UNIVERSITAT POLITECNICA DE CATALUNYA
BARGCELONATECH
Escola d'Enginyeria de Telecomunicacio

i Aeroespacial de Castelldefels

TREBALL DE FI DE GRAU

TFG TITLE: Machine learning with deep neural networks and object tracking applied
to motion of airplanes

DEGREE: Grau en Enginyeria d’Aeronavegacio
AUTHOR: Claudia Martin Torres
ADVISOR: Pietro Alberto Massignan

DATE: September 4, 2020

Titulo: Aprendizaje automatico con redes neuronales profundas y seguimiento de objetos
aplicado al movimiento de aviones
Autor: Claudia Martin Torres

Director: Pietro Alberto Massignan
Fecha: 4 de setembre de 2020

Resumen

El objetivo de este proyecto es comprender los conceptos que subyacen al aprendizaje
automatico y como implementarlos. Para lograr este propésito, se ha realizado un estudio
exhaustivo de los origenes de esta tecnologia, describiendo los tipos de redes neuronales
mas populares, su historia y las arquitecturas e implementaciones correspondientes.

Se presentan tres implementaciones de redes neuronales, utilizando conjuntos de datos
conocidos mundialmente. En la Ultima implementacion, se ha realizado un estudio ex-
haustivo para lograr el mejor algoritmo en rendimiento, teniendo en cuenta diferentes con-
figuraciones. En la segunda parte del proyecto se ha utilizado Detectron2, un programa
avanzado de aprendizaje automatico que realiza deteccion de objetos. Hemos trabajado
con él, ejecutando un estudio del movimiento de aviones en movimiento, implementando
un nuevo método para realizar el seguimiento de objetos dado un conjunto de imagenes
extraidas de un video.

Title : Machine learning with deep neural networks and object tracking applied to motion
of airplanes
Author: Claudia Martin Torres

Advisor: Pietro Alberto Massignan

Date: September 4, 2020

Overview

The aim of this project is to understand the concepts underlying machine learning and
how to implement those. To achieve this purpose, an exhaustive study of the origins of this
technology has been made, describing the most popular types of neural networks, their
history, and the architectures and subsequent implementations.

Three implementations of neural networks are presented, using world-known datasets.
In the last implementation, an exhaustive study has been realized to achieve the best
performance algorithm taking into account different settings. In the second part of the
project, Detectron2 has been used, an advanced machine learning program that performs
object detection. We have worked with this program and executed a study of the motion
of moving airplanes, implementing a new method to track objects given a set of images
extracted from a given video.

CONTENTS

Introduction 1

CHAPTER 1. General introduction to neural networks and ma-

chinelearning 3

1.1. Neural Networks oo 3
1.2. MachineLearning 5
1.21. History 5

1.2.2. Types of machine learning algorithms 6
CHAPTER 2. Deep Neural Networks 9
2.1. Deep Neural Networks o 9
22. Learning L 11
2.2.1. Learning with gradientdescent 11

2.2.2. Learning with stochastic gradientdescent 13

2.2.3. Results on learning process. Underfitting and Overfitting 13

2.3. ExampleofasimpleDNN 15
2.3.1. MNISTdatabase. 15

2.3.2. Analyzing the MNIST database with a simple DNN 16
CHAPTER 3. Convolutional Neural Networks 21
3.1. Convolutional Neural Networks 21
3.1.1. Regularizationtechniques L. 24

3.1.2. Keras: the Python deep learning API 26

3.2. Analyzing the MNIST database withasimpleCNN 26
33. ExampleofaCNN. 28
3.3.1. CIFAR-10dataset, 28

3.3.2. Analyzing the CIFAR-10 dataset withaCNN 29
CHAPTER 4. Object Tracking 35
4.1. Object Tracking with Detectron2 35

4.1.1. Implementing an Object Tracking method to Detectron2 36

4.1.2. Difficulties with the implementation 40

Conclusions 43
Bibliography 45
APPENDIX A. MNIST Deep Neural Network 51

APPENDIX B. MNIST Convolutional Neural Network using Keras . 57
APPENDIX C. CIFAR-10 Convolutional Neural Network using Keras 63

APPENDIX D. Comparison of the results obtained by CIFAR-10
CNNcodeusingKeras 71

APPENDIXE. Object Tracking 77

LIST OF FIGURES

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

4.1
4.2
4.3
4.4
4.5

Structure of aneuron (Ref.[2]) L. 4
Machine learning types (Ref. [3]) L. 7
Al, machine learning and deep learning relation (Ref. [4]) 8
Perceptron vs. human brain neuron (Ref. [5]) 9
Artificial neural network layers (Ref. [6]) 10
Sigmoid function (Ref. [6])o 11
Function C(vi,v2) (Ref.[6]) o o o i 12
Curves of learning showing underfitting and overfitting (Ref. [7]) 14
Images subset of the MNIST database (Ref. [6]) 15
Intializing the network (Own elaboration) 16
Feedforward method (Own elaboration) 17
Stochastic gradient descent learning (Own elaboration) 17
Update mini batch method (Own elaboration) 17
Set of commands to make our network learn (Own elaboration) 18
Output of the algorithm (Own elaboration) 18
CNN structure (Ref. [8]) o 21
Convolutional layer (Ref. [8]), 22
Visual convolutional layer (Ref. [9]) 23
RELU layer (Ref. [10]) 23
Max pooling (Ref. [8]) 24
Example of CNN (Ref. [8]) 24
Dropout technique (Ref. [11]) oo oL 25
Batch Normalization process (Ref. [12]) 25
Keras platform (Ref. [13]) 26
Import dependencies (Own elaboration) 27
Define network parameters (Own elaboration) 27
Save the model (Own elaboration) 27
Arquitecture of the CNN (Own elaboration) 27
Training of the CNN (Own elaboration) 28
Learning curves of the CNN model (Own elaboration) 28
CIFAR-10dataset (Ref. [14]) 29
Arquitecture of CIFAR-10 CNN (Own elaboration) 30
Accuracy of the 5 models implemented (Own elaboration) 31
Loss of the 5 models implemented (Own elaboration) 31
Time of learning of the 5 models implemented (Own elaboration) 32
Prediction of model 3 on an airplane image (Own elaboration) 33
Detectron2 logo (Ref. [15]) 35
Object detection by Detectron2 (Ref. [16]) 36
Object detection by Detectron2 (Ref. [16]) 36
COCOdataset (Ref. [17]) o o o o o o 37

Installation of Detectron2 (Own elaboration) 38

4.6
4.7
4.8
4.9

4.10
4.11
412
413

Import the 50 frames from Google Drive (Own elaboration) 38

Prediction-making (Own-elaboration) 38
Example of detection and coordinates (Own elaboration) 39
Part of the iterative calculation: Trajectory, distance and velocity (Own elab-

oration) L e 40
Results of motion study (Own elaboration) 41
Display of mean and maximum values of airplane 0 (Own elaboration) . . 41
Visual tracking (Own elaboration) 41

Problem with detection (Own elaboration) 42

INTRODUCTION

Nowadays new technologies are providing extremely fast changes in all areas of knowl-
edge. A Digital Revolution is happening, producing a great impact on society and the way
things are done. Machine learning, artificial intelligence, and deep learning are techniques
that are changing the world as we understand it.

Arthur Samuel was the first to define machine learning in 1959 as a “Field of study that
gives computers the ability to learn without being explicitly programmed”. The field had a
relatively slow start because computers and devices were not prepared to deal with a large
amount of information. However, in the last fifteen years, the advent of the internet and
the computing power of modern devices increased enormously the importance of machine
learning techniques.

Investment in machine learning and artificial intelligence has grown up so fast during the
last years, and the sector forecasts are better than ever. Reliable sources predict that the
ML market will grow from 7 billion to 30 billion in the next four years, attaining a CAGR
(Compound Annual Growth) of 43%.

Machine learning’s growing adoption in business yields algorithms that are more effective
as time passes and very complex problems can now be solved extremely quickly. It is a
key tool for many companies these days, and more and more job opportunities require it
as a skill.

Today machine learning is present in almost everything, for instance in the automotive sec-
tor providing driver safety systems, in financial services, healthcare, retail, industrial sector,
and helping construct smart buildings. It can be applied to smart robots, video recognition,
natural language processing, computer vision platforms, pricing, and an infinity of applica-
tions. Nevertheless, these new technologies are still highly unknown, especially the limits
that they may have.

This project is devoted to study machine learning, and more specifically deep learning. In
particular, we will start by reviewing the most important neural networks, their operation,
and their characteristics. We have implemented three neural networks algorithms analyz-
ing two different basic popular datasets in machine learning, the MNIST database, and
the CIFAR-10 database. In the last implementation, an exhaustive study has been made,
looking for the best algorithm performance comparing various settings.

In the second part of the project, we have worked with an advanced software for image
detection, Detectron2, which we have adapted to perform object tracking. We have ana-
lyzed a two-dimensional video of some airplanes moving, describing their trajectory and
realizing a motion study.

The purpose of the project has been understanding this new whole world of technology,
describing the most popular neural networks that nowadays are implemented, and the
large number of applications that are present in our life. Moreover, approaching a basic
implementation of machine learning algorithms and how they work, and dealing with a
more complex program that can be adopted by big companies for different purposes.

Chapter 1 explains the beginning of machine learning and the field of deep learning, Chap-
ter 2 is centered on understanding Deep Neural Networks, and Chapter 3 on a popular
Convolutional Neural Network. Finally, Chapter 4 introduces Detectron2 and the practical

1

2 Machine learning with deep neural networks and object tracking applied to motion of airplanes

part dealing with the implementation of object tracking.

CHAPTER 1. GENERAL INTRODUCTION TO
NEURAL NETWORKS AND MACHINE
LEARNING

In the first chapter of this project, an introduction to neural networks is made. Biological
neural networks are described and the machine learning field is introduced, giving an
overview of the basic concepts, such as the history of machine learning and the existing
types of implemented algorithms nowadays.

1.1. Neural Networks

First of all it is needed to have a general vision of what a neural network is. An appropriate
definition is given at Ref. [1]:

A neural network is an interconnected assembly of simple processing ele-
ments, units or nodes, whose functionality is loosely based on the animal
neuron. The processing ability of the network is stored in the interunit connec-
tion strengths, or weights, obtained by a process of adaptation to, or learning
from, a set of training patterns.

To understand that, it is important to take a quick look into the very first meaning of what a
neural network is, the biological one.

Humans have a brain that contains approximately 100 billion nerve cells. A nerve cell (also
called neuron) is the fundamental unit of the brain and also of the nervous system. Itis a
special type of cell whose purpose is to both transfer information around the body and to
give orders to it.

Neurons connect other cells via electrical signals or spikes with a very short living time.
The interneuron connections are made by electrochemical junctions called synapses. These
are the main component of the nervous tissue in nearly all animals (excluding sponges and
placozoa), giving a typical brain 100-1,000 trillion of them.

It is important to understand the structure of a neuron. A neuron consists of a cell body
(soma), axons and dendrites:

* Cell body: the neuron’s core. It carries the genetic information and it contains the
nucleus and other specialized organelles. Thus, most protein synthesis happens
there and it provides energy to drive activities. The soma is protected by a mem-
brane that can be communicated with its immediate surroundings.

* Axons: are finer, long, tail-like structures which carry nerve signals from the soma
and give information back to it. They contain a substance called myelin that helps
to conduct electrical signals. The soma and the axon are joined by a junction called
axon hillock, the most easily excited part of the neuron and the part of the axon
where the spike initiates. Neurons generally have one axon, but it is possible to
have more (they are not equal between them).

3

4 Machine learning with deep neural networks and object tracking applied to motion of airplanes

* Dendrites: are the receiving part of the neuron. Dendrites are fibrous roots that
emerge out from the soma with many branches. They pick up and process the
signals from the axons.

Therefore, we can conclude that a neuron is an information processor. The entry channel
of this processor are the dendrites, the soma is the processor itself and the exit channel
would be the axon or axons (Figure 1.1).

Figure 1.1: Structure of a neuron (Ref. [2])

So, how does a neural network work? As said before, the connections between these
nerve cells are the synapses. The synapses are unidirectional connections, in which trans-
mission of information is made electrically at the inner part of the neuron and chemically
between neurons; due to specific substances called neurotransmitters. The use of the
synapses is possible because of the capability of a neuron to transfer an action potential.

To explain action potentials it is necessary to take into account the concentration gradient
concept. A concentration gradient is a difference in ion concentrations between the inside
and the outside of the neuron, and this causes the action potentials. An action potential is
a temporary shift in the neuron’s membrane potential caused by these ions flowing in and
out of the neuron. During an action potential, part of the neural membrane opens to allow
the positively charged ions inside the neuron and allow negatively charged ions out.

So first of all, an impulse is sent out from the cell body. Then, when this impulse reaches a
specific threshold, the action potential is fired (that means executed) sending the electrical
signal down the axons and concluding with the transmission. This is how neurons act and
how they transmit the information between them.

The brain neural network is known to possess 10'° to 10!! neurons connected to each
other, which determines a total number of connections in the network of 103 to 10, This
makes a huge network, and also a difficult structure with complex behavior.

Modeling how a neural network works (or modelling brain function) is an active area of
neuroscience research, and nowadays it is still not well understood. Nevertheless, the
actual knowledge of this theme has developed the Artificial Neural Networks (ANN) from
the machine learning field. This ANN provides a way to approach the performance of the
biological neural networks.

CHAPTER 1. GENERAL INTRODUCTION TO NEURAL NETWORKS AND MACHINE
LEARNING 5

1.2. Machine Learning

Machine learning is a subfield of computer science which includes pattern recognition and
computational learning theory from artificial intelligence (Al). It is an analysis technique
that explores the construction and study of algorithms that can learn (a process that is
natural for people and animals) from and make predictions on data. These algorithms
learn from the experience of this data, avoiding strictly static program instructions and
model equations. They improve adaptively as the number of available sample data rises.

Machine learning is related with computational statistics and mathematical optimization
also. With the rise of big data, machine learning has become a key tool to solve prob-
lems in areas such as computational finance, computational biology, energy production,
image processing and artificial vision, automotive, aerospace and manufacturing, natural
language processing, and others. Machine learning is used for tasks that are not possible
with programming explicit algorithms, for instance spam filtering, search engines, and com-
puter vision. When used in industrial contexts, machine learning is referred to as predictive
modeling or predictive analytics.

Machine learning (1959) is not a new concept. So, why now?

* Data availability: Billions of people are online using connected devices or sensors
that generate a large amount of data, that is available to use for instance as training
data for learning algorithms, and perform complex tasks.

* Computing power: Nowadays there are powerful computers and the possibility of
connecting remote processing power through the Internet makes possible tech-
niques of machine learning that process big amounts of data.

* Innovation of algorithms: New machine learning techniques. Layered neural net-
works (or “deep learning”) are giving new opportunities and there is also a lot of
research on this field.

1.2.1. History

The field of artificial intelligence dates back to the 1950s. An IBM researcher, Arthur
Lee Samuels, developed a self-learning program for playing checkers (one of the earliest
machine learning programs). Indeed, later Samuel defined the term “machine learning” on
a paper published in the IBM Journal of Research and Development:

“Field of study that gives computers the ability to learn without being explicitly
programmed”- Arthur Lee Samuels, 1959 (Ref. [24]).

Pioneering machine learning research was made using simple algorithms by the 1950s.
Later, in 1965 Nils J. Nilsson published the book Learning Machines of machine learning
research emphasizing pattern classification. Also, other books referring to this relation with
pattern classification were published during the 1970s, for example the Pattern Recogni-
tion and Scene Analysis by Duda and Hart. Then, in 1981 Stevo Bozinovsky wrote the
Teaching Space: A Representation Concept for Adaptative Pattern Classification, that re-
lated how to make a neural network learn from a computer terminal.

