1 weighting the freely varying predictor
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F I G U R E 2 Actual coverage of true 𝛼k, 𝜙k and 𝛽 l, 0.95-level confidence intervals, n = 200; dashed lines represent symmetric
0.99-probability intervals around 0.95. High-correlation condition: Results for GEERC are omitted due to massive convergence problems

and smallest for 𝛽2 weighting the time-invariant variable. This effect seems to be strongest under the high-correlation
condition. Put differently, for time-invariant predictors and lesser so for unit-invariant predictors, adopting a working
covariance structure which is closer to the true structure may not lead to more efficient or only slightly more efficient
estimators.

The coverage rates over at least 998 simulations are almost all in an acceptable range. Only the coverage rates for 𝛼2
of GEEI and GEER

U under the low-correlation condition, 0.930 and 0.929, are slightly too low (see Table 7).

5 THE ARTHRITIS DATASET

The data to illustrate the application of the GEE estimator is from a randomized clinical trial designed to evaluate the effec-
tiveness of the drug Auranofin relative to a placebo therapy for the treatment of rheumatoid arthritis17,27 and was taken
from R package10 multgee.39 The dataset can be retrieved by calling data(arthritis) after multgee is loaded*.
The dataset includes 302 units out of which n = 289 were completely observed at T = 3 time points, that is, 1, 3, and
5 months after treatment.

*Data availability statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.



1934 SPIESS et al.

F I G U R E 3 Actual coverage of true 𝛼k, 𝜙k and 𝛽 l, 0.95-level confidence intervals, n = 500; dashed lines represent symmetric
0.99-probability intervals around 0.95. High-correlation condition: Results for GEERC are omitted due to massive convergence problems

The ordinal response variable is self-assessment of rheumatoid arthritis surveyed with a 5-point scale from 1 = “very
poor” to 5 = “very good” at a baseline before the trial and at the three follow-up observation points. Self-assessment
with q = 5 possible values was converted into four 0-1 variables with “very poor” as the reference category. It turned
out, however, that the fraction of observed “very good” answers at the baseline was very small leading to convergence
problems. Thus, we combined the fourth and the fifth category for the baseline predictors and the response variable.

Baseline assessment variables were treated as predictors (b2,… , b4) and the follow-up assessments as the response
variable.17,18 Additional predictors that entered the model are two time-dummies, t2 and t3 (reference category is the first
month follow-up) and the binary treatment indicator tr with the placebo group being the reference group.

For 13 out of the 302 units in the dataset, the variable self-assessment over the follow-up period was not completely
observed. Baseline self-assessment variables were completely observed though. Assuming17,18 that the missing values are
missing completely at random,43 we ignored the incompletely observed cases in our analysis.

Table 8 presents the results of estimating the ordered stereotype logit model assuming independence, adopting a
restrictive equi- and a restrictive unstructured working correlation matrix. Estimation results for all other GEE estimators
can be found in the supplementary material. Table 9 shows the working correlation matrices over time and categories for
the GEER

E (lower triangular matrix) and the GEER
U (upper triangular matrix) estimators.

A comparison of the estimation results in Table 8 and the tables in the supplementary material suggests that, given
all necessary assumptions are at least approximately met, the general conclusions with respect to 𝛼3, 𝛼4, 𝜙3, 𝛽t2, 𝛽trt, 𝛽b3,
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T A B L E 5 Estimated biases
and SDs of estimates relative to
assuming independence (relative
SD) over 1000 simulations for
n = 200 and n = 500 under the
low-correlation condition, rounded
to three decimal places

Estimated bias Relative SD

n = 200 n = 500 n = 200 n = 500

GEEI GEER
T GEER

U GEEI GEER
T GEER

U GEER
T GEER

U GEER
T GEER

U

𝛼2 0.009 0.010 0.011 0.000 0.000 0.001 0.994 0.999 0.997 0.999

𝛼3 0.010 0.011 0.012 0.001 0.001 0.002 1.004 1.006 1.000 1.002

𝛼4 0.003 0.004 0.006 0.003 0.003 0.004 0.994 0.994 1.001 1.004

𝜙2 −0.003 −0.002 −0.002 −0.003 −0.002 −0.002 0.941 0.948 0.967 0.967

𝜙3 −0.001 −0.002 −0.002 −0.001 −0.001 −0.002 0.949 0.947 0.966 0.967

𝛽1 0.008 0.008 0.006 0.003 0.003 0.002 0.986 0.992 0.978 0.982

𝛽2 0.016 0.013 0.014 0.004 0.003 0.003 1.006 1.010 0.992 0.994

𝛽3 0.013 0.014 0.013 0.000 0.000 0.000 1.000 0.998 0.989 0.991

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (1 1 1)′. Predictor variables are independent normally
distributed, freely varying (x1), invariant over time (x2) and invariant over units (x3). n = 200: Results for GEEI

