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FOREWORD

Heat  recovery  is  a  topical  issue,  as  it  affects  buildings’  energy  efficiency.  A
typical heat recovery application is a ventilation system, in which intake air is
heated by warm outlet air. The heat recovery of ventilation systems can be
roughly divided into recuperative and regenerative heat exchangers. This
report focuses on regenerative heat exchanger computational modelling, in
which mass is alternately heated and cooled by changing the direction of the
air flow.

As the authors carried out the necessary modelling and programming mainly
during  evenings  and  weekends,  it  took  over  five  years  to  complete  the
report. The authors wish to warmly thank the Finnish Institute of
Occupational Health and Aalto University for making this study possible.
Further, the advice of Jorma Kinnunen MSc (Tech.), Pasi Marttila MSc (Tech.)
and Jukka Tarvo MSc (Tech.) on the use of COMSOL Multiphysics with
MATLAB program is gratefully acknowledged. In addition, the authors would
like to warmly thank Alice Lehtinen for her advice on the use of the English
language.

Helsinki in July 2014

Authors
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ABSTRACT

The solution to the equations governing regenerator behaviour demand
numerical methods, as analytical solutions are not available. The classic
numerical method in this case seems to be finite difference method applying
stepwise marching in time. This report presents an alternative approach,
which has some advantages from the coding effort and accuracy
perspectives. The approach applies a space-time finite element formulation,
and  thus  no  marching  in  time  was  performed.  Each  calculation  case  used
three meshes of consecutively increasing densities. This made it possible to
obtain an estimate of the errors in the results obtained by the finest mesh.
Programming and simulation was carried out using the commercial COMSOL
Multiphysics and MATLAB programs (COMSOL 4.3 with MATLAB). We provide
the results of some example cases to show the accuracy and workings of the
method.

The developed model can be applied to regenerators of both fixed and rotary
heat storage mass. The model is a useful tool in the design and optimization
of  heat  exchangers  when,  for  example,  studying  the  effect  of  different  hot
and cold period lengths on outlet air temperatures and on thermal ratios.
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NOMENCLATURE

Latin symbols

A total heat transfer surface area, 2m

c specific heat at constant pressure, kJ kg K

re relative error estimate, -

h overall heat transfer coefficient, 2W m K

k thermal conductivity, W m K

L length of storage unit, m

m mass, kg

fm& mass rate of fluid flow, kg s

P perimeter, m , period time length, s

p pressure, 2N m

q heat flux density, 2W m

q heat flux vector, 2W m

r effective convergence rate, -

S surface, cross-sectional area, 2m

T nondimensional temperature, -

t temperature, C° , K

V volume, 3m

v velocity vector, m s

xv axial velocity, m s

x axial coordinate, m
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Greek symbols

α weight factor, -

r density, 3kg m

b volume expansion coefficient, 1 K

F dissipation function, 21 s

h nondimensional time coordinate, -

REGh  thermal ratio, -

Λ reduced length, -

λ grid refinement ratio, -

m viscosity, 2Ns m

x nondimensional position coordinate, -

Π reduced period, -

t time, s

Subscripts

c coarse

f fluid, fine

i inlet

m medium

s solid (storage) material

0 initial
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Superscripts

¢ hot period

¢¢ cold period

% time average

$ space average
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1 INTRODUCTION

We considered the storage unit configurations depicted schematically in
Figure 1.1 (a). The main direction of the fluid flow is in the axial direction of
the unit (the x -axis direction). We assumed that the cross-sectional (plane
perpendicular to the x -axis) geometry of the unit was approximately
constant with respect to axial coordinate x .

Figure 1.1.  (a) Storage unit configuration. (b) Representative prism.

The round openings in Figure 1.1 (a) represent cross-sections of fluid
passages or channels. A typical representative fluid channel has a cross-
sectional area fS  and a hydraulic perimeter P  with solid storage material
(cf. Remark 2.1). The dashed rectangular shape in the figure encloses a
representative portion of the cross-section, and the corresponding prismatic
domain is  depicted in Figure 1.1 (b).  The associated cross-sectional  area of
the solid storage material is sS , and the perimeter with the fluid channel is
also P . We assume that the heat flux through the mantle surface of the
storage medium prism domain vanishes due to symmetry reasons, or at the
boundaries of the unit, due to heat insulation.

Remark 1.1. It should be noted that the cross-sectional shape of a
representative prism is not rectangular in general. In the case depicted in Figure
1.1, the rectangular shape seems natural due to the double symmetry of fluid
openings. With more irregular openings, the shapes of the corresponding storage
domains also become more complicated. The boundaries are determined from the
assumed lines through which the heat flux vanishes. However, the exact positions
of these border lines are not significant, at least in the specific model considered
later, due to the final summation procedure discussed in Remarks 2.1 and 2.2.
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Remark 1.2. Figure  1.1  (a)  does  not  describe  a  case  in  which  the  storage
material consists of, for example, plate type elements. However, we were able to
create this latter case without drawing a new figure, by simply replacing the roles
of the fluid and storage domains in the figure as indicated in parentheses in
Figure  (b).  The  mantle  surface  of  the  representative  prism  was  then  in  contact
with the fluid of another representative prism, and due to symmetry etc., the heat
flux was again assumed to vanish there.
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2 BASIC EQUATIONS

We base our presentation strongly on the theory and arguments given by
Schmidt  and  Willmott  (1981).  We  will  thus  also  mainly  use  the  same
notations. However, although most of the equations treated in this report are
derived in Schmidt and Willmott (1981), we still want to record the governing
equations and the main assumptions for simplifications, in order to make the
report reasonably self-contained. In addition, the manner of derivation differs
from that given in Schmidt and Willmott (1981) as we make the starting
point the energy equation in its differential equation form, and proceed in a
somewhat detailed manner. A rather recent text on regenerative heat
transfer is in Willmott (2002), written by the second author of Schmidt and
Willmott (1981). However, this latter reference contains no essential changes
with respect to the theme of the present report. The notations in Willmott
(2002) differ rather much from those used Schmidt and Willmott (1981).
However, as mentioned above, we prefer mostly the notations of Schmidt
and Willmott (1981).

Fluid. The differential energy equation for viscous fluid flow can be written as
(see e.g. Rohsenow and Choi (1961), p. 170)

f
f f f f

D Ddiv
D D

t pc tr b mF
t t
= - + +q , (2.1)

where t  is time, ft  the thermodynamic temperature of the fluid, fq the
heat flux vector, p  the pressure, fr  the density, fc  the specific heat at
constant pressure, b  the volume expansion coefficient, m  the viscosity, and
F  the dissipation function. Possible heat sources are not included. The
derivatives in (2.1) are substantial ones:

D
D x y zv v v

x y zt t
¶ ¶ ¶ ¶

º + + +
¶ ¶ ¶ ¶

. (2.2)

Here, x , y  and z  are orthogonal Cartesian coordinates and xv , yv  and zv
the corresponding velocity components of fluid velocity vector v. Equation
(2.1) is thus given in the Eulerian description. Of course, some additional
approximations are already contained in (2.1) as, for instance, the fluid was
assumed to  obey  the  linear  Stokes’  viscosity  law,  etc.  However,  due  to  the
broad use of (2.1) in fluid dynamics applications in general, this restriction
was  not  considered  here  to  be  a  part  of  the  modelling  process  to  be
described.
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In fluid flow in a regenerator we considered the last two terms in (2.1) to be
small  and  discarded  them  (Assumption 1). This removed the coupling with
the “mechanical effect” on the temperature distribution. The energy equation
became

f
f f f

D div 0
D

tcr
t
+ =q . (2.3)

Normal cases in the literature on regenerators do not include the detailed
fluid flow and temperature distributions in the model. Instead, certain
average “channel type models” are introduced. To this end, let us consider
the detail of the representative prismatic fluid channel depicted in Figure 1.1
(b) and Figure 2.1.

As a final step, we can later easily consider the whole unit as explained in
Remarks 2.1 and 2.2.

Figure 2.1.  Control volume in the fluid prism domain.

We took control volume V  of the channel fixed by two planes constantx =
and constant dx x= + . We integrated both sides of (2.3) over this volume.
With obvious notation, the result was

f
f f f

D d div d 0
DV V

tc V Vr
t

+ =ò ò q . (2.4)

The most important modelling assumption was (Assumption 2):
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( ) ( )f f, , , ,t x y z t xt t» , (2.5)

that  is,  the  temperature  was  considered  to  be  constant  on  a  cross-section.
However, in reality, some temperature gradients must exist in the cross-
sectional directions, at least in the thin fluid layers near the solid surface, for
heat  transfer  to  take  place.  From  this,  it  follows  that f / 0t y¶ ¶ =  and

f / 0t z¶ ¶ =  and the terms f /t¶ ¶t  and f /t x¶ ¶  were  constant  over  the
cross-section and could be taken outside the integral. The control volume
length in the axial direction in this case was infinitesimal. Further
transforming the divergence term by Gauss’s formula next produced the form

f f
f f f f fd d d 0xV V S

t tc V c v V q S
x

r r
t

¶ ¶
+ + =

¶ ¶ò ò ò . (2.6)

Here, f fq = n qg  is the heat flux out of the control volume on control surface
S  and n  is the outward unit normal vector. We next assumed that the heat
flux gradient in the axial direction could be discarded (Assumption 3), that is,
that the total net flux through the cross-sectional planes of the control
volume would disappear, and flux would only take place along the perimeter
surface of the channel. As the control volume was infinitesimal in the x -axis
direction, (2.6) became

f f

f f
f f f f f f fd d d d d d 0xS S P

t tx c S x c v S x q P
x

r r
t

¶ ¶
+ + =

¶ ¶ò ò ò , (2.7)

or

f f

f f
f f f f f f fd d d 0xS S P

t tc S c v S q P
x

r r
t

¶ ¶
+ + =

¶ ¶ò ò ò , (2.8)

where the two first integrals were over the channel cross-section and the last
integral over the cross-sectional perimeter. For a fluid, it was reasonable here
to assume that fr  and fc  were constants, or, for more generality, similar to
(2.5) (Assumption 4):

( )f f ,xr r t» ,

(2.9)

( )f f ,c c x t» .