6 Machine learning with deep neural networks and object tracking applied to motion of airplanes

Furthermore, it is important to point out Tom M. Mitchell’s definition about the setting of
machine learning (1997): “A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E”. Moreover, Alan Turing’s proposal
in his paper also was crucial Computing Machinery and Intelligence in 1950, where he
questioned the capability of a machine to act as a thinking entity.

During the 1990s, programs for computers to analyze and manage large amounts of data
and learning were developed. The 2000s introduced new machine learning methods such
as support vector clustering and Kernel methods (algorithms for pattern analysis); and
unsupervised machine learning methods became more used. Nowadays, deep learning it
is widely used for software and developing of applications, being a very interesting field of
research.

1.2.2. Types of machine learning algorithms

The types of machine learning algorithms differ in the nature of the problem to be solved,
the type of data (inputs and outputs), and the volume of the data. They can be classified
into four broad categories: supervised learning, unsupervised learning, semi-supervised
learning and reinforcement learning.

* Supervised learning: It typically begins with an established set of data that contains
the inputs and the desired outputs. This is called the training data, which is labeled
by the so-called supervisor (they usually are humans, but they can also be ma-
chines) explaining the meaning of the data. The supervised learning algorithm is
expected to find patterns in data that can be applied to an analytic procedure, and
thus recognize and understand how the data is classified by the user (learn).

Apart from the training data, it also exists the fest data, that can be defined as
another subset of data that evaluates the performance of an algorithm once it has
been trained, and it is useful to know important parameters of an algorithm; for
instance the accuracy and loss, that will be introduced later.

There are two types of supervised learning algorithms:

— Regressions: Continous labeling. This type of supervised learning is able to
understand the correlation between data variables. For example, this is used
for weather forecasting, where historical data is taken into account.

— Classifications: Finite labeling. The training data is labeled with finite values,
it is the simplest form of supervised learning. It classifies input data into a
predefined classification.

There are plenty of applications of supervised learning algorithms, such as fraud
detection, recommendation solutions, risk analysis, etc.

* Unsupervised learning: Unsupervised learning processes unlabeled data. In these
algorithms there are no training data nor supervisors, no human intervention at all.
This can be due to the nature of the data itself, or to the lack of funds to pay for
manual labeling. It is similar to supervised learning; it recognizes patterns, com-
monalities, and groups the data. They work iteratively and react on new pieces of

CHAPTER 1. GENERAL INTRODUCTION TO NEURAL NETWORKS AND MACHINE
LEARNING 7

data depending on the presence or absence of these patterns found on previous
data.

Therefore, unsupervised learning is still a challenge today. It is commonly used in
business to understand and classify large volumes of unlabeled data, in some fields
of statistics, mail filtering (spam-detecting), and even in social media to organize
large amounts of information.

* Semi-supervised learning: This type of learning falls between supervised learning
and unsupervised learning. The data is presented within a mix of labeled and unla-
beled data. It is very common to have only a little part of the data labeled, and most
of the data unlabeled. The goal of this learning is to make the algorithm to predict
classes of future test data better than that from the model generated by using the
labeled data, reaching a considerable improvement in learning accuracy.

The acquisition of unlabeled data is cheaper than having all data labeled, so this is
also an advantage.

The applications of semi-supervised learning are, for instance, speech analysis, in-
ternet content classification (labeling webpages), and protein sequence classifica-
tion (identify DNA strands).

* Reinforcement learning: It uses observations gathered from interaction with the en-
vironment to take actions through intelligent programs, or also called agents. The
program is intended to perform a certain goal, without any help or teaching that
guides it (no data at all).

It is used to make someone learn to play to a game only by playing against an
opponent or in autonomous vehicles too.

In Figure 1.2, it can be seen the sum-up of the machine learning types.

Machine learning

techniques
Supervised Unsupervised Semi-supervised Reinforcement
learning learning learning learning

v v v v
Concerned with

Concerned with Concerned with ture of
classified unclassified jlltnnf[‘m?o | No data
(labeled) data (unlabeled) data classilied and

unclassified data

Figure 1.2: Machine learning types (Ref. [3])

There are plenty of important applications of these algorithms, and most of them used daily
by people: recognition of handwritten digits, computer-aided diagnosis, computer vision,
driverless cars, face recognition, speech recognition, text mining...

8 Machine learning with deep neural networks and object tracking applied to motion of airplanes

In this project we will focus on deep learning, a powerful branch of machine learning that
is based on artificial neural networks. Deep learning is a sub-field of machine learning in
Artificial Intelligence (Al) that deals with algorithms inspired from biological structure and
fuctioning of a brain to aid machines with intelligence (Figure 1.3).

Deep learning was discovered around the 1980s, but it has not been until now that this
field has gotten stronger. This is due to the large amount of data that nowadays companies
handles, and also the powerful computers that we have. It has many applications, such
as speed recognition, driverless cars, voice control, social network filtering, translation,
medical image analysis, etc. Deep learning is a powerful set of techniques for learning in
artificial neural networks, and there are different types of them. The most used artificial
neural networks are the deep neural networks (DNN), convolutional neural network (CNN)
and the regular neural network (RNN), put especially the first two mentioned. The following
chapter details the first and simplest artificial neural network, the deep neural network
(DNN).

Artificial Intelligence

Machine Learning

Deep Learning

Figure 1.3: Al, machine learning and deep learning relation (Ref. [4])

CHAPTER 2. DEEP NEURAL NETWORKS

The second chapter is based on Deep Neural Networks, the first neural networks ever
created. We are going to understand the concepts of a DNN, and focus on how to make
a network learn. For that purpose, gradient descent and stochastic gradient descent are
going to be explained in detail.

Furthermore, it is going to be understood how to interpret curves of learning, considering
the worst cases that can occur: underfitting and overfitting. Finally, the statement of the
practical part where a simple DNN algorithm is implemented.

2.1. Deep Neural Networks

Deep Neural Networks are the first and simplest type of artificial neural networks. They are
also called Feedforward Networks, Fully Connected Networks, or Multi-Layer Perceptrons
Networks (MLPs).

As said before, deep learning pretends to simulate a human brain through artificial neural
networks. These are made of perceptrons (just as human brains are made of neurons),
that are connected to other perceptrons.

Nowadays, perceptrons are not common to use in neural networks because there are
newest artificial neurons that work more efficiently, but it is important to know what percep-
trons are because they were the first artificial neurons created.

A perceptron takes several binary inputs, and produces a single binary output. In Figure
2.1, it can also be observed the similarity of the perceptron to the human brain neuron:

dendritg\s v
D A
NS R’\)/i nucleus
NN r o .
N / Ao A
\ 2 Fiag
= _ _
— P“/Eéﬁ RN
= \ X \‘:.‘"I
SAL g/(l%\\\ bOd\/ axon E\T
axon
. terminals
n,
. out
|n2
in
n

Figure 2.1: Perceptron vs. human brain neuron (Ref. [5])

Perceptrons join each other simulating human brain connections, and they are commonly
represented as a hierarchical (layered) organization of perceptrons, named network (Fig-
ure 2.2). A network can be divided into three layers:

* Input layer: First layer of neurons. It is the leftmost layer of the network, and their
neurons are called input neurons. They receive the inputs of the network.

10 Machine learning with deep neural networks and object tracking applied to motion of airplanes

* Hidden layers: Middle layer of neurons. The neurons are neither inputs nor outputs.
Neural networks can have multiple hidden layers.

* Qutput layer: Last layer of neurons. It is the rightmost layer of the network, and
their neurons are called output neurons. They produce the output or outputs of the
network.

hidden layers

input layer

Figure 2.2: Artificial neural network layers (Ref. [6])

Therefore, the connections between neurons of successive layers have an associated
weight, real numbers indicating the influence of the respective inputs to the output of the
neuron, and helping the neuron on decision-making.

We can also define the activation function, a function that is computed for each neuron that
defines the signal to pass to the next connected neurons. If the output of a neuron results
in a value greater than a threshold, the output is passed, and if not it is not passed. If we
define the inputs of the perceptron as xi, x,, x3, being x; the set of inputs with length j;
and similarly with weights, being w; the set of weights, we can define mathematically how
a perceptron works as following:

0 if };wjx; <thresold,

1 if Zjoxj > thresold 21

out put = {

And, moving the threshold to the other side of the inequality, we replace it by the bias of
the perceptron b = -threshold.

0 if X;wix;+b<0,

mez{lnzﬂwﬁw>o (2.2)

Being 0 or 1, if the perceptron’s output excites or inhibits.

Then, we want the network to learn to solve a problem. This can be made by forcing
our network to learn weights and biases so that the output is the desired one. This is
only possible if we define a neuron that not only has 0 and 1 outputs, but any real value
between them: the sigmoid neuron.

CHAPTER 2. DEEP NEURAL NETWORKS 11

Sigmoid neurons are neurons similar to perceptrons, but sensitive to small changes in their
weights and biases, that also produces small changes on the output. A sigmoid neuron is
defined mathematically by the sigmoid function c:

(2.3)

Being z = w-x+b. When z is very large and positive, the output of the neuron is approx-
imately 1; and otherwise, the output is approximately 0. This turns the sigmoid neuron to
be very similar to the perceptron.

o is also a smooth version of a step function, which is the activation function of the per-
ceptron (Figure 2.3). The smoothness shape of the sigmoid function is determinant to
accomplish values from 0 to 1, and that makes the function to be commonly used in neural
networks.

sigmoid function

0.8
0.6
0.4+

0.2+

0.0 T T T T

Figure 2.3: Sigmoid function (Ref. [6])

Something else is needed to make a DNN learn, a method that optimizes our algorithm
and makes an every iteration update of the parameters of our model, like the gradient
descent method.

2.2. Learning

In this section, learning methods in neural networks are going to be detailed. First learning
with gradient descent, and then stochastic gradient descent learning technique. Finally,
underfitting and overfitting cases are going to be determined as bad cases for the result
on the learning process.

2.2.1. Learning with gradient descent

Gradient descent algorithm is an iterative optimizer method of first order that is used to
minimize some function. In machine learning, is used to find the parameters of a model,
the weights and biases that will make our network find the proper output for a given input.

In deep learning, that function is called cost function, quadratic cost function, or mean
squared error (MSE). The point is to minimize it, as the function denotes how good our

12 Machine learning with deep neural networks and object tracking applied to motion of airplanes

model is; being 0 when the output is approximately equal to the input, and larger when it
is not. Considering w and b as the weights and biases of the model, n as the total number
of training inputs, x as the overall training inputs and a as the vector of outputs when the
network has an input x, the cost function can be defined as:

1
Clwb) = 5 X |v() — 2.4

To explain it in a simpler way, we are going to imagine a function C(v) of just two variables
(it could be more) v; and vy, like in Figure 2.4.

Figure 2.4: Function C(vy,v;) (Ref. [6])

The point is to minimize the function, so we want C to achieve its global minimum. It
is important to remark that this method is used only when an analytical manner is not
possible, like this case. If you imagine a ball rolling down the function, the motion of the
ball can be described as following:

oC oC
AC =~ —Av| + —Avy. (2.5)
oy oy

Being Av the amount of movement of the ball, and v the direction of the ball for variables 1
and 2.

Rewriting the equation considering that Av{,Av; can be defined as Av vector of changes

in v Av = (Avy,Ap)T, and that is also possible to define the gradient of C as (E?Tclv g—vcz)T,
the equation can be rewritten as:
AC ~ VC- Av. (2.6)

It can be observed that gradient vector VC relates changes in v to changes in C, just as
expected in a gradient. What is particular of this equation is that Av is defined as:

Av = -—-mVC, (2.7)

To make VC negative and succeed on our purpose. M is known as the learning rate, a
small and positive parameter of the network. It can be defined as the following update rule
as the gradient descent algorithm:

CHAPTER 2. DEEP NEURAL NETWORKS 13

v—1V =v-nVC. (2.8)
Gradient descent algorithm is a powerful way to minimize the cost function and also helping
the network learn.

If this is applied to the particular case of a neural network, with weights w; and biases b;
and the corresponding components of vector VC on these weights and biases, we have:

Wi — w}c = Wy —nVa—C (2.9)
8wk
oC
f—=b —MV—. :
by — by =b;—n 3, (2.10)

With these iterations, we finally arrive at the minimum of the cost function C. However, it is
important to remark that Equation 2.4 referring to the cost function iterations can last many
time if the number of training inputs x is large, and then the learning is going to be slow
too.

2.2.2. Learning with stochastic gradient descent

Stochastic gradient descent is a variation of the original gradient descent algorithm used
to increase learning speed. Instead of making all the iterations to get VC gradient, the
method estimates it by computing the gradient for a small sample of randomly chosen
training inputs, named as mini-batch.

Therefore, the update rule is modified in the next way:

JCy.
/ n X
—w, — Yy A 2.11
Wk =W =We— Z i (2.11)
n oCyx.
b =b — — E L.)
1—>bl bl - abl (2 12)

Being m the number of mini-batch where the sums are overall the training samples X; in
that mini-batch. Furthermore, an epoch of training is completed when the training inputs
are consumed. Then, a new training epoch initiates.

For instance, if we have a training set of size n=80,000, and a minibatch of size m=10 is
chosen, this translates into a factor of 8,000 increase in speed estimating the gradient. We
have to take into account that the estimation won’t be perfect, there will be fluctuations, but
there is no need for an accurate calculation of the VC gradient.

So stochastic gradient descent is a well-known method for learning in neural networks,
that speeds up learning and produces nice results.

2.2.3. Results on learning process. Underfitting and Overfitting

A good machine learning model makes predictions with no error, it approximates/fits the
data after the learning process. It generalizes any new input data from the learned domain
in a proper way.

14 Machine learning with deep neural networks and object tracking applied to motion of airplanes

Achieving a good fit is not always easy, sometimes the algorithm is not well propounded
and it is necessary to modify it. In this context, the terms overfitting and underfitting are
introduced. The perfect fit is an intermediate between these two (Figure 2.5).

* Underfitting: A model that is not capable to find a pattern on data, it does not fit the
data well enough. Usually it happens because there is not enough training data,
it needs more training, or we are trying to construct a linear model from non-linear
data. Due to his low accuracy, it makes errors in predictions.

Methods to reduce underfitting:

Increase the time of training or the number of epochs of the model.

Increase training data.

Alternate types of machine learning algorithms or model complexity.
Remove noise from data.

* Overfitting: A model that learns too much about the training data set. Overfitting
occurs when there is a lot of training data, or we spent many epochs/time learning.
At this point, the model starts to learn of the noise and the details of training data,
meaning that the model will not be capable to assume and make predictions on new
data, because it is only capable to do it on the given training set. It has high accuracy
but it makes errors on predictions.

Methods to reduce overfitting:

Decrease time of training, or the number of epochs of the model.

Remove noise from data, decreasing the training data that is confusing.

Reduce the model complexity.

Use some type of regularization.

< Underfitting Overfitting =

Best: Fit

Error

Iraining Error

Model “complexity”
Figure 2.5: Curves of learning showing underfitting and overfitting (Ref. [7])

Both underfitting and overfitting show poor generalization to new data. The difference
between them is that overfitting shows good performance on training data, and underfitting
not even that. In conclusion, the goal is to achieve a trade-off between underfitting and
overfitting, but it can be difficult in practice.

CHAPTER 2. DEEP NEURAL NETWORKS 15

2.3. Example of a simple DNN

In this section, it is going to be explained the implementation of a simple Deep Neural
Network (DNN) applied to the MNIST database.

2.3.1. MNIST database

The MNIST (Modified National Institute of Standards and Technology database) database
is composed of a large collection of handwritten digits, that it is common to use for training
images in processing systems, and on machine learning discipline. The objective is to
classify a given handwritten digit image into 10 classes that represent the integer values
from 0 to 9.