and GEER
U based on 998, those for GEER

T on 999 simulations.
Abbreviation: GEE, generalized estimating equations.

T A B L E 6 Estimated biases
and SDs of estimates relative to
assuming independence (relative
SD) over 1000 simulations for
n = 200 and n = 500 under the
high-correlation condition,
rounded to three decimal places

Estimated bias Relative SD

n = 200 n = 500 n = 200 n = 500

GEEI GEER
T GEER

U GEEI GEER
T GEER

U GEER
T GEER

U GEER
T GEER

U

𝛼2 0.016 0.016 0.019 0.002 0.003 0.005 0.988 0.994 0.996 0.994

𝛼3 0.018 0.021 0.024 0.003 0.004 0.007 1.000 1.002 0.994 0.993

𝛼4 0.010 0.011 0.017 0.005 0.006 0.008 1.030 1.033 1.014 1.012

𝜙2 −0.001 0.000 0.000 −0.003 −0.002 −0.002 0.765 0.774 0.802 0.805

𝜙3 0.000 −0.001 −0.001 0.000 −0.001 −0.002 0.751 0.759 0.748 0.752

𝛽1 0.012 0.013 0.006 0.006 0.007 0.003 0.861 0.870 0.846 0.846

𝛽2 0.029 0.017 0.019 0.010 0.006 0.007 1.018 1.007 0.965 0.965

𝛽3 0.010 0.013 0.005 0.003 0.004 0.002 0.960 0.972 0.946 0.946

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (1 1 1)′. Predictor variables are independent normally
distributed, freely varying (x1), invariant over time (x2) and invariant over units (x3). n = 200: Number of
successful simulations for GEEI -998 and GEER

T -999.
Abbreviation: GEE, generalized estimating equations.

and 𝛽b4 do not depend on the working correlation matrix. For all working correlation matrices, the 0.95-level confidence
intervals for 𝛼3, 𝛼4, and 𝛽t2 cover the value zero. Thus, there is no evidence that these parameters have an effect on the
response variable. On the other hand, the 0.95-confidence intervals for 𝜙3, 𝛽trt, 𝛽b3, and 𝛽b4 do not cover zero. With respect
to 𝛼2, 𝜙2, 𝛽t3, and 𝛽b2 the results are inconsistent. However, given that the predictors are all either unit- or time invariant
and that the estimated elements of the working correlation matrices are rather low, the choice of the working correlation
matrix cannot be expected to have a major effect on the efficiency of the estimators. Since the sample is of medium size,
choosing a GEE estimator based on a very flexible correlation matrix or on local odds ratios may, however, not allow
substantially more precise inferences compared with the GEER

E estimator. Hence, we will interpret the estimation results
based on the GEER

E estimator.
All the 0.95-confidence intervals for the 𝛼 parameters cover zero, which implies that there is no evidence that they

differ from zero. The results for 𝜙2 and 𝜙3 imply that they presumably differ from 𝜙1 = 0 and 𝜙4 = 1. Due to the
overlapping confidence intervals, there seems to be no strong evidence for 𝜙2 and 𝜙3 to be different. Hence, the second
and third category could probably be combined into one. The estimates for 𝜙2 and 𝜙3, however, do conform with the
presupposed ordinal nature of the response variable, that is, 0 < 𝜙2 < 𝜙3 < 1.
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T A B L E 7 Actual coverage rates over nsim successful simulations for n = 200 and n = 500 rounded to three
decimal places