Thus, fr  and fc  could be moved outside the area integrals in (2.8) to give
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f f

f f
f f f f f f fd d d 0xS S P

t tc S c v S q P
x

r r
t

¶ ¶
+ + =

¶ ¶ò ò ò , (2.10)

or with some new notation

f f
f f f f f f

t tc S c m Pq
x

r
t

¶ ¶
+ = -

¶ ¶
& , (2.11)

where (2.11)

f
f f fdxS

m v S= ò& r (2.12)

is the mass rate of flow,

f f
1 d

P
q q P

P
= ò (2.13)

the average heat flux on the cross-sectional hydraulic perimeter, and P  is
the length of the perimeter.

Flux fq  was expressed conventionally as

( )f f sq h t t= - , (2.14)

where h  is the overall heat transfer coefficient on the cross section and st
the (average) temperature on the surface of the channel wall. The perimeter
of the cross-section of a prismatic channel can be written as

/P A L= , (2.15)

where A  is the (heat transfer) surface area of the channel and L  the length
of  the  channel  (or  the  storage  unit).  When  (2.14)  and  (2.15)  were
substituted in (2.11) and the equation was multiplied by L , we obtained the
final form

( )f f
f f f f s f

t tm c m c L h A t t
xt

¶ ¶
+ = -

¶ ¶
& , (2.16)

where
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f f fm S Lr= . (2.17)

If fr  is constant with respect to x , this is the total mass of the fluid in the
channel. Equation (2.16) corresponds to equation (5.1) in Schmidt and
Willmott (1981).

Remark 2.1. Equation (2.16) above was derived for a representative channel of
the regenerator  unit.  However,  if  we sum both sides  of  all  the similar  equations
obtained for the channels of a regenerator unit (and consider parameters fr ,

fc , h  (and the boundary and initial conditions) to be the same for the channels),
the result is again (2.16), where now fm& , fm , A , fS  and P  respectively
represent  the  total  mass  rate  of  flow,  the  total  fluid  mass  in  the  unit,  the  total
convective area of the unit, the total fluid cross-sectional area, and the total
hydraulic perimeter of the unit. W

Storage medium. The energy equation valid for the solid storage medium or
material  was obtained from (2.1) by roughly considering the medium as an
incompressible ( 0b = ) and stationary ( 0xv = , 0yv = , 0zv = ) fluid. Thus
we obtained, with some approximation (see e.g. Carslaw and Jaeger (1959),
p. 13)

s
s s sdiv 0tcr

t
¶

+ =
¶

q , (2.18)

where subscript s refers again to the solid material. Now the description with
coordinates x , y  and z  can be considered to be the Lagrangian one as is
usual in solid mechanics. The conventional constitutive relation for the heat
flux vector is the Fourier law

s s sgradt= -q k g , (2.19)

where sk  is the thermal conductivity tensor. In this case (2.18) becomes

( )s
s s s sdiv gradtc tr

t
¶

=
¶

k g . (2.20)

Again, we did not consider the use of the Fourier law here as a modelling
approximation, as this choice is so universally accepted in heat transfer in
general. For an isotropic body,

s s sgradk t= -q , (2.21)
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where sk  is the thermal conductivity. If the material is additionally
homogeneous and sk  is constant with respect to space, the energy equation
(2.18) obtains perhaps its most familiar form

2 2 2
s s s s

s s s 2 2 2
t t t tc k

x y z
r

t

æ ö¶ ¶ ¶ ¶
= + +ç ÷ç ÷¶ ¶ ¶ ¶è ø

. (2.22)

Equation (2.22) or the more general (2.20), with suitable initial and boundary
conditions, can be employed to determine the detailed temperature
distribution in the storage material. Schmidt and Willmott (1981), for
instance, made use of this to some extent. However, we obtained the
simplest model for later use in a similar manner to that used for the fluid.

We considered a control volume of the storage medium depicted in Figure 2.2
(cf. Figure 1.1 (b) and 2.1).

Figure 2.2.  Control volume in storage material prism.

Integrating both sides of (2.18) over the control volume gives the equation

s
s s sd div d 0

V V
tc V Vr
t
¶

+ =
¶ò ò q . (2.23)

First, assuming that (Assumption 1)
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( ) ( )s s, , , ,t x y z t x»t t (2.24)

(again, in reality, some temperature gradient in the cross-sectional directions
must exist for the heat to transfer to the fluid), and transforming the
divergence term by Gauss’s formula produce the form

s
s s sd d 0

V V

t
c V q S

¶
+ =

¶ò òr
t

, (2.25)

where s sq = n qg  is the heat flux out of the control volume on the control
surface and n is the outward unit normal vector, which is opposite to that
used  for  the  fluid  control  volume.  We  further  assumed  that  the  heat  flux
gradient in the axial direction could be discarded (Assumption 2).  As  the
control volume is infinitesimal in the x -axis direction, (2.25) became

s

s
s s s sd d d d 0

S P
tx c S x q Pr
t
¶

+ =
¶ò ò (2.26)

or

s

s
s s s sd d 0

S P
tc S q Pr
t
¶

+ =
¶ò ò . (2.27)

Here, the first integral is over the cross-sectional area of the storage medium
prism and the second integral over hydraulic perimeter P . It should be
noted that application of Gauss’s formula also produces, in principle, an
integral over the perimeter along the mantle surface. However, this integral
vanished, as we assumed, and explained in Chapter 1, that the mantle
surfaces were selected so that the heat flux was zero there.

For the solid material, sr  and sc  may be taken as constants, or for more
generality, we may assume the dependence (Assumption 3)

( )s s xr r» ,

(2.28)

( )s sc c x» .

The explicit dependence on position would indicate an inhomogeneous
material in the axial direction. Possible dependence on time did not seem to
be  of  practical  importance  here.  Thus, sr  and sc  were  taken  outside  the
area integral in (2.27), to give



Temperature distribution in regenerators

20

s
s s s s 0tc S Pqr

t
¶

+ =
¶

, (2.29)

where sS  is the cross-sectional area of the storage medium prism and

s s
1 d

P
q q P

P
= ò (2.30)

the average heat flux on the hydraulic perimeter.

We employed the conventional relation

( )s s fq h t t= - . (2.31)

It  may  be  noted  here  that  due  to  the  difference  in  the  positive  sign
definitions, s fq q= -  and s fq q= - . Therefore, formula (2.15):

/P A L= , (2.32)

was still valid. Substituting (2.31) and (2.32) in (2.29) and multiplying the
equation with L produced the final equation

( )s
s s f s

tm c h A t t
t
¶

= -
¶

, (2.33)

where

s s sm S Lr= . (2.34)

If sr  is  constant  with  respect  to x ,  this  is  the  total  mass  of  the  storage
material in the prism. Equation (2.33) corresponds to equation (5.2) in
Schmidt and Willmott (1981).

Remark 2.2. Here we can make a similar observation to that in Remark 2.1.
Equation (2.33) above was derived for a representative storage medium prism of
the regenerator  unit.  However,  if  we sum both sides  of  all  the similar  equations
obtained for the prisms of a regenerator unit (and consider parameters sr , sc ,
h  (and the boundary and initial  conditions)  to  be the same for  the prism),  the
result  is  again  that  of  (2.33),  only  now sm , A , sS  and P  represent the total
storage medium mass in the unit, the total convective area of the unit, the total
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storage  medium  cross-sectional  area,  and  the  total  hydraulic  perimeter  of  the
unit, respectively. W

Initial and boundary conditions. Let us review governing equations (2.16)
and (2.33):

f f
f f f f f s 0

t tm c m c L h At h At
x

¶ ¶
+ + - =

¶ ¶
&

t
, (2.35)

and

s
s s s f 0tm c h At h At

t
¶

+ - =
¶

. (2.36)

The problem is determining the unknown functions f f ( , )t t x t=  and
s s ( , )t t x t= . The corresponding space domain is 0 x L£ £ , when the origin

of the x -axis  is  put  on  the  “left  boundary”  of  the  unit.  We can  obtain  the
necessary initial and boundary conditions by simple physical reasoning by, for
instance, imagining a suitable laboratory experiment with the unit. At 0t =
(when the phenomenon to be studied began) we assumed the temperature
distribution in the storage medium, as known by, for instance, temperature
measurements: ( )s ,0t x  to be given. In the most obvious case this could
simply be a constant value. We then started to feed some given fluid with a
given mass flow rate f ( )m t&  into  the  unit  at  the  left  boundary 0x =
( 0xv > ) or the right boundary x L=  ( 0xv < ), at a given inlet temperature
of fi ( )t t .