The database is a modified subset of two data set made by NIST (United States National
Institue of Standards and Technology), specifically the Special Database 1 and Special
Database 3. These databases were created scanning handwriting samples from 250 peo-
ple, half of the US Census Bureau employees, and a half from high school students.

The MNIST dataset is divided into two parts. The first part corresponds to training data,
which is composed of 60,000 training images; and then, the second part corresponding
test data contains 10,000 testing images, that are used to verify how good the model is
at recognizing new data. Both test and training images were collected by half employees,
and half high school students, as mentioned above. These images were normalized in
28x28 greyscale images (Figure 2.6).

o
-

60000000
[0 Y Vv

HDonasinlw o
DI NN XWN~—O
SN HOTR VO~
QDo fd GTANLPN~NQ
D~ r,VN=-=
SV el ~=0
O N\ cwWw—-—0O

P s L wP —0O
QS RA oW —0

PN GTHI PN
N RN N CWR
~Q Op-J & VR WD
D oegd N Oy £ w
Noa) 0D W
SORC SIS ISR AV S
oo~ Y D WD~
Dot W= H—

O e K WP
o poty &V R o3

Figure 2.6: Images subset of the MNIST database (Ref. [6])

It is a nice database to initiate in the field of deep learning because it is not necessary
to spend efforts on preprocessing and formating. It is a free-source easy to find on the
Internet.

16 Machine learning with deep neural networks and object tracking applied to motion of airplanes

It is important to remark that some researches have achieved “near-human performance”
in this database. In fact, in 2018 researchers from the Department of System and Infor-
mation Engineering from the University of Virginia, succeed with a 0.18 error only, using
simultaneous three kinds of neural networks.

2.3.2. Analyzing the MNIST database with a simple DNN

The practical task done in this chapter is the construction of a simple Deep Neural Network
(DNN) on the MNIST database.

A machine learning algorithm has been implemented to make a neural network learn to
identify digits from 0 to 9 using the MNIST database explained in the previous subsection
2.3.1. of the present chapter.

The algorithm is adapted from the book Michael A. Nielsen, Neural Networks and Deep
Learning, Determination Press, 2015. It is an online book that explains clearly the con-
cepts of Neural Networks and Deep Learning from the very beginning of it. Moreover, the
algorithm is constructed in Python 3.8 language and implemented in a web-based interac-
tive development environment named Jupyter notebook. Full code is in Appendix A.

The code is composed of the implementation of different classes. The core class is the
Network class, the one that has been modified and adapted for making this task. The Net-
work class represents the neural network itself, made of functions related to the concepts
explained during this chapter. The most important methods and parts of the full code are
explained in the next lines.

To initialize the DNN, the code used is in Figure 2.7:

class Network(object):
def __init__(self, sizes):

self .num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self .weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

Figure 2.7: Intializing the network (Own elaboration)

The list sizes contains the number of neurons in the respective layers of the network. From
that list is that the network can be initialized, with biases and weights randomly initiated
with a Gaussian distribution with 0 mean, and variance 1.

Furthermore, the implementation of the feedforward method is also important, because,
given an input “a” for the network, it returns the corresponding output (Figure 2.8).

The most important thing for our network is learning. Thus, this is executed by imple-
menting the SGD (stochastic gradient descent) function, which trains the network using
mini-batch stochastic gradient descent. Training data is collected in a list of tuples (x,y)
with the training inputs and the desired outputs, respectively. Then, test data will evaluate
the network after each epoch, with partial progress printed out. This can be observed in
Figure 2.9.

CHAPTER 2. DEEP NEURAL NETWORKS

17

def feedforward(self, a):

for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

Figure 2.8: Feedforward method (Own elaboration)

def SGD(self, training _data, epochs, mini_batch_size, eta,
test_data=None) :

training_data = list(training_data)
n = len(training_data)

if test_data:
test_data = list(test_data)
n_test = len(test_data)

for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:

print ("Epoch {} : {} / {}".format(j,self.
—evaluate (test_data) ,n_test));
else:
print ("Epoch {} complete".format(j))

Figure 2.9: Stochastic gradient descent learning (Own elaboration)

Finally, it is important to emphasize the update mini-batch method, that updates the neural
network weights and biases according to a single iteration of gradient descent, using the

training data in that mini-batch (Figure 2.10).

def update_mini_batch(self, mini_batch, eta):

nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for| w in self.weights]
for x, y in mini_batch:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

self .weights = [w-(eta/len(mini_batch))+*nw

for w, nw in zip(self.weights, nabla_w)]
self .biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases, nabla_b)]

Figure 2.10: Update mini batch method (Own elaboration)

How well does the algorithm recognize handwritten digits? This can be known by executing
a set of commands, where we are going to load the MNIST database, and also defining

the parameters of the network we want to implement (Figure 2.11).

18 Machine learning with deep neural networks and object tracking applied to motion of airplanes

import mnist_loader

training_data, validation_data, test_data = \
. mnist_loader.load_data_wrapper ()

import network

net = network.Network([784, 30, 10]) # A network with first layer (784,
—mneurons),30 hidden meurons and 10 neurons in the third layer.

network=net.SGD(training data, 30, 10, 3.0, test_data=test_data) # Learn with,
30 epochs, with a mini batch size of 10, and a learning rate 3.0.

Figure 2.11: Set of commands to make our network learn (Own elaboration)

In the first two lines of code, the MNIST database is loaded, and then, class Network is
imported to define the neural network wanted to learn. In this case, the network has 784
neurons in the first layer, 30 neurons in the hidden layer, and 10 neurons in the output layer.
To conclude, the network is trained by the stochastic gradient descent (SGD) method in 30
epochs, a 10 mini-batch size, and a learning rate n of 3.0.

The output of the algorithm can be observed in Figure 2.12:

Epoch @ : 8284 / 1@0ee
Epoch 1 : 8353 / 1leeee
Epoch 2 : 8452 / 10000
Epoch 3 : 8468 / 100600
Epoch 4 : 9269 / 10000
Epoch 5 : 9376 / 1leeee
Epoch 6 : 9433 / 10000
Epoch 7 : 9406 / 100600
Epoch 8§ : 9413 / 1@0ee
Epoch 9 : 9407 / 10000
Epoch 1@ : 9444 / 10e0@
Epoch 11 : 9426 / 10000
Epoch 12 : 9451 / 16000
Epoch 13 : 9454 / 100600
Epoch 14 : 9429 / 10eee@
Epoch 15 : 9459 / 10000
Epoch 16 : 9468 / 160000
Epoch 17 : 9458 / 10060
Epoch 18 : 9479 / 10eee@
Epoch 19 : 9496 / 10€0@
Epoch 20 : 9472 / 10000
Epoch 21 : 9436 / 10000
Epoch 22 : 9499 / 10000
Epoch 23 : 9477 [/ 10eee
Epoch 24 : 9483 / 10000
Epoch 25 : 9483 / 160000
Epoch 26 : 9478 / 10060
Epoch 27 : 9502 / 10€ee
Epoch 28 : 9587 / 10000
Epoch 29 : 9498 / 160000

Figure 2.12: Output of the algorithm (Own elaboration)

Where it can be observed that after 30 epochs, an accuracy of 94.98% is achieved. It is

CHAPTER 2. DEEP NEURAL NETWORKS 19

important to consider that this is a nice result considering the simplicity of the algorithm.
Thus, we consider a failure of 5.02%.

CHAPTER 3. CONVOLUTIONAL NEURAL
NETWORKS

In this chapter, Convolutional Neural Networks are presented, explaining in detail the most
important layers that exist in this type of network. Next, dropout and batch normalization
regularization techniques are going to be described too. Finally, the practical part attaches
an implementation of a simple CNN based on the MNIST database and a more complex
CNN based on the CIFAR-10 dataset.

3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are one of the most used neural networks nowa-
days. They are widely used for image classification, image recognition, face identifying,
object detection, etc. The particularity of CNN’s, is that they assume the inputs as images,
which modifies in a certain way the architecture of the network, and hence it simplifies the
parameters of our algorithm.

Why don’'t we use Deep Neural Networks? Imagine a normal size image, bigger than
MNIST images, for instance, 300x300x3 (200 wide, 200 high, 3 color channels). DNN, or
Fully Connected Networks, would lead the neurons to have 300*300*3=270,000 weights.
That would be a time-waste of iterations and iterations, and a huge number of parame-
ters that would lead the network to overfit. So, it is inconceivable that a Fully Connected
Network can manage normal size images tasks. This requires a different network, CNN.

Unlike DNN, Convolutional Neural Networks layers are adjusted in 3 dimensions: width,
height, depth. The concept is that the network is capable to transform a 3D input volume
to a 3D output volume through his layers specifically constructed for that purpose (Figure
3.1).

SO0 height

- 2 00000 ’j Sl B
OOOOOWV yidth

Figure 3.1: CNN structure (Ref. [8])

A CNN is made of a sequence of layers, being the most popular layers the Convolutional
Layer, Pooling Layer, and Fully-Connected Layer, that will compound the architecture of the
network. It is also important the dimensions of each layer, representing their function on
the network, and that some layers own parameters and others don’t. Simple architecture
for a convolutional network can be described as the following, assuming, for instance, an
input image 64x64x3:

21

22

Machine learning with deep neural networks and object tracking applied to motion of airplanes

* Input (INPUT): First layer composed of the pixel matrix values of the corresponding

image. [64x64x3]

Convolutional Layer (CONV): Layer that makes the convolution between the filters
and local regions of the input image. [64x64x10] (10 filters used)

This is the layer that makes most of the calculation of the network. As mentioned
before, full connectivity implies time and it is wasteful for this type of network. Convo-
lutional layer introduces the connection to a local region of the input volume, which
produces an activation map of every connection made. These small regions are
called filters that perform dot products between the entries of the filter and the in-
put of the local regions of the image when moving across their dimensions (width
and height). Eventually, filters will learn when they observe the same pattern on
activation maps of different images.

The output of this layer is the set of 2D activation maps. We can observe how a
convolutional layer makes its calculations in Figures 3.2 and 3.3:

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
x[:,:,0] wO[:,:,0 wll[:,:,0] ol:,:,0]
0O 0 0 0 0 0 O 11 -0 -1 -5 -8 -3
NP1 FINN F25 F25 NISN R -1 RA1 |0 -1 0 0 -5 -3 -2
DN N0 f288 FISN RIS 2 I -1 -1 0 0 0 3
0 0 0 1 22 0 wl[:,: wll:z,:,1] o[:,:,1]
o 1 1 1 [2]o]o %J/ y 1 e
0o 2 0 11Tl 1 K1 0 0 0 -4 -6 -7
o o o o [oAo o -1 -1 -1 -1 I -2 -4
x[:,:,1] wg‘/:,., wl[:,:,2]

00 00 0 0 AL B

000 1 1 0/0 o

o o0 (2 1 2 0 e E

i E 0 Bias bl (1x1x1)

0o 2 2 211 [jo0 bl1[:,:,0]

o1 1 2[t) o 2

0 0 0 0 0 [l¢

x[:,:,2] toggle movement

0O 0 0 0 O 0o/ O

o o [0 2 |1

0O 0 1 1 170 /0

0o 0 2 1 o/ 0

0 1 0 2|0 0

0o 2 1 2 |1/41 1O

0 0 o o [ffolo

Figure 3.2: Convolutional layer (Ref. [8])

* Rectified Linear Unit (RELU). Relu stands for Rectified Linear Unit, that implements

the activation function max(0,x). [64x64x10]

RELU layer activation function behaves linearly given values greater than zero, but
it is a nonlinear function if the values are negative (Figure 3.4). In that case, the
values are converted into a zero.

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 23

‘ -
Feature Map

Figure 3.3: Visual convolutional layer (Ref. [9])

Figure 3.4: RELU layer (Ref. [10])

* Pooling Layer (POOL). Layer that executes a downsampling action along the three
dimensions. [32x32x10]

The pooling layer reduces the number of parameters in images by making down-
sampling. That results in a progressive reduction of the spatial size of the images.
There are different functions to implement pooling, for instance:

— Max Pooling
— Average Pooling

— Sum Pooling

The most used method is the max pooling, which takes the largest element from the
rectified feature map applied by a filter. This layer is very important because it helps
to reduce overfitting. The effect produced by the layer can be observed in Figure
3.5.

* Fully Connected Layer (FC). Layer that calculates the class scores. [1x1x10]

This layer is fully-connected, as a DNN. The concept is to flatten the matrix from the
previous layer and put it into a fully connected layer process. Finally, in this layer,
we have an activation function called soffmax, which classifies the outputs into the
corresponding classes based on the scores acquired.

An example of an implemented CNN can be seen in Figure 3.6.

24 Machine learning with deep neural networks and object tracking applied to motion of airplanes

Single depth slice

11124
max pool with 2x2 filters
5(6 7|8 and stride 2 6| 8
3 | 2 . 3|4
112|3| 4
Y

Figure 3.5: Max pooling (Ref. [8])

RELU RELU RELU RELU RELU RELU

CO¢NV looiwl CONV lowl CoiNv JCNVl
= i

|

fruck
airplane
ship

4]

[
~1=l -
=la|-
‘ "
e —
- =
-
=R
=|ml -
-
= =
= -~
e
-
-

IJhorse

LURVENT ROR TR

a3

)
A EEENTVE RN

T8

Figure 3.6: Example of CNN (Ref. [8])

3.1.1. Regularization techniques

In machine learning, regularization is a way to prevent overfitting and co-dependency
amongst neurons during training. Regularization reduces it by making slight modifications
to the algorithm, for instance removing some neurons on the layers for better performance.
The model is trained such that it does not learn an interdependent set of features weights,
and it is capable to generalize data better.

There are many types of regularization techniques, but the most popular ones are the
following:

* Dropout: Dropout is a regularization technique that prevents complex co-adaptations
on training data, it “ignores” neurons randomly during the training phase, as ob-
served in Figure 3.7. It is a very efficient way of performing model averaging with
neural networks.

» Batch Normalization: Batch normalization is a regularization technique that stan-
dardizes the inputs to a layer. It normalizes the output of the previous layer by

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 25

,.‘

{)
"‘.
{)
7

S
%
K
W
)
Xte

o\

ST
N
%, BN A
X0
(X%
R K
e

\Y

@

"\
A

=
W
av.t:
A
X)
)
(/

S

e~

(a) Standard Neural Net (b) After applying dropout.

Figure 3.7: Dropout technique (Ref. [11])

subtracting the batch mean, and then dividing by the batch variance. It produces
a notorious acceleration on the training process of the network, and eventually, it
improves the performance of the model.

In Figure 3.8, it can be seen the mathematical process of batch normalization on a

mini-batch:
Input: Values of 2 over a mini-batch: B = {z1_,,}:
Parameters to be learned: ~, /3
Output: {y; = BN, s(z;)}
1 m
— — // mini-batch mean
B m Z L ni
=1
1 m
O — - 2(;1:1 — up)? // mini-batch variance
1=
. Ti —)
T — II—MB // normalize
\/aé + €
yi < vx; + [= BN, g(x;) // scale and shift

Figure 3.8: Batch Normalization process (Ref. [12])

26 Machine learning with deep neural networks and object tracking applied to motion of airplanes

3.1.2. Keras: the Python deep learning API

Keras is a free application programming interface (API) that supports artificial neural net-
works (Figure 3.9). It works in Python language, and it runs on top of the machine learning
platform Tensorflow 2.0, which is an open-source machine learning platform.

Keras is a relatively new tool that was created in 2015 by a Google engineer named
Frangois Chollet. It is a platform that executes low-level tensor operations on CPU, GPU,
or TPU. Keras allows us to design executable models on smartphones (i0OS and Android),
and also on the web.

Keras provides an efficient, highly-productive interface for solving deep learning problems,
supporting different types of neural networks.

Keras

Simple. Flexible. Powerful.