Low-correlation condition High-correlation condition

n = 200 n = 500 n = 200 n = 500

GEEI GEER
T GEER

U GEEI GEER
T GEER

U GEEI GEER
T GEER

U GEEI GEER
T GEER

U

𝛼2 0.930 0.935 0.929 0.944 0.943 0.942 0.944 0.941 0.942 0.945 0.949 0.950

𝛼3 0.948 0.945 0.946 0.948 0.947 0.945 0.944 0.946 0.946 0.951 0.935 0.934

𝛼4 0.942 0.943 0.944 0.955 0.950 0.953 0.933 0.942 0.940 0.950 0.955 0.958

𝜙2 0.948 0.957 0.954 0.955 0.954 0.957 0.956 0.945 0.943 0.950 0.942 0.944

𝜙3 0.949 0.947 0.945 0.955 0.949 0.947 0.951 0.949 0.943 0.959 0.955 0.960

𝛽1 0.943 0.939 0.939 0.934 0.935 0.934 0.945 0.944 0.937 0.943 0.955 0.954

𝛽2 0.952 0.953 0.950 0.955 0.954 0.955 0.952 0.956 0.960 0.949 0.955 0.958

𝛽3 0.959 0.959 0.962 0.947 0.952 0.952 0.956 0.959 0.952 0.949 0.947 0.944

nsim 998 999 998 1000 1000 1000 998 999 1000 1000 1000 1000

Note: True values are 𝜶 = (0.3 0 0.4)′, 𝝓 = (0.3 0.7)′, 𝜷 = (1 1 1)′. Predictor variables are independent normally distributed, freely
varying (x1), invariant over time (x2), and invariant over units (x3).
Abbreviation: GEE, generalized estimating equations.

T A B L E 8 Arthritis dataset: Parameter estimates (est), SEs, lower (low), and upper (up) 0.95-level
confidence intervals assuming normality, working correlation matrix independence, equicorrelation and
unstructured, n = 289

GEEI GEER
E GEER

U

Est SE Low Up Est SE Low Up Est SE Low Up

𝛼2 0.800 0.552 −0.283 1.883 0.746 0.453 −0.141 1.633 0.788 0.451 −0.095 1.672

𝛼3 0.824 0.674 −0.496 2.145 0.755 0.543 −0.310 1.820 0.804 0.542 −0.258 1.865

𝛼4 −0.485 0.852 −2.156 1.185 −0.654 0.723 −2.070 0.762 0.615 0.730 −2.045 0.815

𝜙2 0.349 0.167 0.021 0.677 0.349 0.169 0.018 0.680 0.339 0.170 0.005 0.672

𝜙3 0.623 0.102 0.422 0.823 0.612 0.122 0.373 0.851 0.605 0.123 0.365 0.846

𝛽t2 −0.130 0.269 −0.656 0.397 −0.114 0.260 −0.624 0.397 0.113 0.258 −0.619 0.393

𝛽t3 0.505 0.254 0.007 1.004 0.538 0.266 0.017 1.059 0.526 0.263 0.012 1.041

𝛽trt 1.191 0.471 0.267 2.115 1.240 0.410 0.437 2.043 1.216 0.409 0.415 2.017

𝛽b2 1.271 0.900 −0.494 3.036 1.458 0.765 −0.042 2.957 1.467 0.768 −0.037 2.972

𝛽b3 2.449 0.937 0.613 4.285 2.602 0.751 1.130 4.075 2.552 0.755 1.072 4.033

𝛽b4 5.331 1.637 2.123 8.538 5.356 1.482 2.451 8.262 5.312 1.458 2.454 8.171

Finally, the results for the regression parameters suggest that there seems to be no effect of the first relative to the
second follow-up time point, but a positive effect of the third follow-up time point. This result implies that a difference
in self-assessment may be observed at the earliest after just over 3 months.

The treatment with Auranofin seems to have a positive effect on self-assessment of rheumatoid arthritis, the esti-
mated increase in the log odds is 1.240 for the fourth category relative to the placebo group. The effect of the baseline
self-assessment 2 = “poor” seems to have no different effect on self-assessment at the follow-up time points than the effect
of the self-assessment “very poor.” However, baseline self-assessments of 3 = “fair” or 4 = “good or very good” before the
trial, seem to have a positive effect on later self-assessments. The estimated increase in the log odds for the fourth category
is 5.356 relative to the reference category.