The complicated short initial phase during which the unit was only partially
filled with the given fluid was not properly modelled by equations (2.35) and
(2.36)  (The  unit  could,  for  example,  have  been  partly  filled  by  some liquid
and partly by some gas.). However, we neglected this initial filling period and
assumed that in practice it would take no time. Thus we considered f ( )m t&
and fi ( )t t  as given for all 0t >  quantities. Although the value of fm&  is
given at a boundary, it does not determine a boundary condition in the
normal  sense  of  the  word,  since  it  appears  as  a  parameter  in  the  field
equation (2.35). On the other hand, the given value fit  mathematically
determines a proper boundary condition for the unknown fluid temperature
field.

The initial and boundary conditions used naturally depended on the
application. Here we restricted our main study to counterflow regenerators.
We employed a numerical approach — the finite element method — to solve
the relevant equations. This discrete formulation differed from that employed
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by Schmidt and Willmott (1981) and Willmott (2002) (the finite difference
method). Because of this, we first considered the single blow case (named
SBC  in  the  Appendices)  in  some  detail.  This  provided  the  opportunity  to
obtain some indication of the accuracy achievable with our formulation, and
finally  served  to  solve  the  regenerator  problem  case  (named  REG  in  the
Appendices).
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3 SINGLE BLOW CASE

3.1 Description of problem

In the singe blow case, the mathematical solution domain in the -x direction
was 0 x L£ £  and in the -t direction, 0 Pt£ £ . Thus the solution domain
was  a  rectangle,  as  shown  in  Figure  3.1.  In  fact,  many  of  the  details
presented in this chapter will appear later in similar forms in Chapter 4,
which deals with the counterflow regenerator case. For example, several
consecutive problems with rectangular solution domains such as that in
Figure 3.1 appear.

Figure 3.1.  Solution domain.

The storage material initially had a constant (in position) temperature 0t .
The inflowing fluid had a constant (in time) temperature fit . Thus, the initial
and boundary conditions were, respectively,

( )s 0,0t x t= , (3.1)

( )f fi0,t t=t . (3.2)
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To proceed, we transformed the equations, as in Schmidt and Willmott
(1981), into nondimensional forms. The following nondimensional variables
were introduced:

nondimensional length

f f

hA
m c

º
&

L , (3.3)

nondimensional position coordinate

x
L

ºx L , (3.4)

nondimensional time length

s s

hAPΠ
m c

= , (3.5)

nondimensional time coordinate

P
=

th P , (3.6)

nondimensional fluid temperature

f 0
f

fi 0

( , )
( , )

t x tT
t t

-
º

-
t

x h , (3.7)

nondimensional solid temperature

s 0
s

fi 0

( , )
( , )

t x tT
t t

-
º

-
t

x h . (3.8)

Remark 3.1. Schmidt and Willmott (1981) define nondimensional time by

( )1 / xx v
P

º -h P t , (3.9)



Temperature distribution in regenerators

25

where xv  is  the  axial  velocity  of  the  fluid.  This  definition  is  found  finally  to
remove the analogue of the term f f f /m c t¶ ¶t  in  (2.35)  to  appear  in  the
resulting equation (see Appendix A). However, as discussed at the end of Chapter
2, the filling period, which took the time / xL vtD =  is not properly described by
the present equations. Furthermore, if we apply formula (3.9) instead of (3.6),
and set the initial nondimensional time at 0=h , the corresponding dimensional
time becomes / xx v=t .  As  the  initial  condition  in  (3.1)  was  given  at 0=t ,
there is a discrepancy. Thus we applied formula (3.6) and discarded the term

f f f /m c t¶ ¶t . It should be noted that this term was also discarded in Section 2.3
in (Schmidt and Willmott 1981), due to its small size. W

The new unknowns fT  and sT  are functions of the coordinates x  and h :
f f ( , )T T= x h  and s s ( , )T T= x h . By performing some manipulations, and

using definitions (3.3) to (3.8), we arrived at the field equations (the details
of the derivation are given in Appendix A):

f
f s f 0

T
R T T

¶
º - + =
¶x

, (3.10)

s
s f s 0

T
R T T

¶
º - + =
¶h

. (3.11)

Notations R  refer to field equation residuals. By writing the equations in this
way, the presentation of the weak forms used in the finite element
formulations which follow becomes transparent. The calculation domain is
now a rectangle with the measures L  and P  (Figure 3.2).

The initial and boundary conditions become, respectively,

( )s ,0 0T =x , (3.12)

( )f 0, 1T =h . (3.13)

The problem has an analytical solution for fT  and sT . By making slight
changes to the expressions given in Larsen (1967), we obtained

( )f 00
, 1 e 2 dT e I- - é ù= - ë ûò

xh ax h ha a , (3.14)

( )s 00
, e 2 dT e I- - é ù= ë ûò

hx ax h xa a , (3.15)
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where 0I  is  the  zero  order  modified  Bessel  function  of  the  first  kind.
Pointwise values can be evaluated from these expressions using numerical
integration by the Mathematica (2014) program. We also obtained an
analytical solution directly from field equation (3.11) at 0=x , where

f 1T = . This gave

( )s 0, 1 eT -= - hh . (3.16)

Schmidt and Willmott (1981) apply this as an additional boundary condition.
However,  here  we  employed  only  (3.16)  to  check  the  correctness  of
expression (3.15) at 0=x .

For further purposes, we finally defined two average temperature quantities;
one with respect to time and one with respect to space. These are indicated
with the tilde and hat overbar notations, respectively. Thus,

( ) ( )
0

1 d
P

t x t x,τ τ
P

= ò% , ( ) ( )
0

1 d
Π

T ξ T ξ ,η η
Π

= ò% (3.17)

and

( ) ( )
0

1 d
L

t̂ τ t x,τ x
L

= ò , ( ) ( )
0

1 d
Λ

T̂ η T ξ ,η ξ
Λ

= ò . (3.18)

The definitions can be applied equally for the fluid and the solid, that is,
equipped with the subscripts f  or s . The average quantities defined above
are needed later especially at the boundary lines of the domain.

3.2 Solution method

The conventional approach in time dependent problems is to march the
solution in a stepwise manner forward in time. For instance, the solution
approach in Schmidt and Willmott (1981) and Willmott (2002) proceeds in
this way, using the finite difference method. However, the capacity of present
computers makes it possible to solve time-dependent problems alternatively
(at least  with only one space dimension) as pure boundary value problems.
This is  the approach applied here.  We may note that field equations (3.10)
and (3.11), as well as “boundary” conditions (3.12) and (3.13), are of quite a
similar nature, and it is thus perhaps natural to treat x  and h  on an equal
basis. The new solution domain is covered with a typical uniform mesh, as
shown in Figure 3.2. We used rectangular bilinear four-node elements.
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Figure 3.2. 4 8´  finite element mesh.

The finite element method is based on integral type presentations with the
method of weighted residuals. We do not enter deeply into the theory of the
finite  element  method,  as  the  basic  ideas  are  well-documented  by,  for
example, Zienkiewicz and Taylor (1989). The most common versions of the
method of weighted residuals are the Galerkin method and the least-squares
method. We experimented with two Galerkin-type versions (Formulations I
and II)  and with a least-squares version (Formulation III).  The weak forms
corresponding to these formulations are listed below.

Formulation I. The weak form was

( )f f s sδ δ d 0T R T R+ =òW W . (3.19)

Formulation II. The weak form was

( )s f f sδ δ d 0T R T R+ =òW W . (3.20)

Formulation III. The weak form was
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sf
s f f f f s s s

δδ
δ δ δ δ d 0

TT
T T R T T R

é ù¶¶æ ö æ ö
- + + - + =ê úç ÷ ç ÷¶ ¶è ø è øë û

òW a a W
x h

.

(3.21)

The integrals are over domain W  in  Figure  3.2.  The  Galerkin  method  is
normally defined as a method in which the same basis functions used in the
approximations of the unknowns are employed as weighting functions. This
can also be interpreted to mean that the weighting functions (before
discretization) are variations of the unknown functions. The two weighting
function options are seen in Formulations I and II. The least squares version
was based on the functional

( ) ( ) ( )22
f s f f s s

1, d
2

T T R Ré ù= +ê úë ûòWP a a W . (3.22)

Quantities fa  and sa  are  the  given  weight  factors.  As  the  field  equations
are of a similar nature, we simply employed f s 1= =a a . Demanding the
functional to have a stationary value produces the weak form (3.21).

In all the numerical solutions in this report, we more or less follow the
recommendations of references by Roache (2009) and Sinclair et al. (2006)
in  order  to  obtain  confidence  in  the  results.  We  used  three  meshes  with
increasing densities in every problem case. The meshes were called coarse,
medium and fine, and we employ the corresponding subscripts c , m  and f ,
respectively, when referring to the appropriate values. If ch  is  the  typical
mesh size of  a coarse mesh, the corresponding mesh sizes for the medium
and the fine meshes are m c /h h l=  and 2

f m /h h l= , respectively, where
l  is  the  grid  refinement  factor  in  Roache  (2009)  or  the  scale  factor  in
Sinclair et al. (2006). We always employed the value 2l = .