Figure 3.9: Keras platform (Ref. [13])

3.2. Analyzing the MNIST database with a simple CNN

One of the two practical tasks made in this chapter is the construction of a simple Convo-
lutional Neural Network (CNN) on the MNIST database (2.3.).

Unlike the previous implementation of a DNN, the CNN is adapted from https://keras.
io/examples/mnist_cnn/ Keras webpage. As mentioned in the previous subsection,
Keras uses Python 3.8 language. The code is implemented on a Jupyter Notebook envi-
ronment, and full code can be found in Appendix B.

The code is written in a single .ijpynb file, where all the structure and execution of the neural
network algorithm is implemented. The most important parts of the code are explained in
the next lines:

To use Keras environment first is needed to import dependencies of different features,
including the network layers that are going to be used (Figure 3.10).

Then, we define the Convolutional Neural Network parameters that are going to be used at
the algorithm, as seen in Figure 3.11. As it is expected, if the number of epochs is bigger,
the learning time will be too; and the same will happen with the size of the mini-batch.
Keras default parameters have been set in this step; being a mini-batch size of 128 and 12
epochs.

Unlike the practical DNN realized in section 2.3.2., the learning model is saved due to the
os dependency, which allows the user to save it in a chosen directory with a given input
name (Figure 3.12).

https://keras.io/examples/mnist_cnn/
https://keras.io/examples/mnist_cnn/

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 27

from __future__ import print_function
import keras # Import keras deep learning library.

from keras.datasets import mnist # Import the MNIST dataset from keras.

from keras.models import Sequential # The simplest and more friendly model to,
—program keras and define the layer's structure.

from keras.layers import Dense, Dropout, Flatten # Import the type of layers,
—that will be used from keras.

from keras.layers import Conv2D, MaxPooling2D

from keras import backend as K

from keras.preprocessing.image import load_img, img_to_array # To test the CNN,
—and rescale an entering image

import os # For looking and directories and import settings.

import matplotlib.pyplot as plt

import timeit # We import it to calculate how many time lasts our models to be,
—trained.

Figure 3.10: Import dependencies (Own elaboration)

batch_size = 128
num_classes = 10 # The 10 digits 1,2,3,4,5,6... collected in 10 clases.
epochs = 12

Figure 3.11: Define network parameters (Own elaboration)

save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'mnist_cnn_trained.hb'

Figure 3.12: Save the model (Own elaboration)

Likewise, the MNIST dataset is loaded providing the training data and test data vectors.
Furthermore, the architecture of the network is defined using Keras layers (Figure 3.13).
In this example, we use two convolutional layers, a max-pooling layer, and we use the
dropout regularization technique by default on Keras. Finally, the fully-connected layer is
implemented with the softmax function.

model = Sequential() #We import the sequential model of keras.

#Next we describe the arquitechture of the CNN (layers).

model.add(Conv2D (32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model . add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout (0.25))

model.add(Flatten())

model.add(Dense (128, activation='relu'))

model .add(Dropout (0.5))

model.add(Dense(num_classes, activation='softmax'))

Figure 3.13: Arquitecture of the CNN (Own elaboration)

Finally, the Convolutional Network is trained and the final accuracy achieved is 99.15 %,
and a loss of only 0.0281. The algorithm saves the trained model and the model accuracy
and loss are plotted, respectively (Figure 3.14 and Figure 3.15).

As can be seen, the accuracy of 99.15% is a very nice result. Learning curves show a
good fit for the data.

28 Machine learning with deep neural networks and object tracking applied to motion of airplanes

Epoch 10/12

60000/60000 [] - 101s 2ms/step - loss: 0.0315 -
accuracy: 0.9908 - val_loss: 0.0294 - val_accuracy: 0.9912

Epoch 11/12

60000/60000 [] - 101s 2ms/step - loss: 0.0287 -
accuracy: 0.9913 - val_loss: 0.0269 - val_accuracy: 0.9917

Epoch 12/12

60000/60000 [] - 101s 2ms/step - loss: 0.0272 -
accuracy: 0.9915 - val_loss: 0.0281 - val_accuracy: 0.9915

Time: 1316.3387901000096

Saved trained model at C:\Users\claud\OneDrive\Escritorio\TFG\TFG\JupyterNoteboo
k\saved_models\mnist_cnn_trained.hb

Figure 3.14: Training of the CNN (Own elaboration)

Model accuracy Model loss
—— Train m— —— Train
099
Test 025 Test
098
097 020
096
e v 015
g 0.95 3
<
094 010
093
0.05 1
092
] 2 4 6 8 10 0 2 4 6 8 10
Epoch Epoch

Figure 3.15: Learning curves of the CNN model (Own elaboration)

3.3. Example of a CNN

In this section, it is going to be presented the implementation of a Convolutional Neural
Network (CNN) applied to the CIFAR-10 dataset.

3.3.1. CIFAR-10 dataset

The CIFAR-10 (Canadian Institute For Advanced Research) dataset is a collection of im-
ages commonly used in machine learning for computer vision and image processing train-
ing (Figure 3.16). Images were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-
ton. It consists of 60,000 32x32x3 images, divided in 50,000 training images and 10,000
test images.

The images represent 10 different classes, where each of them is represented by 6,000
images. It is important to remark that the classes are mutually exclusive, the same photo
can’t be in more than one class. The 10 classes of CIFAR-10 are the following:

* Airplane
* Automobile
* Bird

e Cat

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 29

Deer
* Dog
* Frog

* Horse

Ship

Truck

airplane % V » ..='h.
automobile E Eﬂﬁhb
v Sl NN YO
cat el el LA B
deer J o Jadl TR el
dog RS Y e | G/
frog ﬁ D A
v RIS D
S S T P P
ek o R e 152 5 o L S

Figure 3.16: CIFAR-10 dataset (Ref. [14])

This dataset has historically achieved an error of only 3.47%.

Like the MNIST database, CIFAR-10 is also a free source database that can be down-
loaded from the Internet. There exists an improved variant of the CIFAR-10 dataset, the
CIFAR-100 dataset where there are 100 classes with 600 images each. We have decided
to implement the CIFAR-10 because it fits better for our academic implementation.

3.3.2. Analyzing the CIFAR-10 dataset with a CNN

The final task done on this set of implementations of neural networks is the a CNN al-
gorithm on the CIFAR-10 dataset. In the same way as the previous implementation,
the algorithm made in this part of the project is adapted from Keras webpage https:
//keras.io/examples/cifar10_cnn/, so the language is the same (Python 3.8), and
it is also implemented into a Jupyter Notebook environment. Full code can be found in
Appendix C.

The notebook considers five cases of implementation of the CNN, that will be compared in
order to obtain the better performance of the neural network. The five trained models are
characterized by the following features:

https://keras.io/examples/cifar10_cnn/
https://keras.io/examples/cifar10_cnn/

30 Machine learning with deep neural networks and object tracking applied to motion of airplanes

1. Simple model using stochastic gradient descent optimizer (SGD)

2. Simple model using rmsprop optimizer

3. Model using rmsprop optimizer and dropout regularization technique
4. Model using rmsprop optimizer and batch normalization technique

5. Model using rmsprop optimizer and both regularization techniques (dropout and
batch normalization)

They will be presented from the simplest (model 1) to the most complex model (model 5).
Finally, we will be able to find the best implementation for our needs.

The algorithm architecture is similar to the previous model of CNN on the MNIST database.
The difference is the loading of the CIFAR-10 dataset, and also the implementation of
different layers and techniques used along with the five models. Moreover, the mini-batch
size has been 32 and 10 number of epochs (Figure 3.17).

model = Sequential() #We import the sequential model of keras

#Next we describe the argquitechture of the CAN (layers).
model .add(Conv2D(32, (3, 2), padding="same',
input_shape=x_train.shape[1:1))
if batchnormalization:
model . add (BatchNormalization())
model .add(Activation('relu’))
model .add(Conv2D(32, (3, 2)))
if batchnormalization:
model . add (BatchNormalization())
model .add(Activation('relu'))
model .add(MaxPooling2D(pool_size=(2, 2)))
if dropout:
model . add (Dropout (0.25))

model .add(Conv2D(64, (3, 3), padding='same'))
if batchnormalization:
model . add (BatchNormalization())
model .add(Activation('relu'))
model .add(Conv2D(64, (3, 2)))
if batchmormalization:
model . add (BatchNormalization())
model .add(Activation('relu’))
model .add(MaxPooling2D(pool_size=(2, 2)))
if dropout:
model . add (Dropout (0.25))

model .add(Flatten())
model .add(Dense (512))
if batchnormalization:
model . add (BatchNormalization())
model .add(Activation('relu'))
if dropout:
model . add(Dropout(0.5))
model .add(Dense (num_classes))
model .add(Activation('softmax'))

Figure 3.17: Arquitecture of CIFAR-10 CNN (Own elaboration)

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 31

This architecture includes more layers than the previous one, for instance, Convolutional
Layers and RELU layers that achieve better results on the network. Furthermore, different
techniques are applied based on the model chosen by the user at the beginning of the
notebook. It is important to remark that rmsprop optimizer is an improved version of SGD
optimizer, using and adaptative learning in every step.

The importance of this study relies on the comparison of the results of the five trained
models. Again, all code implemented can be found in Appendix D.

To determine if all models fits on data and also on new data, it is necessary to compare
the learning curves (accuracy and loss curves) in plots, showed in Figures 3.18 and 3.19:

0 Model 1 accuracy

08

0.6

Accuracy

04

02

0.0

= Train
Test

/

Epoch

Accuracy

0 Model 2 accuracy

08

0.6

044

0.2 4

0.0

0 Model 3 accuracy

- Train
Test

/

Accuracy

08

06

04

02

— Train
Test

Epoch

0.0

Epoch

Accuracy

0 Model 4 accuracy

08

06

04

02

00

Model 5 accuracy

— Train
Test

Accuracy

038

06

04 1

02

— Train
Test

Epoch

00

o
wn

Epoch

Figure 3.18: Accuracy of the 5 models implemented (Own elaboration)

2s Model 1 loss Medel 2 loss Medel 3 loss Model 4 loss Model 5 loss
—— Train —— Train —— Train —— Train —— Train
Test Test Test Test Test
204 204 20 20 20
15 4 154 15 15 15
P’ " w “n n
£] E E g
]] 5 5 g
104 104 \\\\\\\\\\\\ 10 10 10
05 4 05 4 05 05 05
00 00 00 00 00
0 5 0 5 0 5 0 5 0 5
Epoch Epoch Epoch Epoch Epoch

Figure 3.19: Loss of the 5 models implemented (Own elaboration)

Being the final accuracy and loss values of the models:

1. 65.84 % accuracy and 1.03 loss

32 Machine learning with deep neural networks and object tracking applied to motion of airplanes

N

. 70.59 % accuracy and 0.87 loss

w

. 68.37 % accuracy and 0.92 loss

I

. 71.52 % accuracy and 0.94 loss

5. 71.23 % accuracy and 0.83 loss

The accuracies of the five models own high values, but that does not mean that models fit
well the data. About the learning curves, it can be observed that we can discard, at first,
three of the five models due to overfitting of the network. Models 1, 2, and 4 are overfitted
because the loss curve show an inflection point where the validation curve overcomes
the training curve. This could be modified by reducing the complexity of the algorithm or
stopping the learning earlier (but it is important to remark that 10 epochs it is not a high
number of epochs to learn).

Sometimes the best option is not to use all techniques at the same time, because this can
produce overfitting by making the network learn the noise in training images.

So, in this situation, we have to compare the performance of model 3 and 5. Both accuracy
values are great, being the highest the model 5 value. The same happens with loss values,
the smallest one is also from model 5, but it is neither a great difference to appreciate. In
addition, it can be taken into account the time spent on learning of the two models (Figure
3.20).

Comparison of time between the 5 trained models

10

Model 1 Model 2 Model 3 Model 4 Model 5

Figure 3.20: Time of learning of the 5 models implemented (Own elaboration)

Being the time of each model:

—_

. 21 minutes

N

. 23 minutes

. 24 minutes

w

4. 49 minutes

CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS 33

5. 50 minutes

Finally, for our purpose, we decide that the model best fit is model number 3. Number 3
model implements a CNN with rmsprop optimizer and dropout regularization technique.
This model achieves a nice accuracy and loss values, it makes good predictions on new
data, and it lasts an acceptable amount of time, 24 minutes, instead of the 50 minutes of
model 5.

In Figure 3.21, we can observe a prediction of model 3 on a new data image from an
airplane, imported from an specific directory.

Make a prediction:

|: | # It can be any dimensions input image. The function “"classify”
#reshape it and make the prediction.
classify('airplanel.jpg')

airplane

Figure 3.21: Prediction of model 3 on an airplane image (Own elaboration)

It is remarkable that depending on the objective of the user, the chosen model can be
different. Maybe time is very important for an specific labor, but maybe the most important
thing is to achieve the largest accuracy value for the model. In this case, as it is an
academic assignment, the model best fits the task is model number 3, as we look for an
equilibrium of all features.

CHAPTER 4. OBJECT TRACKING

In this chapter | am going to expose my last practical task of the present project, an im-
plementation of an object tracking algorithm using Detectron2. Firstly, the environment
used is going to be detailed, and then the implementation and the results are going to be
presented.

4.1. Object Tracking with Detectron2

Detectron2 is an open-source research platform from Facebook Al Research (FAIR) that
implements object detection and segmentation (Figure 4.1). Is a modular object detec-
tion library that is based on PyTorch 1.6, a fast and effective tensor library used for deep
learning and calculations in a GPU or CPU environment.

Detectron was born in 2018, and since that moment from now, it has become one of the
most widely adopted open-source projects. Detectron has changed a lot during the last
two years, implementing new tasks as semantic segmentation and panoptic segmentation.

It provides an intuitive, easy programming environment that allows researchers to design
new models and make experiments from it. It is implemented in a modular design that
allows users to modify each module independently, making a more efficient and flexible
algorithm. It is scalable and it makes calculations very fast, and it also provides different
recognized datasets.

@6 Detectron2

Figure 4.1: Detectron2 logo (Ref. [15])

Detectron2 includes implementations for the following object detection algorithms: Mask
R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, TensorMask, PointRend, Dense-
Pose, and more. It supports object detection with drawn boxes and instance segmentation
masks, semantic segmentation, and panoptic segmentation. Some examples from Detec-
tron2 can be observed in Figures 4.2 and 4.3.

The platform is distributed in GitHub, the world’s leading software development platform.
There, all the features like installation, start, licenses, and code of Detectron2 can be
found. If you want to skip all the installation process, you can open a Detectron2 Tutorial
file at Google Colab Notebooks, an online virtual code environment mostly used for IA
algorithms, that allows free execution and programming in Python language, so as easy
access to GPU.

Referring to object detection classes, Detectron2 implements the COCO dataset (Figure
4.4) by default. COCO dataset (Common Objects in Context) is a dataset that comprises
80 classes, with a total of 330,000 images, and it allows different segmentations. COCO
dataset belongs to Microsoft, and it has collaborations of Facebook and companies that
invest in Al

35

36 Machine learning with deep neural networks and object tracking applied to motion of airplanes

Figure 4.3: Object detection by Detectron2 (Ref. [16])

4.1.1. Implementing an Object Tracking method to Detectron2

As can be seen in the previous section, Detectron2 provides an environment with differ-
ent object detection algorithms that can be implemented. Now, the objective is slightly
different.

The purpose is to make an object tracking algorithm with the aid of Detectron2, an ad-
vanced machine learning software. The object tracking task consists of getting coordinates
of particular objects detected by Detectron2 on given video frames, and study the motion
of those objects. The outputs will be the total distance of the movement, the trajectory,
velocity, and acceleration plots of the detected objects.