SPIESS et al. 1937

T A B L E 9 Arthritis dataset: Working correlation matrix of GEER
E (lower triangular) and GEER

U (upper triangular)

1-month follow-up 3-month follow-up 5-month follow-up

1 0 0 0.116 −0.107 −0.107 0.221 −0.047 −0.047

0 1 0 −0.107 0.116 −0.107 −0.047 0.221 −0.047

0 0 1 −0.107 −0.107 0.116 −0.047 −0.047 0.221

0.191 −0.078 −0.078 1 0 0 0.236 −0.078 −0.078

−0.078 0.191 −0.078 0 1 0 −0.078 0.236 −0.078

−0.078 −0.078 0.191 0 0 1 −0.078 −0.078 0.236

0.191 −0.078 −0.078 0.191 −0.078 −0.078 1 0 0

−0.078 0.191 −0.078 −0.078 0.191 −0.078 0 1 0

−0.078 −0.078 0.191 −0.078 −0.078 0.191 0 1 0

6 DISCUSSION

Estimation of the ordered stereotype logit model in the cross-sectional context is not as straightforward as estimation
of sequential or cumulative models. This is due to the intrinsic nonlinearity in the parameters reflecting the increased
flexibility of the stereotype model compared with the sequential or cumulative model and justifies simulations as a
valuable tool to study the finite sample properties. However, this nonlinearity of the model parameters makes the inter-
pretation of estimation results more difficult, which may also explain why the stereotype model is not very common in
applications.

Ordered stereotype panel models have been estimated using the ML or GLS method, but to the best of our knowledge,
simulation results studying the finite sample properties seem not to have been published. ML methods require correct
specification of the multivariate distribution of the vectors of binary responses indicating the observed category over
all observed time points. If the distributional assumptions are correct, then ML estimators are known to be consistent,
asymptotically normally distributed and allow asymptotically precise inferences. In this case, ML estimation would be
the preferred approach. GLS estimation requires correct specification of the mean, variances, and covariances only, but
the estimator tends to have larger variances.

The GEE approach requires only correct specification of the means of the vectors of binary variables, the association
structure or higher moments need not be correctly specified. This robustness property comes at a price, which is a loss
of efficiency compared with ML estimators. GLS estimation can be made robust by allowing a misspecified association
structure as well, but would then also lead to a loss of efficiency and would require a robust estimator of the covariance
matrix of the GLS estimator.

In this article we propose a GEE approach with a finite sample correction to estimate ordered stereotype panel logit
models with a possibly misspecified association structure. The simulation study and the application to a panel dataset
from a randomized clinical trial design to assess the effect of a drug on self-assessment of rheumatoid arthritis at three
follow-up observation points after treatment show that GEE estimation of this model is feasible. In fact, the results
from the simulation study imply that the finite sample properties of GEE estimators as reported in the literature for
other models apply to these models in samples of medium to large size as well and inferences tend to be statistically
valid.

The comparison of different GEE estimators in the simulation study implies that, similar to results known from binary
models, adopting a working correlation matrix that explicitly models associations compared with the identity matrix
may lead to substantial efficiency improvements for the estimators if the true correlations are high. In accordance with
known results we found additional efficiency gains if a working correlation matrix is chosen whose structure is close
to the true structure. On the other hand and again similar to results found for binary models, if the true correlations
are low, then differences between the GEE estimators explicitly allowing for dependencies and even in comparison with
the GEE estimator calculated under independence are small. However, the simulation results in this article additionally
illustrate a conflict of objectives between the flexibility of the working correlation matrix and the consequences of a weakly
identified estimation problem. Possible efficiency gains by choosing a flexible working correlation matrix may be lost or
even reversed if the number of association parameters is large relative to the number of observations.
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Comparisons of GEE estimators based on a working correlation matrix with those using local odds ratios did not reveal
any basic problems of the former that could not be explained by weakly identified models in small samples. Instead, in
our simulations we found that GEE estimates based on local odds ratios tend to have larger variances compared with
those that use a working correlation matrix, which may be due to the fact that for the former the association structure
parameters are estimated ignoring any predictor variables.

The results for the arthritis dataset illustrate once more that if the correlations are low, then the differences
between various versions of the GEE estimator relative to the estimator assuming independence can be expected to
be small.