The effective convergence rate r  for quantity f  was obtained from

m c

f m
ln / ln

f f
r

f f
l

é ù-
= ê ú-ë û

. (3.23)

The concept of the Grid Convergence Index ( GCI ) is discussed at length in
Roache (2009). Referring to formula (5.6.1) in Roache (2009):

fm
sGCI[fine grid]

1r
e

F
l

=
-

. (3.24)
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This gives an estimation of the order of the error for a result obtained by the
finest mesh. Here

fm f me f f= - (3.25)

and if we consider the relative error, we can replace fme  in (3.24) by

f m
fmr

f

f fe
f
-

= . (3.26)

Multiplier sF  is the factor of safety and we assumed that s 1 25F .= . Further,
we call the grid convergence index here simply the error estimate and denote
it by e , or, if a relative error, re . Thus the error estimate expressions were

fm1.25
2 1r
e

e =
-

(3.27)

and

fmr
r 1.25

2 1r
e

e =
-

. (3.28)

Let us define the actual error as

an a ne f f= - , (3.29)

where af  is the actual analytical exact value and nf  the approximate
numerical value. Here n  can mean c , m  or f . Furthermore, the actual
relative error is defined as

a n an
anr

a a

f f ee
f f
-

= = . (3.30)

In general we do not know the exact value of af  and thus cannot evaluate
either ane  or anre .

In  the  calculations  to  follow,  we  consider  the  results  obtained  by  the  fine
mesh as the most accurate, and hopefully f af f»  (see  Remark  3.2).  We
can always calculate errors fme  and fmre , and error estimates e  and re .
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The error estimates are designed so that normally the exact error with the
fine mesh afe  is bounded by

afe e< (3.31)

or by

afr re e< . (3.32)

Thus, some confidence in the numerical results can be gained. However, the
two following applications are such that analytical solutions exist. Thus we
were also able to calculate the actual errors afe  and afre  and see whether
inequalities  (3.31)  and  (3.32)  are  satisfied.  Further,  we  were  able  to  draw
some conclusions about the behaviour of the three formulations.

Remark 3.2. One can usually obtain more accurate values than ff  by applying
the Richardson extrapolation, discussed thoroughly by Roache (2009). However,
this manipulation was not considered necessary in the applications of this report.
W

3.3 Results

3.3.1 First application

We  consider  Example  2.1  in  Schmidt  and  Willmott  (1981)  as  the  first
application. In this, the dimensionless problem measures were

1.847L = , 3.78P = . (3.33)

Coarse, medium and fine meshes consisted of 4 8´ , 8 16´  and 16 32´
elements, respectively. The coarse mesh is shown in Figure 3.2.

We compare the finite element solution with the four “exact” results obtained
by using expressions (3.14) and (3.15). The value of the solid temperature at
point A  (Figure 3.2) was

( )s 0, 0.977177T P = , (3.34)

the values of fluid and solid material temperatures at point B  (Figure 3.2)
were
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( )f , 0.853587T L P = , ( )s , 0.727 046T L P = (3.35)

and the average solid material temperature on line AB  (see (3.18)) was

( ) ( )s s0
1ˆ , d 0.863840T Tº =ò

L
P x P x

L
. (3.36)

This last type of quantity is of importance in the regenerator problems, and
will  be  considered  later.  As  only  pointwise  solid  temperature  values  were
available, result (3.36) was obtained by employing Simpson’s numerical
integration from 17 equidistant temperature value data. The same value
(3.36) was already obtained with nine data points, so the number should, in
practice, be exact.

The calculation results are collected in the following four tables 3.1, 3.2, 3.3
and 3.4.

Table 3.1.  Results for sT  at A .

Formulation I Formulation II Formulation III

acre 0.039% 0.670% 0.320%

amre 0.011% 0.317% 0.184%

afre 0.003% 0.155% 0.102%

r 1.863 1.126 0.615

re 0.004% 0.172% 0.205%
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Table 3.2.  Results for fT  at B .

Formulation I Formulation II Formulation III

acre 0.190% 0.190% -0.305%

amre 0.048% 0.048% -0.132%

afre 0.012% 0.012% -0.061%

r 2.005 2.004 1.291

re 0.015% 0.015% 0.061%

Table 3.3.  Results for sT  at B .

Formulation I Formulation II Formulation III

acre 0.194% 0.202% -0.226%

amre 0.048% 0.048% -0.081%

afre 0.012% 0.012% -0.033%

r 1.999 2.084 1.579

re 0.015% 0.014% 0.030%

Table 3.4.  Results for ( )ŝT P .

Formulation I Formulation II Formulation III

acre 0.215% 0.267% 0.267%

amre 0.054% 0.067% 0.004%

afre 0.014% 0.017% 0.001%

r 1.990 2.003 6.693

re 0.017% 0.021% 0.000%
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Temperature distributions in W  by Formulation I are shown in Figure 3.3.
Dimensional temperature distributions at Pt =  are shown in Figure 3.4.

(a) (b)

Figure 3.3.  (a) Nondimensional fluid fT  and  (b)  solid  material sT
temperature distributions with a 4 8´ coarse mesh.

(a) (b)

Figure 3.4.  (a) Dimensional fluid ft  and (b) solid material st  temperature at
Pt =  with  coarse,  medium  and  fine  meshes.  Fluid  inflow  temperature

f 80 Ct = °  and initial solid temperature s 10 Ct = ° .

3.3.2 Second application

Here the dimensionless problem measures of the first application were
reversed:

3.78L = , 1.847P = . (3.37)



Temperature distribution in regenerators

34

Figure 3.5. 8 4´  finite element mesh.

Coarse,  medium  and  fine  meshes  consisted  of 8 4´ , 16 8´  and 32 16´
elements, respectively. The coarse mesh is shown in Figure 3.5.

We compared the finite element solution again with the four “exact” results
obtained using expressions (3.14) and (3.15). The value of the solid
temperature at point A  (Figure 3.3) was

( )s 0, 0.842 290T P = , (3.38)

the values of fluid and solid material temperatures at point B  (Figure 3.3)
were

( )f , 0.272954T L P = , ( )s , 0.146 413T L P = (3.39)

and the average solid material temperature on line AB  (see (3.18)) was

( ) ( )s s0
1ˆ , d 0.422093T T

L
P x P x

L
º =ò . (3.40)

The calculation results are presented in the following four tables 3.5, 3.6, 3.7
and 3.8.
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Table 3.5.  Results for sT  at A .

Formulation I Formulation II Formulation III

acre 0.285% 3.078% -0.202%

amre 0.075% 1.419% -0.011%

afre 0.019% 0.695% 0.018%

r 1.908 1.196 2.712

re 0.025% 0.706% 0.007%

Table 3.6.  Results for fT  at B .

Formulation I Formulation II Formulation III

acre -0.516% -0.539% 0.601%

amre -0.129% -0.129% 0.216%

afre -0.032% -0.032% 0.087%

r 1.999 2.084 1.580

re 0.040% 0.037% 0.081%

Table 3.7.  Results for sT  at B .

Formulation I Formulation II Formulation III

acre -1.110% -1.110% 1.777%

amre -0.277% -0.277% 0.769%

afre -0.070% -0.070% 0.357%

r 2.005 2.004 1.291

re 0.086% 0.086% 0.357%
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Table 3.8.  Results for ( )ŝT P .

Formulation I Formulation II Formulation III

acre -0.159% 0.042% -0.131%

amre -0.040% 0.008% -0.032%

afre -0.010% 0.002% -0.008%

r 1.994 2.405 2.050

re 0.013% 0.002% 0.010%

Temperature distributions in W  by Formulation I are shown in Figure 3.6.
Dimensional temperature distributions at Pt =  are shown in Figure 3.7.

(a) (b)

Figure 3.6.  (a) Nondimensional fluid fT  and  (b)  solid  material sT
temperature distributions with a 8 4´ coarse mesh.
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(a) (b)

Figure 3.7.  (a) Dimensional fluid ft  and (b) solid material st  temperature at
Pt =  with  coarse,  medium  and  fine  meshes.  Fluid  inflow  temperature

f 80 Ct = °  and initial solid temperature s 10 Ct = ° .

3.4 Discussion

The errors by all the three formulations must be considered very small with
the fine mesh. The magnitude of the maximum relative (percentage) error
was under 0.7% . In most cases, the errors were much smaller. Formulations
I and II seem to be somewhat more consistent than formulation III with
respect  to  the  value  of  the  effective  convergence  rate,  which  is  in  general
close to 2, indicating second order methods. Compared to the results of
Formulations I and II, Formulation I seems to give somewhat smaller errors.
To continue with only one formulation, the choice was thus to use
Formulation I, for which the magnitude of the maximum relative
(percentage) error was below 0.07% . It is interesting to see, considering
the values of afre  and re  in  the  tables,  that  inequality  (3.32)  here  was
always satisfied by Formulation I. This created confidence in later results, in
which actual errors could not be directly calculated, as exact solutions were
not known.
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4 REGENERATOR PROBLEM

4.1 Description of problem

In a counterflow regenerator, hot and cold periods follow each other
cyclically. Equations (2.35) and (2.36) can be applied for both periods.
However, suitable notations must be used to discern between the periods.
Following Schmidt and Willmott (1981), we used a single prime to signify the
hot period, and double primes to signify the cold period. As the names
indicate, inflow temperature fit ¢  of  the  fluid  during  the  hot  period  is  higher
than inflow temperature fit ¢¢  of the fluid during the cold period. The periods
here had fixed time lengths P¢  and P¢¢  so that the length of one total cycle
was P P¢ ¢¢+ . We considered only the simplest case, in which fm¢& , fit ¢ , fm¢¢&
and fit ¢¢  were constants with respect to time. We tried to achieve the periodic
solution by going through enough cycles beginning with arbitrary given
distribution s ( 0)t x, .