CHAPTER 4. OBJECT TRACKING 37

Train Cow Dog Person

Car

Figure 4.4: COCO dataset (Ref. [17])

To make it possible, the input of the program is a collection of frames from a video saved
in our personal Google Drive environment. As Detectron2, the programming language has
been Python 3.8 on a Google Collab environment.

The scenario of the video has been the following: | made an animation on PowerPoint
that simulates two moving airplanes. The first airplane (airplane 0) is making a take-off
maneuver, and the second airplane (airplane 1) is taxiing. In the first place, the purpose
was to analyze a Youtube video of a static camera of a determined airport, but finally we
chose to analyze a simpler 2D video, due to the difficulties that will be detailed later on
section 4.1.2..

The animation has been implemented considering that an airplane taking-off is moving at
a velocity between 70 m/s (252 km/h) and 80 m/s (288 km/h), and an airplane taxiing is
moving around 15 m/s. Then, 50 frames of the video spaced 0.1 seconds were taken to
be the input of the algorithm in Colab, being five seconds the total length of the video that
has been analyzed. All code implemented can be found in Appendix E.

To justify the implementation, the most important parts of the algorithm are commented in
this section.

First, we have to install Detectron2 on our Colab environment, and all the dependencies
required. This implementation can be found in Figure 4.5.

Then, we import the images from our Google Drive and we save them into images vector
(Figure 4.6).

When we have the vector with the corresponding images, we use the methods of Detec-
tron2 to make the predictions on each image (Figure 4.7). On this step, we introduce the
implementation of the outputsfi][”instances’].pred_boxes.get_centers() command to get the
coordinates of the different objects detected on each image, making the centers tensor that
contains all this information. We also do the same with the outputs(i]["instances’].pred_boxes,
that provides the limits of the boxes drawn by the image. This will help us later to define

38 Machine learning with deep neural networks and object tracking applied to motion of airplanes

° # install dependencies:
Ipip install pyyaml==5.1 pycocotools>=2.0.1
import torch, torchvisiod
print(torch._ version__, torch.cuda.is_available())
lgcc --version
opencv is pre-installed on colab

[1 # install detectron2: (Colab has CUDA 10.1 + torch 1.6)
See https://detectron2.readthedocs.io/tutorials/install.html for instructions
assert torch._ version_ .startswith("1.6")
Ipip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cul@l/torchl.6/index.html

[1 # Some basic setup:
Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup logger
setup_logger()

import some common libraries

import numpy as np

import os, json, cv2, random

from google.colab.patches import cv2_imshow

import some common detectron2 utilities

from detectron2 import model_zoo

from detectron2.engine import DefaultPredictor

from detectron2.config import get_cfg

from detectron2.utils.visualizer import Visualizer

from detectron2.data import MetadataCatalog, DatasetCatalog

Figure 4.5: Installation of Detectron2 (Own elaboration)

[1 from google.colab import drive
drive.mount('/content/drive’)

[1 # import the images from Google Drive
i=e
images=[]
for i in range(5@):
filename = str(i) + ".PNG"
im=cv2.imread("/content/drive/My Drive/"+filename)
images.append(im)

Figure 4.6: Import the 50 frames from Google Drive (Own elaboration)

the scale between the pixels of the images and the reality.

° #outputs of learning
import tensorflow as tf
import math

#get instances and boxes predictions

centers=[]

heights=[]

for i in range(len(images)):
outputs[i]["instances"].pred_classes
outputs[i]["instances"].pred_boxes
heights.append(outputs[i]["instances"].pred_boxes)
heights[i]=np.array(heights[i])
centers.append(outputs[i]["instances"].pred_boxes.get_centers())
centers[i]=centers[i].cpu()
centers[i]=centers[i].numpy()
centers[i]=centers[i].astype(int)
centers[i]=np.array(centers[i])

centers=np.array(centers) # contains the coordinates (x,y) of the centers of the boxes
heights=np.array(heights) # contains the coordinates (x1,y1,x2,y2) of the boundaries of the boxes

Figure 4.7: Prediction-making (Own-elaboration)

The next step is to organize the information collected, resize the tensors that we get.
That means, that eventually, the coordinates of airplane 0 are in different positions along
the different vectors of the different images. So we have to implement a function that
guarantees that the airplane 0 in image 0 is actually the same airplane 0 in image 1.
The coordinatestracking tensor is initialized, and the correct order of the coordinates is
ensured by calculating the distance difference between the object of one image to another

CHAPTER 4. OBJECT TRACKING 39

with all the objects predicted. This is as easy as making a vector of distances distance=[]
which stores the distances between objects detected and determines the correct order of
the coordinates by choosing the minimum distance (D) from one object to another. For
instance:

D= \/ [Xcoordinates(currentimage) — X coordinates(lastimage)|*+ (4.1)

Y coordinates(currentimage) — Y coordinates(lastimage))*

Providing that D is the smallest from the corresponding object. Doing this, we achieve that
every object is in the correct place on coordinatestracking tensor.

One of the first outputs achieved is the detection of the first image of the video, with the
objects detected on it, and their corresponding coordinates [[xy]] on display, as seen in
Figure 4.8.

airplane @
[1177 366]
airplane 1
[1255 498]

Figure 4.8: Example of detection and coordinates (Own elaboration)

The next section of the algorithm is the treatment of the data, making a motion study of the
corresponding objects detected. First, all the tensors and vectors are initialized and the
scale is calculated providing the real height of determined COCO objects (airplane, person,
car and motorcycle) to find the relation between the pixels of the processed images and
real distances. In our case, we have realized it with an airplane:

realheight[airplane]

scale = (4.2)

boxheight [airplanedetected]

Then, we are able to calculate the different parameters of the motion study. We calculate
the trajectory using the scale calculated, and afterwards we can calculate iteratively the
distances, velocity, and accelerations for each object, as seen in Figure 4.9 .

Finally, after interpolating the graphs we obtain the outputs in Figure 4.10.

If we consider that airplane0 is the airplane that is taking-off during the video, and airplane1
the airplane that is taxiing, we can determine that the results obtained are coherent.

40 Machine learning with deep neural networks and object tracking applied to motion of airplanes

iterative vector calculation
i=e
while (len(centers))»i:
j=0
while j<(len(centers[e])):
x[j][1i]=scale*coordinatestracking[i][]j][e]
y[jl[i]=scale*coordinatestracking[i][j][1]
j+=1
i+=1
i=e
while (len(centers)-1)>i:
j=0
while j<(len(centers[e])):
d[j][i]=scale*(math.sqrt((coordinatestracking[i+1][j][@]-coordinatestracking[i][j][@])**2+(coordinatestracking[i+1][j][1]-coordinatestracking[i][]]
dir[j][i]=(coordinatestracking[i+1][j][1]-coordinatestracking[i][j][1])/(coordinatestracking[i+1][j][@]-coordinatestracking[i][j][e])
j+=1
i+=1
i=e
while (len(centers)-2)>i:
j=0
while j<(len(centers[e])):
VI31[EA]=(d[F1[L])/ (t[ivt]-t[1])
j+=1
i+=1

Figure 4.9: Part of the iterative calculation: Trajectory, distance and velocity (Own elabo-
ration)

It can be seen the trajectory of both objects in (a), the total distance traveled in (b), and the
velocity (c) and acceleration (d) graphs. It is important to remark that the discontinuities
observed are due to the accuracy of the program to detect the coordinates, and also to the
continuity and little distance between video frames.

The velocity (c) should be nearly constant in both objects. We can assume that the dis-
continuities are not so big, and the same happens with the acceleration plot (d). Moreover,
the total distance will be larger for the airplane 0 that is executing a take-off maneuver.

Finally, other outputs referring to the maximum velocity, mean velocity, maximum acceler-
ation, and mean acceleration are displayed too (Figure 4.11).

Finally, the last part of the algorithm consists in tracking visually the different objects that
appear on the given images. We can see the result in the Figure 4.12:

We can conclude the implementation of object tracking using Detectron2 as a success, we
have achieved a coherent and realistic tracking of the situation described.

4.1.2. Difficulties with the implementation

| have considered crucial to dedicate a section to explain the difficulties | had with the
implementation of the object tracking part.

Detectron2 made my job harder than | thought at first. First, | faced the following problems:

» Searching a 2D video that contains COCO classes, due to the limitation of Detec-
tron2 of not perceiving the third dimension.

» Seek that the video was recorded with a static, not moving camera. This was due to
the simplicity of the implementation.

* Controlling and avoiding complex videos with many objects.

* Detectron2 never detected objects on the same order, appearing and disappering of
the detection.

CHAPTER 4. OBJECT TRACKING 41
Trajectory Total distance
m 4
— airplane0
-20 ~— airplanel 350
—40 300
—-60 .
E 250 1
E % £ 200
> -100 g
a 150
-120
100 A
=140
50 4
-160 .
T T T T T T T T 0
0 50 100 150 200 250 300 350 400 450 airplaned airplanel
X (m) Objects
() (o)
Veloci Accelerati
120 ocity celeration
— airplane0 a0 — airplaned
100 | ~— airplanel —— airplanel
& w
. B0 <
g n
£ 3
Z 601 g 0
E 8
z
* S
0 _—— T —
-40
0= T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Time (s) Time (s}

()

Figure 4.10: Results of motion study (Own elaboration)

Maximum velocity of object @ is 98.9758342738475 m/s.
Mean velocity of object @ is 75.96597419736823 m/s.
Mean acceleration of object © is 1.2043275532408706 m/s.

Figure 4.11: Display of mean and maximum values of airplane 0 (Own elaboration)

Figure 4.12: Visual tracking (Own elaboration)

* Looking for a video that objects did not appear and disappear from the point of view,
because that would cause problems with the implementation making objects appear

42 Machine learning with deep neural networks and object tracking applied to motion of airplanes

and disappear from the tracking coordinates.

Finally, after many searching that task was solved making a simpler 2D animation on Pow-
erpoint, and the problem dealing with the organization and identification of the object was
solved too.

Figure 4.13: Problem with detection (Own elaboration)

As it can be deduced, Detectron2 is not a program to make tracking of objects. Detectron2
is a program that provides object detection on images or videos, and that is the reason
why the program detects randomly airplanes in images and other airplanes do not.

So, finally, | succeeded in the final chose and | have achieved the object tracking task
proposed at the beginning of the project.

CONCLUSIONS

The purpose of the project was to understand the concept of machine learning, deep
learning, and artificial neural networks. Furthermore, it was also crucial the implementation
of a series of neural networks, and the implementation of an object tracking method to
an advanced pre-trained algorithm, Detectron2. Nowadays, | have to expose that all the
objectives have been fulfilled. Along with the project, different decisions have been made
to adequate this unknown field to the academic framework, but generally difficulties have
been overcomed.

The implementation of different neural networks has given me a more general vision of
how machine learning works, because at first machine learning may sound strange and
unintelligible. During the implementation of the three neural networks | observed that the
architecture of the network was crucial and very important to the result. For example, an
algorithm could present overfitting or underfitting in learning curves, and that is a difficult
problem to solve. Making good algorithms that fit on data, but also new data, it is a hard
job.

Defining parameters of the network is also an important thing to do. Mini-batch size, neu-
rons in each layer, epochs to be made... The field is constantly evolving, and it is important
to lean on the experiences of other researchers that have solved similar problems, and
adopt their parameters, their architectures, and the techniques that they have used to
make a good algorithm.

Referring to the second part, adopting a program with some default parameters and adding
new functionalities have been hard for me. Implementing a new code on a complex pro-
gram implies knowledge of machine learning programming that has been tough to acquire.
Anyway, | succeed in my objective with object tracking implementation on Detectron2. A
study of the motion of different objects has been made, representing that plots of their
trajectory, velocity, acceleration, and total distance traveled by them.

As personal conclusions, | have to admit that | learned of a world that was unknown by me
with a lot of new concepts. | have learned to implement different types of neural networks,
to identify problems on code and to implement aspects that | have never done before. |
have learned to deal with pressure situations and to do a project from zero of a topic not
known for me before.

From the programming view, | have to admit that | have learned so much with all these
implementations, regarding neural networks and their underline structures. The hardest
part has been the last implementation of object tracking where | had various problems on
the adaptation with Detectron2, as detailed in section 4.1.2., but finally a simpler solution
has been adopted.

| am happy to have learned a lot in such interesting field. As future improvements, |
would propose more implementations of even more difficult neural networks, using dif-
ferent databases and making more predictions. Also, for the second part of the project, |
would be interesting to implement more functionalities and also to provide the analysis of
more features, and more complex videos, making possible the utilization of a video with a
non-static camera.

Finally, | have to conclude that this final project has been very productive for me. The

43

44 Machine learning with deep neural networks and object tracking applied to motion of airplanes

help and patience of my professor Pietro Massignan have been crucial for me, helping me
in the most critical moments of work and cheering me from the very start. The machine
learning field is a very promising sector with a nice forecast, and | would be happy to work
on it in the near future. With the execution of this project, | have discovered an innovative
interesting world that | am sure will be present in the lives of all of us.

BIBLIOGRAPHY

[1] Gurney, Kevin. An introduction to neural networks [online]. London: Taylor & Francis
e-Library, 2004. ISBN 0203451511. Available at: <https://www.inf.ed.ac.uk/
teaching/courses/nlu/assets/reading/Gurney_et_al.pdf>. 3

[2] K.S.Jagadish; R.N.lyengar. Recent Advances in Structural Engineering. India: Univer-
sities Press (India) Private Limited, 2005. ISBN 8173714932. ix, 4

[3] Ayodele, Taiwo. Types of Machine Learning Algorithms. United Kingdom: University of
Portsmouth, 2010. ISBN 9789533070346. ix, 7

[4] Moolayil, Jojo. A Laymans Guide to Deep Neural Networks [online]. To-
wards Data Science, 2019. Available at: <https://towardsdatascience.com/
a-laymans-quide-to-deep-neural-networks—ddcea24847fb>. ix, 8

[5] Yassin, Gamil. Build Simple Al .NET Library - Part 3 - Perceptron [online]. CodePro-
ject, 2017. Available at: <https://www.codeproject.com/Articles/1205732/
Build-Simple-AI-NET-Library-Part-Perceptron>. ix, 9

[6] Nielsen, Michael. Neural Networks and Deep Learning [online]. Australia: Determina-
tion Press, 2015. Available at: <http://neuralnetworksanddeeplearning.com>.
ix, 10, 11,12, 15

[7] Saxena, Sharoon. Underfitting VS. Overfitting (vs. Best Fit-
ting) in Machine Learning [online]. Analytics Vidhya, 2020. Avail-
able at: <https://www.analyticsvidhya.com/blog/2020/02/
underfitting-overfitting-best-fitting-machine-learning/>. ix, 14

[8] CS231n Convolutional Neural Networks for Visual Recognition. Convolutional Neu-
ral Networks (CNNs /ConvNets) [online]. CS231, 2020. Available at: < https:
//cs231n.github.io/convolutional-networks/>. ix, 21, 22, 24

[9] Forgus, Rob et al. Deep Learning Methods for Vision [online]. New York:
NYU, 2012. Available at: <https://cs.nyu.edu/~fergus/tutorials/deep_
learning_cvprl2/>. ix, 23

[10] Prabhu, Raghav. Understading of Convolutional Neural Network (CNN) - Deep Learn-
ing [online]. Medium, 2018. Available at: <https://medium.com/@RaghavPrabhu/
understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148>.
ix, 23

[11] Budhiraja, Amar. Dropout in (Deep) Machine Learning [online].
Medium, 2016. Available at: <https://medium.com/@amarbudhiraja/
https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-mac
ix, 25

[12] Ag, Amin. Batch Normalization in Deep Learning [online]. Medium, 2019.
Available at: <https://medium.com/ai%C2%B3-theory-practice-business/
batch-normalization-in-deep-learning-ca2l5a7a7abd>. ix, 25

45

https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney_et_al.pdf
https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney_et_al.pdf
https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb
https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb
https://www.codeproject.com/Articles/1205732/Build-Simple-AI-NET-Library-Part-Perceptron
https://www.codeproject.com/Articles/1205732/Build-Simple-AI-NET-Library-Part-Perceptron
http://neuralnetworksanddeeplearning.com
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/
https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/ai%C2%B3-theory-practice-business/batch-normalization-in-deep-learning-ca215a7a7a5d
https://medium.com/ai%C2%B3-theory-practice-business/batch-normalization-in-deep-learning-ca215a7a7a5d

46 Machine learning with deep neural networks and object tracking applied to motion of airplanes

[13] Keras. Keras [online]. 2020, Keras. Available at: <https://keras.io/>. ix, 26

[14] Krizhevsky, Alex. The CIFAR-10 dataset [online]. California: Alex Krizhevsky, 2009.
Available at: <https://www.cs.toronto.edu/~kriz/cifar.html>. ix, 29

[15] Facebook Al. Detectron2: A PyTorch-based modular object detection library
[online]. Facebook, 2019. Available at: <https://ai.facebook.com/blog/
—-detectron2-a-pytorch-based-modular-object-detection-library-/>.
ix, 35

[16] Colab. Detectron2 ~ Beginner's Tutorial ~ [online]. Facebook, 2020.
Available at: <https://colab.research.google.com/drive/
16jcadocbbCFAQ96jDe2HwtXj7BMD_-m5>. ix, 36

[17] Cornell University. Microsoft COCO: Common Objects in Context [online]. Cornell
University, 2014. Available at: <https://cocodataset.org/>. ix, 37

[18] Salamanca University. Redes Neuronales [online]. Available at: <http://
avellano.fis.usal.es/~lalonso/RNA/index.htm>.