As in other models for categorical responses, all possible categories of the response variable should be observed
with sufficient frequencies and variation in the predictors should be sufficiently large to avoid weakly identified mod-
els and problems of nonconvergence. The greater flexibility of the stereotype model relative to other models requires
larger datasets for identification. Hence, based on our simulation results, we suggest to fit an ordered stereotype panel
model to datasets with sample sizes below n = 100 only if there are good reasons for doing so. In that case, how-
ever, we recommend to adopt only restrictive versions of the proposed GEE estimators, like the estimator based on
a restrictive working equicorrelation structure. Similarly and more general, if the true correlations are assumed to be
low, then a working correlation matrix with a small number of parameters to be estimated may be chosen. In this
case, the efficiency loss compared with the GEE estimator assuming independence tends to be small, but the costs of
choosing a GEE estimator which is too flexible in terms of bias, variance and undercoverage may be high. In medium
to large samples, say from n = 100 on, with high true correlations, however, efficiency gains by adopting a toeplitz
or AR(1)-structure if appropriate may be considerable. Based on the simulation results reported in this article, we
do not recommend the use of the flexible versions of the working correlation matrices as long as sample sizes are
below n = 300, depending on the type of the working correlation matrix. For example, n = 300 could be sufficient
to adopt the flexible version of a working equicorrelation matrix but not for the flexible version of the unrestricted
correlation matrix.

Summing up, the GEE estimator with the correction terms proposed in this article seems to be an interesting can-
didate to estimate the flexible ordered stereotype panel logit model even if the association structure is misspecified. In
addition to the above-mentioned limitations and with respect to the arthritis dataset, it should be noted that for GEE
estimators to be consistent and asymptotically normal in general, missing values must be missing completely at ran-
dom. If that is not the case, then one could resort to either a weighting or a multiple imputation strategy. If in addition
to the assumption that the means are correctly specified, all the required assumptions about higher moments of the
distribution of the response variables are met, particularly with regard to the association structure, then the stereo-
type panel model may be estimated assuming a random effects model and adopting the ML approach. This approach
would allow missing values to be missing at random, although standard estimation procedures will not be able to han-
dle missing values in predictor variables properly. In addition, if the pattern of missing values is nonmonotone then the
assumption of missing values being missing at random may be questionable, and ML estimation with standard software
will very likely lead to invalid inferences. Finally, note that the GEE estimator proposed in this article is restricted to
designs where units are observed at the same fixed time points. The approach does, for example, not apply if in longi-
tudinal studies, predictors and responses of units are recorded based on varying time intervals with possibly different
frequencies.
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APPENDIX A DERIVATIVES

Let ei = (ei12,… , ei1q,… , eiT2,… , eiTq)′, eit = (eit2,… , eitq)′, where eitk is the tkth element of W−1
i (Yi − 𝝁i) and note that

V−1
it = diag(𝝁−1

it ) + (1 − 1′(q−1)𝝁it)−11(q−1)1′(q−1).

44For the second term in (6) we get, using the calculus of,45,46

∑
i

𝜕 Vi

𝜕 𝜽
(X̃iD′

(1) ⊗ Viei) = D(1)

(∑
i

D(2),i[diag(ei∕𝝁i) − bdiag(e′
i1𝝁i1V−1

i1 ,… , e′
iT𝝁iTV−1

iT )]D′
(2),i

)
D′

(1).

Let u = (u21,… ,u(q−1)p,uqp,… ,u21,… ,u(q−1)p,uqp)′ =
∑

iX
′
iViei, which is a [(q − 1)p] × 1 vector, and define

B =
⎛⎜⎜⎜⎝

u21 u22 … u2p
u31 u32 … u3p
⋮ ⋮ ⋱ ⋮

u(q−1)1 u(q−1)2 … u(q−1)p

⎞⎟⎟⎟⎠
then the first term in (6) reduces to

𝜕 D(1)

𝜕 𝜽

∑
i
(I(q−1)(p+1) ⊗ X̃

′
iViW−1

i (Yi − 𝝁i)) =

(0(q−1)×(q−1) 0(q−1)×(q−2) 0(q−1)×p
0(q−2)×(q−1) 0(q−2)×(q−2) B(q−2)×p

0p×(q−1) B′
p×(q−2) 0p×p

)
.