In the terminology of Schmidt and Willmott (1981), this approach is an open
method, as opposed to the closed methods. The process began with the hot
period taking the flow direction in the positive x -axis direction, so that the
boundary condition was given at 0x = . The temperature distribution in the
storage medium s ( )t x,P¢ ¢  obtained at the end of the hot period was used as
the initial  condition for the cold period. In reality,  there exists between the
hot and cold period (as well between the cold and hot period) some kind of
short filling period, until the governing equations are again valid.

As  already  commented  in  Remark  3.1,  we  ignored  this  and  started
immediately after τ P¢=  the cold period analysis. Thus the boundary
condition was given at x L= . Velocity component xv¢¢  was  negative  in  the
general  formulae  of  Chapter  2  and  thus  mass  flow  rate fm¢¢&  was actually
negative.  However,  we did not want to operate with negative rates,  so fm¢¢&
was defined as positive. Thus when field equation (2.35) was applied during
the  cold  period,  we  had  to  formally  use  the  relation f fm m¢¢= -& & . The
temperature distribution in the storage medium s ( )t x,P¢¢ ¢¢ ,  obtained  at  the
end of the cold period, was used again as the new initial condition for the
new hot period etc. Based on the above, we next recorded the governing
problems for the hot and cold periods separately. However, we preferred to
immediately employ the dimensionless formulation, as in Section 3.1. We
have (see Remark 4.1)
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nondimensional lengths

f f

h A
m c

L
¢

¢ º
¢ ¢&

,
f f

h A
m c

L
¢¢

¢¢ º
¢¢ ¢¢&

, (4.1)

nondimensional position coordinates

x
L

x L¢ ¢º ,
x
L

x L¢¢ ¢¢º , (4.2)

nondimensional periods

s s

h APΠ
m c
¢ ¢

¢ =
¢

,
s s

h APΠ
m c
¢¢ ¢¢

¢¢ =
¢¢

(4.3)

nondimensional time coordinates

τη Π
P

¢ ¢=
¢
,

τη Π
P

¢¢ ¢¢=
¢¢

, (4.4)

nondimensional fluid temperatures

f fi
f

fi fi

( )( , ) t x,τ tT ξ η
t t

¢ ¢¢-¢ ¢ ¢ =
¢ ¢¢-

, f fi
f

fi fi

( )( , ) t x,τ tT ξ η
t t

¢¢ ¢¢-¢¢ ¢¢ ¢¢ =
¢ ¢¢-

, (4.5)

nondimensional solid temperatures

s fi
s

fi fi

( )( ) t x,τ tT ξ ,η
t t
¢ ¢¢-¢ ¢ ¢ =
¢ ¢¢-

, s fi
s

fi fi

( )( ) t x,τ tT ξ ,η
t t
¢¢ ¢¢-¢¢ ¢¢ ¢¢ =
¢ ¢¢-

. (4.6)

Schmidt and Willmott (1981) and Willmott (2002) call the lengths of the
solution domain in the space direction (4.1) reduced lengths and the
corresponding measures in the time direction (4.3) reduced periods.

Remark 4.1. In Schmidt and Willmott (1981), coordinate ξ ¢¢  is defined to run in
the opposite direction to that of ξ ¢ , that is, in the direction of the gas flow. Here,
as seen in (4.2), ξ ¢  and ξ ¢¢  were assumed to grow in the same direction. From
this  it  follows that  when we took fm ¢¢&  to be positive, sign changes appeared in
(4.12). It should be noted that the dimensionless temperature definitions were
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similar  to  those  in  the  single  blow  case  in  Section  3.1.  Only  the  constant
temperatures fit  and 0t  in  the  denominator  were  replaced  by  the  constant
temperatures fit ¢  and fit ¢¢ , respectively. Further, it should be noted that time was
measured as starting from zero for each period. W

Hot period. The functions to be determined were

( )f fT T ξ ,η¢ ¢ ¢ ¢= ,

0 x L¢ ¢£ £ , 0 ¢ ¢£ £h P (4.7)

( )s sT T ξ ,η¢ ¢ ¢ ¢= .

The corresponding field equations were

f
s f 0

T
T T

ξ
¢¶

¢ ¢- + =
¢¶

, (4.8)

s
f s 0

T
T T

η
¢¶

¢ ¢- + =
¢¶

(4.9)

with the boundary condition

( )f 0 1T ,η¢ ¢ = . (4.10)

Cold period. The functions to be determined were

( )f fT T ξ ,η¢¢¢¢ ¢¢ ¢¢= ,

0 x L¢¢ ¢¢£ £ , 0 ¢¢ ¢¢£ £h P (4.11)

( )s sT T ξ ,η¢¢ ¢¢ ¢¢ ¢¢= .

The corresponding field equations were (see Remark 4.1)

f
s f 0

T T T
ξ
¢¢¶ ¢¢¢¢+ - =
¢¢¶

, (4.12)

s
f s 0

T
T T

η
¢¢¶ ¢¢ ¢¢- + =
¢¢¶

, (4.13)
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with the boundary condition

( )f , 0T ¢¢ ¢¢ ¢¢ =L h . (4.14)

The  calculations  for  the  hot  period  and  for  the  cold  period  were  performed
separately, and coupling between them become as initial conditions through
the storage material temperature distribution at the ends of the periods. Thus
we had

( ) ( )s s0t x, t x,P¢ ¢¢ ¢¢= , (4.15)

( ) ( )s s0t x, t x,P¢¢ ¢ ¢= , (4.16)

at  the  beginning  of  the  hot  and  cold  periods,  respectively.  We  wanted  to
express these relations using dimensionless quantities. From definitions (4.6)

( )s fi fi s fi( 0) ( 0)t x, t t T ξ , t¢ ¢¢ ¢¢ ¢ ¢¢= - + , (4.17)

( ) ( )s fi fi s fi ( )t x,P t t T ξ ,Π t¢¢ ¢¢ ¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢= - + , (4.18)

( ) ( )s fi fi s fi0 ( 0)t x, t t T ξ , t¢¢¢¢ ¢ ¢¢ ¢¢ ¢¢= - + , (4.19)

( ) ( )s fi fi s fi( )t x,P t t T ξ ,Π t¢¢ ¢ ¢ ¢¢ ¢ ¢ ¢¢= - + . (4.20)

In addition, from (4.2),

x ξ x ξ
L Λ L Λ

¢ ¢¢
= = =

¢ ¢¢
(4.21)

so

Λξ ξ
Λ
¢

¢ ¢¢=
¢¢

,
Λξ ξ
Λ
¢¢

¢¢ ¢=
¢

. (4.22)

When (4.17) to (4.20) and (4.22) were applied in (4.15) and (4.16), we
arrived at the rules
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s s( 0)  ( )ΛT ξ , T ξ ,Π
Λ
¢¢¢ ¢ ¢¢ ¢ ¢¢=
¢

, (4.23)

s s( 0) ( )ΛT ξ , T ξ ,Π
Λ
¢¢¢ ¢¢¢ ¢¢ ¢=
¢¢

(4.24)

to be used as initial conditions at the beginning of the hot and cold periods,
respectively.

At the start of the first hot period, we can take, for example,

( )s
1 1( 0) 1 0
2 2

T ξ ,¢ ¢ = + = , (4.25)

that is,  the mean value of  the dimensionless fluid inflow temperatures.  The
computational situation is described schematically in Figure 4.1.

Figure 4.1.  Consecutive solution domains.

4.2 Thermal ratio

We  quote  Schmidt  and  Willmott  (1981,  p.  112):  “The  effectiveness  of
regenerator behavior is measured in terms of the thermal ratio REGη . This is
defined  to  be  the  ratio  of  the  actual  heat  transfer  rate  to  the
thermodynamically limited maximum obtainable heat transfer rate in a
counterflow regenerator of infinite heat transfer area. Could this maximum
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rate be achieved, the temperature of the gas leaving the regenerator in
hot/cold period would be equal to the entrance temperature.”

The definition formulae from Schmidt and Willmott (1981), with some
changes in notation are

( )fi f
REG f

fi fi

( )
1

t t Lη T Λ
t t
¢ ¢-

¢ ¢ ¢= = -
¢ ¢¢-

%
% , (4.26)

f fi
REG f

fi fi

(0)
(0)

t tη T
t t
¢¢ ¢¢-

¢¢ ¢¢= =
¢ ¢¢-

%
% . (4.27)

Here, the terms with the tilde overbars are the time averages at the outlet
boundaries, see (3.17). As the latter forms in (4.26) and (4.27) are perhaps
not immediately obvious, a derivation is given in Appendix B.

We  wanted  to  express  the  thermal  ratios  using  the  solid  temperatures,  as
these appeared naturally at the beginning and the end of the periods. As we
did not find a derivation for this in the literature, we present one derivation in
Appendix C. The end results were thus

( ) ( )REG s s 0Λ ˆ ˆη T Π T
Π
¢ é ù¢ ¢ ¢ ¢= -ë û¢

, (4.28)

( ) ( )REG s s0Λ ˆ ˆη T T Π
Π
¢¢ é ù¢¢ ¢¢ ¢¢ ¢¢= -ë û¢¢

. (4.29)

4.3 Numerical solution

As discussed in Section 3.3, the calculations were performed using
Formulation I. The weak form models with global definitions, geometry,
mesh, field equations and boundary conditions were built with the COMSOL
Multiphysics 4.3 program. The models were saved as M-files for solutions
with COMSOL 4.3 using the MATLAB program (MATLAB R2012a). In addition,
short MATLAB codes were written for solutions and post processing results.
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4.4 Program description

The program initial data consisted of the following input values: L , P¢ , P¢¢ ,
fit ¢ , fit ¢¢ , sm , A , h¢ , h¢¢ , fc¢ , fc¢¢ , sc¢ , sc¢¢ , fm¢& , fm¢¢& , fit ¢  and fit ¢¢ . From these,

domain sizes, Λ¢ , Π ¢ , Λ¢¢ , Π ¢¢ , for example, were evaluated.