[19] The University of Queensland. What is a neuron? [online]. Australia: The
University of Queensland, 2019. Available at: <http://gbi.ug.edu.au/brain/
brain-anatomy/what-neuron>.

[20] HealthLine. What are neurons? [online]. New York: Healthline, 2020. Available at:
<https://www.healthline.com/health>.

[21] Wikipedia. Computer Science [online]. Wikimedia Foundation, 2020. Available at:
<https://en.wikipedia.org/wiki/Computer_science>.

[22] Wikipedia. Artificial Intelligence [online]. Wikimedia Foundation, 2020. Available at:
<https://en.wikipedia.org/wiki/Artificial_intelligence>.

[23] Mathworks. Machine Learning: Tres cosas que es necesario saber [online]. The
Mathworks, Inc. 2020. Available at: <https://es.mathworks.com/discovery/
machine-learning.html>.

[24] Simon, Phil. Too Bit To Ignore: The Business Case for Big Data. Hoboken, New
Jersey: John Wiley & Sons, Inc. 2013. ISBN 9781119217848. 5

[25] Mitchell, Tom. Machine Learning. McGraw Hill Science/Engineering/Math, 1997.
ISBN 9780070428072.

[26] Wikipedia. Timeline of machine learning [online]. Wikimedia Foundation, 2020.

Available at: <https://en.wikipedia.org/wiki/Timeline_of_machine_
learning>.

[27] Internet Society. Artificial Intelligence and Machine Learning: Pol-
icy Paper [online]l. Reston: Internet Society, 2020. Available at:
< https://www.lnternetsociety.org/resources/doc/2017/

artificial-intelligence-and-machine-learning-policy-paper/
?gclid=CjwKCAjw-YT1BRAFEiwAd2WRtqv_JloM1J9_ZrCflgi_
xArMgt CUNTumFJBPm-NoR4dQuv69_sTQdRoCoeIQAVD_BwE>.

https://keras.io/
https://www.cs.toronto.edu/~kriz/cifar.html
https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/
https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://cocodataset.org/
http://avellano.fis.usal.es/~lalonso/RNA/index.htm
http://avellano.fis.usal.es/~lalonso/RNA/index.htm
http://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
http://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
https://www.healthline.com/health
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://es.mathworks.com/discovery/machine-learning.html
https://es.mathworks.com/discovery/machine-learning.html
https://en.wikipedia.org/wiki/Timeline_of_machine_learning
https://en.wikipedia.org/wiki/Timeline_of_machine_learning
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/?gclid=CjwKCAjw-YT1BRAFEiwAd2WRtqv_J1oMlJ9_ZrCflgi_xArMgtCUNTumFJBPm-NoR4dQuv69_sTQdRoCoeIQAvD_BwE
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/?gclid=CjwKCAjw-YT1BRAFEiwAd2WRtqv_J1oMlJ9_ZrCflgi_xArMgtCUNTumFJBPm-NoR4dQuv69_sTQdRoCoeIQAvD_BwE
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/?gclid=CjwKCAjw-YT1BRAFEiwAd2WRtqv_J1oMlJ9_ZrCflgi_xArMgtCUNTumFJBPm-NoR4dQuv69_sTQdRoCoeIQAvD_BwE
https://www.internetsociety.org/resources/doc/2017/artificial-intelligence-and-machine-learning-policy-paper/?gclid=CjwKCAjw-YT1BRAFEiwAd2WRtqv_J1oMlJ9_ZrCflgi_xArMgtCUNTumFJBPm-NoR4dQuv69_sTQdRoCoeIQAvD_BwE

[28] Mohammed, Mohssen et al. Machine Learning. Algorithms an Applications. Boca
Raton: Taylor & Francis Group, LLC, 2017. ISBN 9781498705387.

[29] Hurwitz, Judith; Kirsch, Daniel. Machine Learning for dummies [online]. Hoboken:
John Wiley & Sons, Inc, 2018. ISBN 978119454946. Available at: <https://www.
ibm.com/downloads/cas/GB8ZMQZ3>.

[80] Geeks for geeks. Semi-Supervised Learning [online]. Noida: Geeks
for Geeks, 2019. Available at: <https://www.geeksforgeeks.org/
ml-semi-supervised-learning/>.

[31] Brownlee, Jason. What is Deep Learning? [online]. Australia: Machine Learn-
ing Mastery, 2019. Available at: <https://machinelearningmastery.com/
what-is-deep-learning/>.

[32] Brownlee, Jason. Overfitting and Underfitting With Machine Learn-
ing Algorithms [online]. Australia: Machine Learning Mastery,
2016. Available at: <https://machinelearningmastery.com/
overfitting-and-underfitting-with-machine-learning-algorithms/>.

[33] Jupyter Notebook. Jupyter Notebook [online]. Project Jupyter, 2020. Available at:
<https://jupyter.org/>.

[34] Brownlee, Jason. How to use Learning Curves to Diagnose Machine
Learning Model Performance [online]. Australia: Machine Learning Mas-
tery, 2019. Available at: <https://machinelearningmastery.com/
learning-curves-for-diagnosing-machine-learning-model-performance/>.

https://www.ibm.com/downloads/cas/GB8ZMQZ3
https://www.ibm.com/downloads/cas/GB8ZMQZ3
https://www.geeksforgeeks.org/ml-semi-supervised-learning/
https://www.geeksforgeeks.org/ml-semi-supervised-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://jupyter.org/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

APPENDICES

APPENDIX A. MNIST DEEP NEURAL NETWORK

The appendix “MNIST Deep Neural Network (DNN)” shows the implementation of a Deep
Neural Network based on the MNIST database. It is written in Python 3.8 language on a

Jupyter Notebook environment. In this appendix, the full code and training process can be
found.

51

network

July 5, 2020

1 MNIST DNN

Adapted from “Neural Network and Deep Learning”- Michael Nielsen (Dec 2019)

[3]: class Network(object):

def __init__(self, sizes):
"""The list ''sizes''

respective layers of the network. The biases and weights for the

network are initialized randomly, using a Gaussian

distribution with mean 0O, and wariance 1."""

contains the number of neurons in the

self .num_layers = len(sizes)
self.sizes = sizes
self .biases = [np.random.randn(y, 1) for y in sizes[1:]]
self .weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])]

def feedforward(self, a):
"""Implements the sigmoid function"""
for b, w in zip(self.biases, self.weights):
a = sigmoid(ap.dot(w, a)+b)
return a

def SGD(self, training data, epochs, mini_batch_size, eta,
test_data=None) :

"""Train the neural network using minti-batch stochastic
gradient descent (SGD). The ~“training_data” is a list of tuples
““(z, y) representing the training inputs and the desired
outputs. If "~“test_data " is provided then the
network will be evaluated against the test data after each
epoch, and partial progress printed out."""

training_data = list(training_data)
n = len(training_data)

if test_data:

test_data = list(test_data)
n_test = len(test_data)

for j in range(epochs):
random.shuffle(training_ data)
mini_batches = [
training_datalk:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print ("Epoch {} : {} / {}".format(j,self.
—evaluate(test_data) ,n_test));
else:
print ("Epoch {} complete".format(j))

def update_mini_batch(self, mini_batch, eta):
"""Update the network's weights and biases by applying
gradient descent using backpropagation to a single mini batch.
The ~“mini_batch™ " 4is a list of tuples ~“(z, y) °, and °°

nnn

eta
1s the learning rate.
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

nabla_b [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

nabla_w [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self .weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):

"""Return a tuple ~~(nabla_b, nabla_w)"
gradient for the cost function C_z. ~“nabla_b” " and
“‘nabla_w" " are layer-by-layer lists of numpy arrays, similar
to "““self.biases and "~ “self.weights
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [1 # list to store all the z wectors, layer by layer
for b, w in zip(self.biases, self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

representing the

bl nmnn

[4] :

activations.append(activation)
backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
Note that the wariable 1 im the loop below %s used a little
differently to the notation in Chapter 2 of the book. Here,
1 = 1 means the last layer of mneurons, 1l = 2 is the
second-last layer, and so on. It's a renumbering of the
scheme in the book, used here to take advantage of the fact
that Python can use negative indices in lists.
for 1 in range(2, self.num_layers):
z = zs[-1]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-1+1].transpose(), delta) * sp
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())
return (nabla_b, nabla_w)

def evaluate(self, test_data):
"""Return the number of test inputs for which the neural
network outputs the correct result."""
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_datal
return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):
"tiReturn the vector of partial derivatives \partial C. z /
\partial a for the output activations."""
return (output_activations-y)

Miscellaneous functions
def sigmoid(z):
"""The sigmoid function."""
return 1.0/(1.0+np.exp(-2))

def sigmoid_prime(z):

"""Derivative of the sigmoid function."""
return sigmoid(z)*(1-sigmoid(z))

2 Train the model

import mnist_loader

[5]: training data, validation_data, test_data = \
. mnist_loader.load_data_wrapper()

[6]: import network

[7]: net = network.Network([784, 30, 10]) # 4 network with first layer (784
—neurons),30 hidden neurons and 10 neurons in the third layer.

[8]: network=net.SGD(training data, 30, 10, 3.0, test_data=test_data) # Learn withy
30 epochs, with a mint batch size of 10, and a learning rate 3.0.

Epoch 0 : 8284 / 10000
Epoch 1 : 8353 / 10000
Epoch 2 : 8452 / 10000
Epoch 3 : 8460 / 10000
Epoch 4 : 9269 / 10000
Epoch 5 : 9376 / 10000
Epoch 6 : 9433 / 10000
Epoch 7 : 9406 / 10000
Epoch 8 : 9413 / 10000
Epoch 9 : 9407 / 10000
Epoch 10 : 9444 / 10000
Epoch 11 : 9426 / 10000
Epoch 12 : 9451 / 10000
Epoch 13 : 9454 / 10000
Epoch 14 : 9429 / 10000
Epoch 15 : 9459 / 10000
Epoch 16 : 9468 / 10000
Epoch 17 : 9458 / 10000
Epoch 18 : 9470 / 10000
Epoch 19 : 9496 / 10000
Epoch 20 : 9472 / 10000
Epoch 21 : 9436 / 10000
Epoch 22 : 9490 / 10000
Epoch 23 : 9477 / 10000
Epoch 24 : 9483 / 10000
Epoch 25 : 9483 / 10000
Epoch 26 : 9478 / 10000
Epoch 27 : 9502 / 10000
Epoch 28 : 9507 / 10000
Epoch 29 : 9498 / 10000

APPENDIX B. MNIST CONVOLUTIONAL
NEURAL NETWORK USING KERAS

The appendix “MNIST Convolutional Neural Network (CNN) using Keras” shows the imple-
mentation of a Convolutional Neural Network based on the MNIST database. It is written
in Python 3.8 language on a Jupyter Notebook environment using the Keras API. In this
appendix, the full code and training process can be found. Also, graphs about training and
validation accuracy/loss are attached.

57

MNIST CNN using Keras
July 7, 2020

1 MNIST Deep Convolutional Neural Network (CNN) using
Keras

Adapted from https://keras.io/examples/mnist__cnn/

2 IMPORT DEPENDENCIES

2.0.1 First is needed to import all modules and dependencies to make CNN work:

[15]: from __future__ import print_function

import keras # Import keras deep learning library.

from keras.datasets import mnist # Import the MNIST dataset from keras.

from keras.models import Sequential # The simplest and more friendly model toy
—program keras and define the layer's structure.

from keras.layers import Dense, Dropout, Flatten # Import the type of layers,
—~that will be used from keras.

from keras.layers import Conv2D, MaxPooling2D

from keras import backend as K

from keras.preprocessing.image import load_img, img_to_array # To test the CNN,
—and rescale an entering image.

import os # For looking and directories and import settings.

import matplotlib.pyplot as plt

import timeit # We import it to calculate how many time lasts our models to be,
—trained.

3 DEFINE NETWORK PARAMETERS

3.0.1 The next lines represent the setting of the parameters of the Convolutional
Neural Network:

[16]: batch_size = 128
num_classes = 10 # The 10 digits 1,2,3,4,5,6... collected in 10 clases.
epochs = 12

[17]:

[18]:

4 SAVE THE MODEL

save_dir = os.path.join(os.getcwd(), 'saved_models')
model_name = 'mnist_cnn_trained.hb'

5 LOAD DATASET

Input tmage dimensions.
img_rows, img_cols = 28, 28

Load dataset.
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
X_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img cols)
input_shape = (1, img_rows, img_cols)

else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

Prepare pizel data.

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
X_train /= 255

X_test /= 255

#Summarize loaded dataset

print('Loaded dataset dimensions:')

print('-Train: Xtraining=Ys, Ytraining=Ys' 7 (x_train.shape, y_train.shape))
print('-Test: Xtraining=Ys, Ytraining=Js' % (x_test.shape, y_test.shape))
print(x_train.shape[0], 'train samples')

print(x_test.shape[0], 'test samples')

Convert class wvectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Loaded dataset dimensions:

-Train: Xtraining=(60000, 28, 28, 1), Ytraining=(60000,)
-Test: Xtraining=(10000, 28, 28, 1), Ytraining=(10000,)
60000 train samples

10000 test samples

In the following lines, the structure of the CNN is described. With the command model.add() all
the desired layers can be added to the entire neural network.

5.1 BUILD AND TRAIN THE CNN
5.2 (this whole section may be skipped if the CNN has already been trained)

[19]: model = Sequential() #We import the sequential model of keras.