A coarse uniform mesh is defined by giving the number of elements ξn  and
ηn  in the -ξ  and -η directions, respectively. The elements were of the four-

node bilinear rectangular type. The medium mesh was obtained by doubling
the number of elements. The fine mesh was obtained with one more
doubling.

The program proceeded by solving the equations consecutively in hot and
cold periods until the error limit 0.001¢ ¢¢Ù <d d  was reached. The error
was checked during each period with the previous ( ( )s,oldT̂ ¢ ¢P  and

( )s,oldT̂ ¢¢ ¢¢P ) and the present ( ( )s,newT̂ ¢ ¢P  and ( )s,newT̂ ¢¢ ¢¢P  ) values, using
equations

s,old s,new

s,old

ˆ ˆ
ˆ

T T
T

¢ ¢-
¢ =

¢
d , (4.30)

s,old s,new

s,old

ˆ ˆ
ˆ

T T
T

¢¢ ¢¢-
¢¢ =

¢¢
d . (4.31)

The program proceeded by evaluating results with three consecutive meshes,
starting with a coarse mesh. Some example results are presented in Chapter
4.5. Dimensional fluid ft , solid material st , temperature at 'Pt =  with
coarse,  medium  and  fine  meshes  were  calculated  at  fluid  hot  inflow
temperature fi 80 Ct = °  and cold inflow temperature 0 10 Ct = ° . We present
the number of total cycles needed for convergence, thermal ratios REGη¢  and

REGη¢¢ , the effective convergence rate r , and relative error estimate re , as
well as dimensional fluid ft  storage material st  and temperatures at 'Pt =
with coarse, medium and coarse meshes. The COMSOL Multiphysics models
and MATLAB codes used are given in Appendices D, E and F, respectively.
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4.5 Applications

4.5.1 First application

We took a symmetrical case with

10Λ' = , 20Π ' = ,
(4.32)

10Λ'' = , 20Π '' = .

Coarse, medium and fine meshes consisted of 4 8´ , 8 16´  and 16 32´
elements,  respectively.  The  coarse  mesh  was  similar  to  that  in  Figure  3.2.
The number of total cycles needed for convergence was three for each mesh
density. The behaviour of the thermal ratios is given in Table 4.1.

Table 4.1.  Thermal ratio REGh¢  and REGh¢¢ .

Numerical
solution in
reference*)

Numerical
solution
( 4 8´ )

Numerical
solution
(8 16´ )

Numerical
solution

(16 32´ )

REGh¢ 0.494 0.49268 0.49332 0.49350

REGh¢¢ 0.494 0.49268 0.49332 0.49350

*) Schmidt and Willmott (1981)

Temperature distributions in W  are shown in Figure 4.2, and dimensional
temperature distributions at 'Pt =  in Figure 4.3.
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(a) (b)

(c) (d)

Figure 4.2.  Nondimensional fluid fT  and solid material sT  temperature
distribution with a 4 8´ coarse mesh during the hot ((a) and (b)),  and the
cold period ((c) and (d)).

(a) (b)

Figure 4.3.  (a) Dimensional fluid ft  and (b) solid material st  temperature at
'Pt =  with coarse,  medium and fine meshes. Fluid hot inflow temperature

fi 80 Ct¢ = °  and cold inflow temperature fi 10 Ct¢¢ = ° .
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The effective convergence rate r  (3.23) and relative (percentage) error re
(3.28) calculated for REGh¢  and REGh¢¢  are shown in Table 4.2.

Table 4.2.  Effective convergence rate for thermal ratios and relative
(percentage) error estimates.

REGh¢ REGh¢¢

r 1.79863 1.79862

re 0.01874% 0.01874%

4.5.2 Second application

We used Example 5.5 in Schmidt and Willmott (1981). The data is as follows:

231 40mA .= , s 4898 4 kgm .= , s 0 92 kJ/kg Kc .= ,

f 1 011kJ/kg Kc .= , f 0 156kg/sm .¢ =& , f 0 078kg/sm .¢¢ =& , (4.33)

250 23W/m Kh .¢ = , 225 11W/m Kh .¢¢ = , 3600sP¢ = ,

10800sP¢¢ = .

From this, we obtained

10 0Λ .¢ = , 1 26Π .¢ = ,
(4.34)

10 0Λ .¢¢ = , 1 88Π .¢¢ = .

Coarse, medium and fine meshes consisted of 8 4´ , 16 8´  and 32 16´
elements, respectively. The number of total cycles needed for convergence
was  25  with  each  mesh  density.  Table  4.3  presents  the  behaviour  of  the
thermal ratio.
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Table 4.3.  Thermal ratio REGh¢  and REGh¢¢ .

Numerical
solution in
reference*)

Numerical
solution
(25 × 4)

Numerical
solution
(50 × 8)

Numerical
solution

(100 × 16)

REGh¢ 0.947 0.96111 0.94956 0.94760

REGh¢¢ 0.635 0.64519 0.63746 0.63616

*) Schmidt and Willmott (1981)

Temperature distributions in W  are shown in Figure 4.4 and dimensional
temperature distributions at 'Pt =  in Figure 4.5.

(a) (b)

(c) (d)

Figure 4.4.  Nondimensional fluid fT  and solid material sT  temperature
distribution with a 4 8´ coarse mesh during the hot ((a) and (b)),  and the
cold period ((c) and (d)).
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(a) (b)

Figure 4.5.  (a) Dimensional fluid ft  and (b) solid material st  temperature at
'Pt =  with coarse,  medium and fine meshes. Fluid hot inflow temperature

fi 80 Ct¢ = °  and cold inflow temperature fi 10 Ct¢¢ = ° .

Effective convergence rate r  and relative (percentage) error re  for REGh¢  and
REGh¢¢  are shown in Table 4.4.

Table 4.4.  Effective convergence rate for thermal ratios and relative
(percentage) error estimates.

REGh¢ REGh¢¢

r 2.55493 2.57525

re 0.05317% 0.05138%

4.5.3 Third application

We modified the first case slightly so that ratio 0.83333L L P P¢ ¢¢ ¢ ¢¢= =
and

1 6Λ .¢ = , 3 4Π .¢ = ,
(4.35)

1 92Λ .¢¢ = , 4 08Π .¢¢ = .

Coarse, medium and fine meshes consisted of 4 8´ , 8 16´  and 16 32´
elements, respectively. The number of total cycles needed for convergence
was  four  for  each  mesh  density.  The  calculation  results  are  presented  in
Table 4.5.
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Table 4.5.  Thermal ratio REGh¢  and REGh¢¢ .

Numerical
solution
(4 × 8)

Numerical
solution
(8 × 16)

Numerical
solution

(16 × 32)

REGh¢ 0.36210 0.36271 0.36279

REGh¢¢ 0.36210 0.36271 0.36279

Temperature distributions in W  are shown in Figure 4.6 and dimensional
temperature distributions at 'Pt =  in Figure 4.7.

(a) (b)

(c) (d)

Figure 4.6.  Nondimensional fluid fT  and solid material sT  temperature
distribution with a 4 8´ coarse mesh during the hot ((a) and (b)),  and the
cold period ((c) and (d)).
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(a) (b)

Figure 4.7.  (a) Dimensional fluid ft  and (b) solid material st  temperature at
'Pt =  with coarse,  medium and fine meshes. Fluid hot inflow temperature

fi 80 Ct¢ = °  and cold inflow temperature fi 10 Ct¢¢ = ° .

Effective convergence rate r  and relative (percentage) error re  for REGh¢  and
REGh¢¢  are shown in Table 4.6.

Table 4.6.  Effective convergence rate for thermal ratios and relative
(percentage) error estimates.

REGh¢ REGh¢¢

r 2.84466 2.84835

re 0.00469% 0.00466%

4.6 Discussion

From a  practical  point  of  view,  the  accuracy  of  the  results  obtained  by  the
finest  meshes  is  more  than  adequate,  considering  the  assumptions  used  in
the modelling. As expected, we found that the error limit affected the number
of total cycles needed for convergence and the accuracy of the solution. For
example  in  the  second  case,  the  number  of  total  cycles  needed  for
convergence was 2, 15 and 25 with error limits of 0.1, 0.01 and 0.001,
respectively.

According to (4.28) and (4.29), ratios L P¢ ¢  and L P¢¢ ¢¢  affect thermal
ratios REGh¢  and REGh¢¢ . This information can be utilized in the design of heat
exchangers. In practice, e.g. in the heat recovery of a ventilation system that
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transfers  exhaust  air  to  heat  the  supply  air,  the  aim  is  to  achieve  a  high
thermal ratio during a hot period. Therefore, the ratio L L P P¢ ¢¢ ¢ ¢¢=  is
typical in a heat recovery application.
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5 CONCLUSIONS

The classical regenerator problem has been numerically solved in a new way.
Instead of marching in time, the hot and cold periods were solved simply as
boundary value problems in rectangular domains. We applied the finite
element method using commercial package COMSOL with a Galerkin
formulation to solve the boundary value problems. This approach made the
effort of coding rather small. The code solved a problem automatically using
three consecutive meshes with increasing densities. This ensured reliable
knowledge regarding the accuracy of the results. Further, a similar
formulation was performed in a single blow case, the results of which can be
compared directly with an analytical solution. We reported the results from
three regenerator example cases in considerable detail. The finest meshes
gave very good accuracy.

It should not be difficult to extend the analysis to cases in which the inflow
fluid temperature depends on time. This is achieved by simply changing the
boundary condition in the time direction appropriately.
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APPENDIX A

Governing field equations

Nondimensional equations (3.10) and (3.11) were derived in some detail. A
short derivation is given in Willmott (2002, p. 10), but for completeness we
will go through the required steps.

Let us rewrite the governing dimensional field equations (2.35) and (2.36):

( )f f
f f f f f s 0t tm c m c L h A t t

xt
¶ ¶

+ + - =
¶ ¶

& , (A.1)

( )s
s s s f 0tm c h A t t

t
¶

+ - =
¶

. (A.2)

Some manipulation produces

( )f f f
f s

f f f
0

m t t h A t t
m L x m c Lt

¶ ¶
+ + - =

¶ ¶& &
, (A.3)

( )s
s f

s s
0

t h A t t
m ct

¶
+ - =

¶
. (A.4)

We now introduce the dimensionless quantities

f f

x hA x
L m c L

x L= =
&

, (A.5)

f

s s f

1

x

m xx hA
P v m c m L

h P t t
æ ö æ ö

= - = -ç ÷ ç ÷
è øè ø &

. (A.6)

The last formula makes use of the fact that with uniform fluid distribution,
the mass flow rate is



Temperature distribution in regenerators

56

f
f x

mm v
L

=& . (A.7)

Chain differentiation gives

f

f f s s f

mhA hA
x x x m c L m c m L

x h
x h x h

¶ ¶ ¶ ¶ ¶ ¶ ¶
= + = -

¶ ¶ ¶ ¶ ¶ ¶ ¶& &
, (A.8)

s s
0 hA

m c
x h

t t x t h x h
¶ ¶ ¶ ¶ ¶ ¶ ¶

= + = +
¶ ¶ ¶ ¶ ¶ ¶ ¶

. (A.9)

When these are applied in (A.3) and (A.4), we obtain

( )f f f f f
f s

f s s f f s s f f f
0m t t m thA hA hA hA t t

m L m c m c L m c m L m c Lh x h
¶ ¶ ¶

+ - + - =
¶ ¶ ¶&& & &

,

(A.10)

( )s
s f

s s s s
0

t h AhA t t
m c m ch

¶
+ - =

¶
, (A.11)

or, after simplifications

f
f s 0t t t

x
¶

+ - =
¶

, (A.12)

s
s f 0t t t

h
¶

+ - =
¶

. (A.13)

Furthermore, definitions (3.7) and (3.8) give

( ) ( )f fi 0 f 0 s fi 0 s 0,t t t T t t t t T t= - + = - + , (A.14)

where fit  and 0t  are constants. Substituting these in (A.12) and (A.13)
immediately provides the final field equations

f
s f 0T T T

x
¶

- + =
¶

, (A.15)
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s
f s 0T T T

h
¶

- + =
¶

. (A.16)

We obtained the same equations in the regenerator case with definitions
(4.5) and (4.6).



Temperature distribution in regenerators

58

APPENDIX B

Dimensional temperatures and thermal ratios

From definition (4.5),

( ) ( )( )f f fi fi fi,t x,τ T ξ η t t t¢¢ ¢ ¢ ¢ ¢¢ ¢¢= - + . (B.1)

Integrating both sides of this over (0 ),Π ¢  gives

( ) ( ) ( )f fi fi f fi0 0
d , d

Π Π
t x,τ η t t T ξ η η t Π
¢ ¢ ¢¢ ¢ ¢ ¢¢ ¢ ¢ ¢ ¢¢ ¢= - +ò ò . (B.2)

From (4.4),

d dΠη τ
P
¢

¢ =
¢

(B.3)

and the left-hand side of (B.2) can be transformed to

( ) ( )f f0 0
d d

Π PΠt x,τ η t x,τ τ
P

¢ ¢¢
¢ ¢ ¢=

¢ò ò . (B.4)

Making use of the time average definitions (3.17), (B.2) can now be written
as

( ) ( ) ( )f fi fi f fiΠ t x t t Π T ξ t Π¢¢ ¢ ¢ ¢¢ ¢ ¢ ¢¢ ¢= - +%% (B.5)

or

( ) ( ) ( )f fi fi f fit x t t T ξ t¢¢ ¢ ¢¢ ¢ ¢¢= - +%% . (B.6)

and in particular,

( ) ( ) ( )f fi fi f fit L t t T Λ t¢¢ ¢ ¢¢ ¢ ¢¢= - +%% . (B.7)
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Finally, the left-hand side of (4.26) becomes

( ) ( )fi fi fi f fifi f
REG

fi fi fi fi

( ) t t t T Λ tt t Lη
t t t t

¢¢ ¢ ¢¢ ¢ ¢¢- - -¢ ¢-
¢ = =

¢ ¢¢ ¢ ¢¢- -

%%

( ) ( ) ( )fi fi fi fi fi f fi
f

fi fi
1

t t t t t T Λ t
T Λ

t t

¢¢ ¢¢ ¢¢ ¢ ¢¢ ¢ ¢¢- + - - -
¢ ¢= = -

¢ ¢¢-

%
% . (B.8)

Formula (4.27) can be similarly proven.
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APPENDIX C

Nondimensional temperatures and thermal ratios

Eliminating the term s fT T-  between (3.10) and (3.11) gives the equation

sf TT
ξ η

¶¶
= -

¶ ¶
. (C.1)

Both sides of this are integrated over Ω :

sf
0 0 0 0

d d d d
Π Λ Λ Π TT

ξ η η ξ
ξ η

¶¶ æ öæ ö = - ç ÷ç ÷¶ ¶è ø è ø
ò ò ò ò . (C.2)

The integration order is intentionally different on each side. Performing the
inner integrations gives

( ) ( ) ( ) ( )f f s s0 0
0 d 0 d

Π Λ
T Λ,η T ,η η T ξ ,Π T ξ , ξ- = - -é ù é ùë û ë ûò ò . (C.3)

Performing the outer integrations and taking definitions (3.17) and (3.18)
into account gives

( ) ( ) ( ) ( )f f s s0 0ˆ ˆΠT Λ ΠT ΛT Π ΛT- = - +% % . (C.4)

This equation reveals interesting relations between the average values of
temperature at the domain boundaries. We will apply it to the hot and cold
periods.

In the hot period, the inflow fluid temperature at 0ξ ¢ =  is fi 1T ¢ = , thus also
( )f 0 1T =% . Equation (C.4) therefore first becomes

( ) ( ) ( )f s s 0ˆ ˆΠ T Λ Π Λ T Π Λ T¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢- = - +% . (C.5)

From this, (see (4.26))
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( ) ( ) ( )REG f s s1 0Λ ˆ ˆη T Λ T Π T
Π
¢ é ù¢ ¢ ¢ ¢ ¢ ¢= - = -ë û¢

% . (C.6)

When applying the cold period, a change in the signs appears, because fm¢¢&  is
defined as positive. Therefore (C.4) first becomes

( ) ( ) ( ) ( )f f s s0 0ˆ ˆΠ T Λ Π T Λ T Π Λ T¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢- = -% % . (C.7)

In the cold period, the inflow fluid temperature at ξ Λ¢¢ ¢¢= is fi 0T ¢¢ = , thus
also ( )f 0T Λ¢¢ ¢¢ =% . Equation (C.7) therefore becomes

( ) ( ) ( )f s s0 0ˆ ˆΠ T Λ T Π Λ T¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢ ¢¢- = -% . (C.8)

From this (see (4.27)

( ) ( )REG s s0Λ ˆ ˆη T T Π
Π
¢¢ é ù¢¢ ¢¢ ¢¢ ¢¢= -ë û¢¢

. (C.9)

In Willmott (2002, p. 192), the corresponding thermal ratio expressions are
given by using the solid nondimensional temperatures at the beginning of the
periods. Due to (4.23) and (4.24), and by taking the space averages we have

( ) ( )s s
ˆ ˆ 0T TP¢¢ ¢¢ ¢= , (C.10)

( ) ( )ŝ
ˆ 0sT TP¢ ¢ ¢¢= . (C.11)

When these are employed in (C.6) and (C.9), we arrive at the formulas

( ) ( )REG s0 0s
Λ ˆ ˆη T T
Π
¢ é ù¢ ¢¢ ¢= -ë û¢

, (C.12)

( ) ( )REG s0 0s
Λ ˆ ˆη T T
Π
¢¢ é ù¢¢ ¢¢ ¢= -ë û¢¢

. (C.13)

These agree with Willmott (2002), except for the signs. Willmott (2002) may
contain printing errors. From the above, we find the simple relation

REG

REG

/
/

h L P
h L P
¢ ¢ ¢

=
¢¢ ¢¢ ¢¢

. (C.14)
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APPENDIX D

COMSOL Multiphysics Model for SBC (First
application of SBC)

SBC COMSOL Multiphysics
Model

Date May 7, 2014 8:26:11 AM

http://www.comsol.com/
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1 Global Definitions

1.1 Parameters 1
Parameters

Name Expression Description

lamda 1.847

phi 3.78
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2 Model 1 {mod1}

2.1 Definitions

2.1.1 Coordinate Systems

Boundary System 1

Coordinate system type Boundary system

Identifier sys1

Settings

Name Value

Coordinate names {t1, n, to}

Create first tangent direction from Global Cartesian
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2.2 Geometry 1