#Next we describe the arquitechture of the CNN (layers).

model .add(Conv2D (32, kernel _size=(3, 3),
activation='relu',
input_shape=input_shape))

model .add(Conv2D (64, (3, 3), activation='relu'))

model . add (MaxPooling2D(pool_size=(2, 2)))

model . add (Dropout (0.25))

model .add(Flatten())

model .add(Dense (128, activation='relu'))

model . add (Dropout (0.5))

model .add (Dense(num_classes, activation='softmax'))

5.2.1 Use an optimizer to train the model

[20]: | # Use Adadelta optimizer.
opt = keras.optimizers.Adadelta(learning_rate=1.0, rho=0.95)
#Normally this terms are by default.

model . compile(loss=keras.losses.categorical_crossentropy,
optimizer=opt,
metrics=['accuracy'])

5.2.2 Train the Convolutional Neural Network:

[21]: start = timeit.default_timer()

history= model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))

stop = timeit.default_timer()

print('Time: ', stop - start)

Save model and weights.

if not os.path.isdir(save_dir):
os.makedirs(save_dir)

model_path = os.path.join(save_dir, model_name)

model . save (model_path)
print('Saved trained model at %s ' % model_path)

Score trained model.
result = model.evaluate(x_test, y_test, verbose=0)

Train on 60000 samples, validate on 10000 samples

Epoch 1/12

60000/60000 [====] - 213s 4ms/step - loss: 0.2665 -
accuracy: 0.9167 - val_loss: 0.0703 - val_accuracy: 0.9787

Epoch 2/12

60000/60000 [] - 100s 2ms/step - loss: 0.0888 -
accuracy: 0.9732 - val_loss: 0.0401 - val_accuracy: 0.9868

Epoch 3/12

60000/60000 [] - 99s 2ms/step - loss: 0.0664 -
accuracy: 0.9800 - val_loss: 0.0334 - val_accuracy: 0.9893

Epoch 4/12

60000/60000 [====] - 100s 2ms/step - loss: 0.0549 -
accuracy: 0.9841 - val_loss: 0.0326 - val_accuracy: 0.9889

Epoch 5/12

60000/60000 [] - 99s 2ms/step - loss: 0.0482 -
accuracy: 0.9854 - val_loss: 0.0305 - val_accuracy: 0.9902

Epoch 6/12

60000/60000 [] - 98s 2ms/step - loss: 0.0414 -
accuracy: 0.9874 - val_loss: 0.0307 - val_accuracy: 0.9900

Epoch 7/12

60000/60000 [1 - 98s 2ms/step - loss: 0.0378 -
accuracy: 0.9880 - val_loss: 0.0315 - val_accuracy: 0.9901

Epoch 8/12

60000/60000 [1 - 99s 2ms/step - loss: 0.0349 -
accuracy: 0.9892 - val_loss: 0.0258 - val_accuracy: 0.9921

Epoch 9/12

60000/60000 [] - 99s 2ms/step - loss: 0.0322 -

accuracy: 0.9900 - val_loss: 0.0257 - val_accuracy: 0.9913

Epoch 10/12

60000/60000 [] - 101s 2ms/step - loss: 0.0315 -
accuracy: 0.9908 - val_loss: 0.0294 - val_accuracy: 0.9912

Epoch 11/12

60000/60000 [] - 101s 2ms/step - loss: 0.0287 -
accuracy: 0.9913 - val_loss: 0.0269 - val_accuracy: 0.9917

Epoch 12/12

60000/60000 [====] - 101s 2ms/step - loss: 0.0272 -
accuracy: 0.9915 - val_loss: 0.0281 - val_accuracy: 0.9915

Time: 1316.3387901000096

Saved trained model at C:\Users\claud\OneDrive\Escritorio\TFG\TFG\JupyterNoteboo
k\saved_models\mnist_cnn_trained.hb

6 PLOT TRAINING AND VALIDATION ACCURACY/LOSS
VALUES

[22]: | # Accuracy
plt.subplot(121)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel ('Epoch')
plt.legend(['Train', 'Test']l, loc='upper left')

Loss

plt.subplot(122)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')
plt.subplots_adjust(bottom=0.1, right=2, top=0.9)
plt.show()

Final classtification accuracy

FinalAccuracy=result[1]*100

FinalLoss=result[0]

print('Test accuracy is'+' '+ str(FinalAccuracy)+' '+'/'+'.")
print('Test loss is'+' '+str(FinallLoss)+'.')

Model accuracy Model loss
pog4{ — Train —— Train
Test 025 Test
098
097 020
& 096
g @ 015
Q 0.95 4
094 010
093
0.05
a2

Epoch Epoch

Test accuracy is 99.15000200271606 7%.
Test loss is 0.02810708877939178.

APPENDIX C. CIFAR-10 CONVOLUTIONAL
NEURAL NETWORK USING KERAS

The appendix “CIFAR-10 Convolutional Neural Network (CNN) using Keras” shows the
implementation of a Convolutional Neural Network based on the CIFAR-10 dataset. It is
written in Python 3.8 language on a Jupyter Notebook environment using the Keras API.
In this appendix, the full code and training process can be found.

63

CIFAR-10 CNN using Keras
August 23, 2020

1 CIFAR-10 Deep Convolutional Neural Network (CNN) using
Keras

Adapted from https://keras.io/examples/cifarl0 cnn/

2 IMPORT DEPENDENCIES

2.0.1 First is needed to import all modules and dependencies to make CNN work:

from __future__ import print_function

import keras # Import keras deep learning library.

from keras.datasets import cifarl0 # Import the CIFAR-10 dataset from keras.
from keras.models import Sequential # The simplest and more friendly model toy

—program keras and define the layer's structure.

from keras.layers import Dense, Dropout, Activation, Flatten,
—BatchNormalization # Import the type of layers that will be used from keras.

from keras.layers import Conv2D, MaxPooling2D # More layers to be wmported.

from keras.optimizers import SGD, RMSprop # Import the optimizer.

from keras.models import load_model # To load a trained model.

from keras.preprocessing.image import load_img, img_to_array # To test the CNN,
—and rescale an entering image.

import os # For looking and directories and import settings.

import matplotlib.pyplot as plt

import timeit # We import it to calculate how many time lasts our models to be,
—~trained.

3 DEFINE NETWORK PARAMETERS

3.0.1 The next lines represent the setting of the parameters of the Convolutional
Neural Network:

batch_size = 32

num_classes = 10 # CIFAR-10: 10 classes.

epochs = 10 # Times the network will be trained with batches method.
num_predictions = 20

rmsprop= True # Wether or mot use Tmsprop optimizer.

dropout= True # Wether or not use dropout regularization technique.

[1:

[]:

batchnormalization= False # Wether or not use batch normalization technique.

4 SAVE THE MODEL

if

if

if

if

if

SGD:
save_dir =
model name

rmsprop and
save_dir =
model_name

rmsprop and
save_dir =
model_name

rmsprop and
save_dir =
model _name

rmsprop and
save_dir =
model _name

else:

save_dir =
model _name

os.path. join(os.getcwd(), 'saved_models')
= 'keras_trained_initialmodel.hb'

not (dropout,batchnormalization) :
os.path. join(os.getcwd(), 'saved_models')
= 'keras_trained_rmspropmodel.hb'

dropout and not(batchnormalization):
os.path.join(os.getcwd(), 'saved_models')
= 'keras_trained_dropoutmodel.h5'

not (dropout) and (batchnormalization):
os.path.join(os.getcwd(), 'saved_models')
= 'keras_trained_batchnormalizationmodel.hb'

dropout and batchnormalization:
os.path. join(os.getcwd(), 'saved_models')
= 'keras_trained_finalmodel.hb'

os.path. join(os.getcwd(), 'saved_models')
= 'keras_trained_newmodel.hb'

5 LOAD DATASET

(x_train, y_train), (x_test, y_test) =

—test and training data.

#Summarize loaded dataset.
print('Loaded dataset dimensions:')

print('-Train: Xtraining=Js, Ytraining=Ys' 7% (x_train.shape, y_train.shape))
print('-Test: Xtraining=Ys, Ytraining=Js' % (x_test.shape, y_test.shape))

print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

Convert class wvectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

cifar10.load_data() # Importation of,

5.1 BUILD AND TRAIN THE CNN
5.1.1 (this whole section may be skipped if the CNN has already been trained)

[]: model = Sequential() #We import the sequential model of keras.

#Next we describe the arquitechture of the CNN (layers).
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
if batchnormalization:
model . add (BatchNormalization())
model .add (Activation('relu'))
model .add(Conv2D (32, (3, 3)))
if batchnormalization:
model .add (BatchNormalization())
model .add(Activation('relu'))
model . add (MaxPooling2D(pool_size=(2, 2)))
if dropout:
model .add (Dropout (0.25))

model.add(Conv2D(64, (3, 3), padding='same'))
if batchnormalization:

model . add (BatchNormalization())
model .add(Activation('relu'))
model .add (Conv2D (64, (3, 3)))
if batchnormalization:

model . add (BatchNormalization())
model.add(Activation('relu'))
model . add (MaxPooling2D(pool_size=(2, 2)))
if dropout:

model . add (Dropout (0.25))

model .add(Flatten())
model .add (Dense(512))
if batchnormalization:
model .add (BatchNormalization())
model .add(Activation('relu'))
if dropout:
model . add (Dropout (0.5))
model .add (Dense (num_classes))
model .add(Activation('softmax'))

5.1.2 TUse an optimizer to train the model

[1: if rmsprop:
opt = keras.optimizers.RMSprop(learning rate=0.0001, decay=1e-6)
#Normally the parameters of optimizers are by default.
else:
opt = keras.optimizers.SGD(learning_rate=0.01)

model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])

#Prepare pizel data.

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
X_train /= 255

X_test /= 255

5.1.3 Train the Convolutional Neural Network:

[1: start = timeit.default_timer()

history=model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_test, y_test),
shuffle=True)

stop = timeit.default_timer()
print('Time: ', stop - start)

Save model and weights.

if not os.path.isdir(save_dir):
os.makedirs(save_dir)

model_path = os.path.join(save_dir, model_name)

model . save (model_path)

print('Saved trained model at %s ' % model_path)

Score trained model.
result = model.evaluate(x_test, y_test, verbose=1)

6 PLOT TRAINING AND VALIDATION ACCURACY/LOSS
VALUES

[1: # Accuracy
plt.subplot(121)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel ('Epoch')
plt.ylim((0,1))
plt.legend(['Train', 'Test']l, loc='upper left')

Loss

plt.subplot(122)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')
plt.ylim((0,2.5))
plt.subplots_adjust(bottom=0.1, right=2, top=0.9)
plt.show()

Final classtfication accuracy

FinalAccuracy=result [1]*100

FinalLoss=result [0]

print('Test accuracy is'+' '+ str(FinalAccuracy)+' '+'J%'+'.")
print('Test loss is'+' '+str(FinalLoss)+'.')

7 TEST THE CNN

L 1:|# Import the trained model.
model_path = os.path.join(save_dir, model_name)
model = load_model (model_path)

#Define the label names of the outputs of the trained model. In this case the,
—~CIFAR-10 model labels.
def load_label _names():
return ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',,
—'horse', 'ship', 'truck']

def classify(sample_image) :
Load the image
img = load_img(sample_image, target_size=(32, 32))

Convert to array

img = img_to_array (img)

Reshape into a single sample with 3 channels
img = img.reshape(l, 32, 32, 3)

Prepare pizel data

img = img.astype('float32')

img = img / 255.0

result = model.predict_classes(img)

print (load_label_names() [result[0]])

7.0.1 Make a prediction:

[18]: | # It can be any dimensions input image. The function "classify"
#reshape it and make the prediction.
classify('airplanel.jpg')

airplane

APPENDIX D. COMPARISON OF THE RESULTS
OBTAINED BY CIFAR-10 CNN CODE USING
KERAS

The appendix “Comparison of the results obtained by CIFAR-10 CNN code using Keras”
shows the results obtained from the implementation of a Convolutional Neural Network
based on the CIFAR-10 dataset. It is written in Python 3.8 language on a Jupyter Notebook
environment using the Keras API. In this appendix, graphs about training and validation
accuracy/loss of five experimental cases are attached.

Experimental cases attained:

1. Simple model using stochastic gradient descent optimizer (SGD)

2. Simple model using rmsprop optimizer

3. Model using rmsprop optimizer and dropout regularization technique
4. Model using rmsprop optimizer and batch normalization technique

5. Model using rmsprop optimizer and both regularization techniques (dropout and
batch normalization)

71

CIFAR-10 CNN COMPARISON OF THE RESULTS

April 9, 2020

1 COMPARISON OF THE RESULTS

1.0.1 This comparison is made between five trained models:

Simple model using stochastic gradient descent optimizer (SGD).

Simple model using rmsprop optimizer.

Model using rmsprop optimizer and dropout regularization technique.

Model using rmsprop optimizer and batch normalization regularization technique.

Model using rmsprop optimizer and both regularization techniques (dropout and batch normali.

g W

1.1 Accuracy

[205]: plt.subplot(151)
plt.plot(accuracyl)
plt.plot(accuracyrefl)
plt.ylim((0,1))
plt.title('Model 1 accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test']l, loc='upper left')

plt.subplot(152)

plt.plot(accuracy?2)

plt.plot(accuracyref?2)

plt.ylim((0,1))

plt.title('Model 2 accuracy')
plt.ylabel('Accuracy')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')

plt.subplot(153)
plt.plot(accuracy3)
plt.plot(accuracyref3)
plt.ylim((0,1))
plt.title('Model 3 accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')

[206] :

plt.

plt.
.plot (accuracy4)
.plot (accuracyref4)

plt
plt

plt.

plt

plt.
plt.
plt.

plt.
.plot (accuracy5)
.plot (accuracyref5)
.y1lim((0,1))
.title('Model 5 accuracy')
.ylabel('Accuracy')

plt
plt
plt
plt
plt

plt.
plt.

plt

plt.

1.2

plt.
.plot(loss1)

.plot (lossrefl)
.y1im((0,2.50))
.title('Model 1 loss')

plt
plt
plt
plt

legend(['Train', 'Test'], loc='upper left')

subplot (154)

y1im((0,1))

xlabel('Epoch')

.title('Model 4 accuracy')
ylabel('Accuracy')

legend(['Train', 'Test'], loc='upper left')

subplot (155)

xlabel ('Epoch')

legend(['Train', 'Test'], loc='upper left')
.subplots_adjust(bottom=0.1, right=2, top=1.3, wspace=0.5, hspace=0.5)

show ()

0 Model 1 accuracy

Model 2 accuracy

0 Model 3 accuracy

— Train
Test

0.8 §

0.6 4

Accuracy

04

0.2 4

Accuracy

0.2 4

— Train
Test

Accuracy

0.8 4

0.6

0.4 4

0.2 4

— Train
Test

0.0

Epoch

Loss

subplot (151)

0.0

Epoch

0.0+

Epoch

Accuracy

0.8

0.6 /|

0.4

0.2

0.0

Model 4 accuracy

0 Model 5 accuracy

— Train
Test

Accuracy

0.8 §

0.6 4

0.4 4

0.2 4

— Train
Test

Epoch

0.0

Epoch

plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')

plt.subplot(152)

plt.plot(loss2)

plt.plot(lossref2)

plt.ylim((0,2.50))

plt.title('Model 2 loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test']l, loc='upper left')

plt.subplot(153)

plt.plot(loss3)

plt.plot(lossref3)

plt.ylim((0,2.50))

plt.title('Model 3 loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')

plt.subplot(154)

plt.plot(loss4)

plt.plot(lossref4)

plt.ylim((0,2.50))

plt.title('Model 4 loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test']l, loc='upper left')

plt.subplot(155)

plt.plot(lossb)

plt.plot(lossrefb)

plt.ylim((0,2.50))

plt.title('Model 5 loss')

plt.ylabel('Loss')

plt.xlabel('Epoch')

plt.legend(['Train', 'Test'], loc='upper left')
plt.subplots_adjust(bottom=0.1, right=2, top=1.3, wspace=0.5, hspace=0.5)
plt.show()

[207] :

time.
time.
time.
time.
time.

append (float (timel) /60)
append (float (time2) /60)
append (float (time3) /60)
append (float (time4) /60)
append (float (timeb5)/60)
plt.bar(x,time,color=['blue', 'red', 'green', 'yellow', 'orange'])

plt.title('Comparison of time between the 5 trained models')
plt.ylabel('Minutes')

plt.show()

Model 1 loss Model 2 loss Model 3 loss Model 4 loss Model 5 loss
—— Train —— Train —— Train —— Train —— Train
Test Test Test Test Test
20 20 20
154" 15 151
@ @ @
5 5 5
10 10 10
0.5 A 0.5 A 054 05 0.5 A
004 T 00 4 0.0 0.0+ T 00
o 5 o 5 o 5 o 5 o 5
Epoch Epoch Epoch Epoch Epoch
1.3 Time
time=[]
x=['Model 1','Model 2', 'Model 3', 'Model 4', 'Model 5']

Comparison of time between the 5 trained models

I I
Model 1 Made| 2 Model 3 Made| 4 Model &

APPENDIX E. OBJECT TRACKING

The appendix “Object Tracking” shows the implementation of object tracking into the De-
tectron2 program provided by Facebook. It is written in Python 3.8 language on the Google
Colab environment. In this appendix, full code is presented.

77

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

Object Tracking based on Detectron2

Adapted from https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwWtXj7BMD_-
m5#scrollTo=YUS5_W8wJFO2F.

6 Detectron2

Here, we will go through some basics usage of detectron2, including the following:

e Run inference on images or videos, with an existing detectron2 model
¢ Train a detectron2 model on a new dataset

Then, we will go to my implementation, Object Tracking.

e Tracking of objects

~ Install detectron?2

install dependencies:

I'pip install pyyaml==5.1 pycocotools>»=2.0.1

import torch, torchvision

print(torch._ version__, torch.cuda.is_available())
lgcc --version

opencv is pre-installed on colab

install detectron2: (Colab has CUDA 10.1 + torch 1.6)

See https://detectron2.readthedocs.io/tutorials/install.html for instructions

assert torch. version_ .startswith("1.6")

Ipip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cul@l/torchl.¢

Some basic setup:

Setup detectron2 logger

import detectron2

from detectron2.utils.logger import setup_logger
setup_logger()

import some common libraries

import numpy as np

import os, json, cv2, random

from google.colab.patches import cv2_imshow

import some common detectron2 utilities
from detectron2 import model zoo
from detectron2.engine import DefaultPredictor

from detectron2.config import get cfg
https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 1/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

- - -

from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

~ Run a pre-trained detectron2 model

from google.colab import drive
drive.mount('/content/drive")

import the images from Google Drive

i=0

images=[]

for i in range(50):
filename = str(i) + ".PNG"
im=cv2.imread("/content/drive/My Drive/"+filename)
images.append(im)

Then, we create a detectron2 config and a detectron2 DefaultPredictor to run inference on
this image.

cfg = get _cfg()
add project-specific config (e.g., TensorMask) here if you're not running a model in det
cfg.merge_from file(model zoo.get config file("COCO-InstanceSegmentation/mask_rcnn_R_50 FF
cfg.MODEL.ROI_HEADS.SCORE_THRESH TEST = 0.5 # set threshold for this model
Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles...
cfg.MODEL.WEIGHTS = model zoo.get checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_5¢
predictor = DefaultPredictor(cfg)
outputs=[]
for i in range(len(images)):

outputs.append(predictor(images[i]))

#outputs of learning
import tensorflow as tf
import math

#get instances and boxes predictions

centers=[]

heights=[]

for i in range(len(images)):
outputs[i]["instances"].pred classes
outputs[i]["instances"].pred_boxes
heights.append(outputs[i]["instances"].pred_boxes)
heights[i]=np.array(heights[i])
centers.append(outputs[i]["instances"].pred_boxes.get centers())
centers[i]=centers[i].cpu()
centers[i]=centers[i].numpy()
centers[i]=centers[i].astype(int)
centers[i]=np.array(centers[i])

FrantAanc—nn Aannawval rantanc) H o FAantAadine Fha FfAaandinAatac v)N AL FhAa FfAantAane AL +hAa hAvAac

https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 2/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

LTIHILTI D—=lIpP.Al 1 ay \LCTIILTI D5) # LUIILALIID LIIT LUVl ULlIldLTD \(A,y) Ui LIIT LCliLcI > vl LIIT UUACD

heights=np.array(heights) # contains the coordinates (x1,y1,x2,y2) of the boundaries of tt

#COCO classes dataset

classes=["person","bycicle","car","motorcycle","airplane", "bus","train", "truck", "boat", "tr

#draw of the first image predictions

v = Visualizer(images[©][:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[O]), scale=1.
v = v.draw_instance_predictions(outputs[@]["instances"].to("cpu"))
cv2_imshow(v.get_image()[:, :, ::-1])

recoginize the classes detected
hf=outputs[@]["instances"].pred_classes.cpu()
i=0
while i<len(hf):
print(classes[hf[i]]+" "+str(i))
print(centers[0][i])
i+=1

controlling of the shape of the vectors

maxj=0

i=0

j=[1

while i<len(centers):
j.append(len(centers[i]))
i+=1

positionmin=3j.index(min(j))

#initialization of coordinatestracking vector
coordinatestracking=tf.zeros([len(centers), len(centers[0]), 2])
coordinatestracking=coordinatestracking.cpu()
coordinatestracking=coordinatestracking.numpy()
coordinatestracking=np.array(coordinatestracking)
coordinatestracking=coordinatestracking.astype(int)
coordinatestracking[@]=centers[0]

size=len(centers)

#tcheck that objects occupy the right position (airplane @ in @ position, airplane 1 in 1 ¢
i=0e
while i<(len(centers)-1):
w=0
while w<(len(centers[0])):
j=0
distance=[]
while j<(len(centers[@0])):
distance.append(math.sqrt((centers[i+1][j][@]-coordinatestracking[i][w][0@])**2+(cent
j+=1
positionmind=distance.index(min(distance))
coordinatestracking[i+1][w]=(centers[i+1][positionmind][@],centers[i+1][positionmind]]
w+=1
i+=1

heights=heights[@] # we only care about the initial box boundaries
print("Heights:"+" "+str(heights))
print("This is the coordinates vector:"+" "+ str(coordinatestracking))

https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 3/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

#Calculation of motion
import matplotlib.pyplot as plt
import math

#Vector initializing
x=tf.zeros([len(centers[@]), len(centers), 1])
x=x.cpu()

x=X.numpy ()

x=np.array(x)

x=x.astype(float)

y=tf.zeros([len(centers[@]), len(centers), 1])
y=y.cpu()
y=y .numpy ()

y=np.array(y)
y=y.astype(float)

d=tf.zeros([len(centers[@]), len(centers)-1, 1])
d=d.cpu()

d=d.numpy()

d=np.array(d)

d=d.astype(float)

v=tf.zeros([len(centers[@]), len(centers)-1, 1])
v=v.cpu()

v=v.numpy ()

v=np.array(v)

v=v.astype(float)

a=tf.zeros([len(centers[@]), len(centers)-1, 1])
a=a.cpu()

a=a.numpy()

a=np.array(a)

a=a.astype(float)

dir=tf.zeros([len(centers[0]), len(centers)-1, 1])
dir=dir.cpu()

dir=dir.numpy()

dir=np.array(dir)

dir=dir.astype(float)

vmax=[]
vmax=np.zeros((len(centers[0]),))

vmean=[]
vmean=np.zeros((len(centers[0]),))

amax=[]
amax=np.zeros((len(centers[0]),))

amean=[]
amean=np.zeros((len(centers[0]),))

totald=[]
https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 4/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory
totald=np.zeros((len(centers[0]),))

directionbetweeninitialandfinal=[]
directionbetweeninitialandfinal=np.zeros((len(centers[0])-1,))

scale calculation

classesscale=[0,2,3,4] #"person","car","motorcycle","airplane"
heightsscale=[1.75,1.45,1.20,15.00] #alturas en la realidad: [@]persona [1]coche [2]moto |
classes=outputs[@]["instances"].pred_classes.cpu()

j=0
while j<len(classesscale):
i=0
if (classes[i]==classesscale[]j]):
scale=heightsscale[i]/(0.007*(np.array(abs(heights[@][1].cpu()-heights[@][@].cpu())));
i+=1
j+=1

time vector calculation
t=[0]
j=0
while j<len(centers-1):
t.append(t[j]+0.1)
j+=1

xaxis=[0]

j=0

while j<(len(centers)-2):
xaxis.append(t[j]+0.1)
j+=1

iterative vector calculation
i=0e
while (len(centers))>i:
j=0
while j<(len(centers[0])):
x[jl[i]=scale*coordinatestracking[i][j][@]
y[j][i]=scale*coordinatestracking[i][j][1]
j+=1
i+=1

i=0
while (len(centers)-1)>i:
j=0
while j<(len(centers[0])):
d[j][i]=scale*(math.sqrt((coordinatestracking[i+1][j][@]-coordinatestracking[i][j][@]]
j+=1
i+=1

#set initial values of velocity
vie][e]=(d[e][e])/(t[1]-t[e])
v[1][e]=(d[1][e])/(t[1]-t[e])

#tvelocity calculation
i=0
https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 5/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

while (len(centers)-2)>i:
j=0
while j<(len(centers[0])):
VIjI[i+1]=(d[3]1[1])/(t[i+1]-t[i])
j+=1
i+=1

j=0

while j<len(centers[0]):
totald[j]=(sum(d[j]))
vmax[j]=(max(v[]]))
vmean[j]=(sum(v[j])/len(v[]]))
j+=1

vmeantotal=(sum(vmean)/len(centers[0]))

#velocity interpolation
j=0
while j<(len(centers[0])):
i=0
while i<(len(centers)-3):
resta=abs(v[j][i+1]-v[j]1[i])
if (resta)>(0.25*v[j][i]):
v[jl[i+1]=(v[j][i]+vmeantotal+v[j][i+1]+vmean[]j])/4
v[jl[i+1]=(v[3][i+1]+v([j][i])/2
i+=1
j+=1

j=0
while j<(len(centers[0])):
i=len(centers)-3
while i<=(len(centers)-2):
resta=abs(v[j][i]-v[jl[i-1])
if (resta)>(@.25*v[j][i]):
vIjl[il=(v[jl[i-1]+@.01*v[]j][i-1])
i+=1
j+=1

#tset initial values of acceleration
a[@][@]=abs((v[e][1]-v[e][e]))/(t[1]-t[e])
a[1][e]=abs((v[1][1]-v[1][e]))/(t[1]-t[e])

#tacceleration calculation
i=0
while (len(centers)-2)>i:
j=0
while j<(len(centers[0])):
a[j1[i+1]=(v[jI[i+1]-v[JI[1])/(t[i+1]-t[i])
j+=1
i+=1

j=0
while j<len(centers[0]):
totald[j]=(sum(d[j]))
vmax[j]=(max(v[]]))
https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true

6/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory

vmean[j]=(sum(v[j])/1len(v[]]))
amax[j]=(max(a[3]))
amean[j]=(sum(a[j])/len(a[j]))
j+=1

ameantotal=(sum(amean)/len(centers[0]))

#tacceleration interpolation
j=0
while j<(len(centers[0])):
i=0
while i<(len(centers)-3):
resta=abs(a[j][i+1])-abs(a[jl[i])
if (resta)>(@.05*a[j][i]):
a[jl[i+1]=(a[j]l[i]+ameantotal+a[j][i+1])/3
a[jlli+1]=(a[jl[i+1]+a[j][1i])/2
i+=1
j+=1

j=0
while j<(len(centers[0])):
i=len(centers)-3
while i<=(len(centers)-2):
resta=abs(a[j][i]-a[j]l[i-1])
if (resta)>(@.05*a[j][i]):
a[jl[i]=(a[jl[i-2]+e6.001*a[j][i-2])
i+=1
j+=1

j=0

while j<len(centers[0]):
totald[j]=(sum(d[j]))
vmax[j]=(max(v[j]))
vmean[j]=(sum(v[j])/1len(v[j]))
amax[j]=(max(a[j]))
amean[j]=(sum(a[j])/len(al]j]))
j+=1

plot trajectory

j=0

while j<len(x):
plt.plot(x[j],-y[j],label="airplane"+str(j))
j+=1

plt.title('Trajectory")
plt.xlim([@, 450])
plt.xlabel('x (m)")
plt.ylabel('y (m)")
plt.legend()

plt.show()

plot velocity
j=e
while j<len(v):

https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 7/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory
plt.plot(xaxis,v[j],label="airplane"+str(j))
j+=1

plt.ylim([0, 120])
plt.title('Velocity"')
plt.xlabel('Time (s)')
plt.ylabel('Velocity (m/s)")
plt.legend()

plt.show()

j=0

while j<(len(a)):
plt.plot(xaxis,a[j],label="airplane"+str(j))
j+=1

plt.ylim([-50, 50])
plt.title('Acceleration')
plt.xlabel('Time (s)')
plt.ylabel('Acceleration (m/s”*(2))")
plt.legend()

plt.show()

plot total distance

height = totald

bars=[]

i=0

while i<(len(centers[0])):
bars.append("airplane”+str(i))
i+=1

y_pos = np.arange(len(bars))

plt.bar(y_pos, height)

plt.title('Total distance')

plt.xlabel('Objects")

plt.ylabel('Distance (m)")

plt.xticks(y_pos, bars)

plt.show()

display
j=0
while j<len(centers[0]):
print("Maximum velocity of object"+" "+str(j)+" "+"is"+" "+str(vmax[j])+" "+"m/s.")

print("Mean velocity of object"+" "+str(j)+" "+"is"+" "+str(vmean[j])+" "+"m/s.")

print("Mean acceleration of object"+" "+str(j)+" "+"is"+" "+str(amean[j])+" "+"m/s.")

print("Maximum acceleration of object"+" "+str(j)+" "+"is"+" "+str(amax[j])+ " "+"m/s.
j+=1

(L]
/

visual tracking
colors=[(255,0,0),(0,0,0),(0,255,0), (0,0,255),(255,255,0), (0, 255,255), (255,0,255), (192, 19:

for i in range(len(images)):
v = Visualizer(images[i][:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[O]), scale:
v = v.draw_instance_predictions(outputs[i]["instances"].to("cpu"))
j=0
while j<(len(centers[0])):

AN At~ T Al SmmAamAnT ST fmrAannAS At Aart Al AT I AT SIITNAT mAaAnAS At Acrt A~ AT ITIIT141N © ~AT

https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 8/9

29/8/2020 ObjectTracking_ClaudiaMartin.ipynb - Colaboratory
LVZ.LLICLE(LNdBES [L], (LUUNMULIIALESLI'dUKLIE L[] |LY],L0UlULIldLES LI'dUKLIE L[J]LL])sD, LUl

cv2_imshow(v.get_image()[:, :, ::-1])
j+=1

https://colab.research.google.com/drive/1H1mTxJsxPi57kys9SapAOwPXxiLy-Ublc#scroll To=O0oL0bQeL0AF &printMode=true 9/9

	Introduction
	General introduction to neural networks and machine learning
	Neural Networks
	Machine Learning
	History
	Types of machine learning algorithms

	Deep Neural Networks
	Deep Neural Networks
	Learning
	Learning with gradient descent
	Learning with stochastic gradient descent
	Results on learning process. Underfitting and Overfitting

	Example of a simple DNN
	MNIST database
	Analyzing the MNIST database with a simple DNN

	Convolutional Neural Networks
	Convolutional Neural Networks
	Regularization techniques
	Keras: the Python deep learning API

	Analyzing the MNIST database with a simple CNN
	Example of a CNN
	CIFAR-10 dataset
	Analyzing the CIFAR-10 dataset with a CNN

	Object Tracking
	Object Tracking with Detectron2
	Implementing an Object Tracking method to Detectron2
	Difficulties with the implementation

	Conclusions
	Bibliography
	MNIST Deep Neural Network
	MNIST Convolutional Neural Network using Keras
	CIFAR-10 Convolutional Neural Network using Keras
	Comparison of the results obtained by CIFAR-10 CNN code using Keras
	Object Tracking