Geometry 1

units

Length unit m

Angular unit deg

Geometry statistics

Property Value

Space dimension 2

Number of domains 1

Number of boundaries 4
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2.2.1 Rectangle 1 (r1)

Position

Name Value

Position {0, 0}

Width lamda

Height phi

Size {lamda, phi}

2.3 Weak Form PDE {w}

Weak Form PDE

Selection

Geometric entity level Domain

Selection Domain 1
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Settings

Description Value

Element order Linear

Used products

COMSOL Multiphysics

2.3.1 Weak Form PDE 1

Weak Form PDE 1

Selection

Geometric entity level Domain

Selection Domain 1
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Equations

Settings

Settings

Description Value

Weak expressions {test(Tf)*(Tfx - Ts + Tf), test(Ts)*(Tsy - Tf + Ts)}

Shape functions

Name Shape
function

Unit Description Shape
frame

Selection

Tf Lagrange
(Linear)

1 Dependent
variable Tf

Material Domain 1

Ts Lagrange
(Linear)

1 Dependent
variable Ts

Material Domain 1

Weak expressions

Weak expression Integration frame Selection

test(Tf)*(Tfx - Ts + Tf) Material Domain 1

test(Ts)*(Tsy - Tf + Ts) Material Domain 1
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2.3.2 Zero Flux 1

Zero Flux 1

Selection

Geometric entity level Boundary

Selection Boundaries 3–4

Equations
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2.3.3 Initial Values 1

Initial Values 1

Selection

Geometric entity level Domain

Selection Domain 1
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2.3.4 Dirichlet Boundary Condition 1

Dirichlet Boundary Condition 1

Selection

Geometric entity level Boundary

Selection Boundary 2

Equations

Settings

Settings

Description Value
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Description Value

Prescribed value of Tf 0

Prescribed value of Ts 1

Constraints

Constraint Constraint force Shape function Selection

-Ts -test(Ts) Lagrange (Linear) Boundary 2

2.3.5 Dirichlet Boundary Condition 2

Dirichlet Boundary Condition 2

Selection

Geometric entity level Boundary

Selection Boundary 1
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Equations

Settings

Settings

Description Value

Value on boundary {1, 0}

Prescribed value of Tf 1

Prescribed value of Ts 0

Constraints

Constraint Constraint force Shape function Selection

1 - Tf -test(Tf) Lagrange (Linear) Boundary 1

2.4 Mesh 1
Mesh statistics

Property Value

Minimum element quality 0.9997

Average element quality 0.9997

Quadrilateral elements 32

Edge elements 24

Vertex elements 4
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Mesh 1

2.4.1 Size (size)

Settings

Name Value

Maximum element size 0.253

Minimum element size 0.00113

Resolution of curvature 0.3

Maximum element growth rate 1.3
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3 Study 1 {std1}

3.1 Stationary
Mesh selection

Geometry Mesh

Geometry 1 (geom1) mesh1

Physics selection

Physics Discretization

Weak Form PDE (w) physics

3.2 Solver Configurations

3.2.1 Solver 1

Compile Equations: Stationary {stat} (st1)

Study and step

Name Value

Use study Study 1

Use study step Stationary

Dependent Variables 1 (v1)

General

Name Value

Defined by study step Stationary
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Initial values of variables solved for

Name Value

Solution Zero

Values of variables not solved for

Name Value

Solution Zero

mod1.Ts (mod1_Ts)

General

Name Value

Field components mod1.Ts

mod1.Tf (mod1_Tf)

General

Name Value

Field components mod1.Tf

Stationary Solver 1 (s1)

General

Name Value

Defined by study step Stationary
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Log
Stationary Solver 1 {s1} in Solver 1 {sol1} started at 5-Jun-
2014 14:29:25.
Linear solver
Number of degrees of freedom solved for: 90.
Nonsymmetric matrix found.
Scales for dependent variables:
mod1.Ts: 1
mod1.Tf: 0.96
Iter     Damping    Stepsize #Res #Jac #Sol
   1   1.0000000        0.97    1    1    1

Stationary Solver 1 {s1} in Solver 1 {sol1}: Solution time: 0 s
.

Fully Coupled 1 (fc1)

General

Name Value

Linear solver Direct



Temperature distribution in regenerators

79

4 Results

4.1 Data Sets

4.1.1 Solution 1

Selection

Geometric entity level Domain

Selection Geometry geom1

Solution

Name Value

Solution Solver 1

Model Save Point Geometry 1
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4.2 Plot Groups

4.2.1 2D Plot Group 1

Surface: Dependent variable Tf (1)
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4.2.2 2D Plot Group 2

Surface: Dependent variable Ts (1)
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COMSOL Multiphysics Model for REG (First
application of REG, hot period)

REG COMSOL Multiphysics
Model

Date Apr 10, 2014 9:13:42 AM

http://www.comsol.com/
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1 Global Definitions

1.1 Parameters 1
Parameters

Name Expression Description

lamda 10

phi 20

d 1

Tci 0

Thi 1

1.2 Functions

1.2.1 Interpolation 1

Function name int1

Function type Interpolation
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Interpolation 1
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2 Model 1 {mod1}

2.1 Definitions

2.1.1 Coordinate Systems

Boundary System 1

Coordinate system type Boundary system

Identifier sys1

Settings

Name Value

Coordinate names {t1, n, to}

Create first tangent direction from Global Cartesian
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2.2 Geometry 1

Geometry 1

units

Length unit m

Angular unit deg

Geometry statistics

Property Value

Space dimension 2

Number of domains 1

Number of boundaries 4
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2.2.1 Rectangle 1 (r1)

Position

Name Value

Position {0, 0}

Width lamda

Height phi

Size {lamda, phi}

2.3 Weak Form PDE {w}

Weak Form PDE

Selection

Geometric entity level Domain

Selection Domain 1
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Settings

Description Value

Element order Linear

Used products

COMSOL Multiphysics

2.3.1 Weak Form PDE 1

Weak Form PDE 1

Selection

Geometric entity level Domain

Selection Domain 1
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Equations

Settings

Settings

Description Value

Weak expressions {test(Tf)*(Tfx - d*Ts + d*Tf), test(Ts)*(Tsy - Tf + Ts)}

Shape functions

Name Shape
function

Unit Description Shape
frame

Selection

Tf Lagrange
(Linear)

1 Dependent
variable Tf

Material Domain 1

Ts Lagrange
(Linear)

1 Dependent
variable Ts

Material Domain 1

Weak expressions

Weak expression Integration frame Selection

test(Tf)*(Tfx - d*Ts + d*Tf) Material Domain 1

test(Ts)*(Tsy - Tf + Ts) Material Domain 1
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2.3.2 Zero Flux 1

Zero Flux 1

Selection

Geometric entity level Boundary

Selection Boundaries 3–4

Equations
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2.3.3 Initial Values 1

Initial Values 1

Selection

Geometric entity level Domain

Selection Domain 1
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2.3.4 Dirichlet Boundary Condition 1

Dirichlet Boundary Condition 1

Selection

Geometric entity level Boundary

Selection Boundary 2

Equations

Settings

Settings

Description Value
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Description Value

Value on boundary {0, T(x)}

Prescribed value of Tf 0

Prescribed value of Ts 1

Constraints

Constraint Constraint force Shape function Selection

T(x) - Ts -test(Ts) Lagrange (Linear) Boundary 2

2.3.5 Constraint 1

Constraint 1

Selection

Geometric entity level Boundary
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Selection Boundary 1

Equations

Settings

Settings

Description Value

Bidirectional constraint, R = 0 {Thi - Tf, 0}

Variables

Name Expression Unit Description Selection

w.R_Tf Thi - Tf 1 Bidirectional constraint, R = 0 Boundary 1

w.R_Ts 0 Bidirectional constraint, R = 0 Boundary 1

Constraints

Constraint Constraint force Shape function Selection

Thi - Tf test(Thi - Tf) Lagrange (Linear) Boundary 1

0 0 Lagrange (Linear) Boundary 1
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2.4 Mesh 1
Mesh statistics

Property Value

Minimum element quality 1.0

Average element quality 1.0

Quadrilateral elements 32

Edge elements 24

Vertex elements 4

Mesh 1

2.4.1 Size (size)

Settings

Name Value
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Name Value

Maximum element size 1.34

Minimum element size 0.0060

Resolution of curvature 0.3

Maximum element growth rate 1.3
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3 Study 1 {std1}

3.1 Stationary
Mesh selection

Geometry Mesh

Geometry 1 (geom1) mesh1

Physics selection

Physics Discretization

Weak Form PDE (w) physics

3.2 Solver Configurations

3.2.1 Solver 1

Compile Equations: Stationary {stat} (st1)

Study and step

Name Value

Use study Study 1

Use study step Stationary

Dependent Variables 1 (v1)

General

Name Value

Defined by study step Stationary
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Initial values of variables solved for

Name Value

Solution Zero

Values of variables not solved for

Name Value

Solution Zero

mod1.Ts (mod1_Ts)

General

Name Value

Field components mod1.Ts

mod1.Tf (mod1_Tf)

General

Name Value

Field components mod1.Tf

Stationary Solver 1 (s1)

General

Name Value

Defined by study step Stationary
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Log
Stationary Solver 1 {s1} in Solver 1 {sol1} started at 5-Jun-
2014 15:27:10.
Linear solver
Number of degrees of freedom solved for: 90.
Nonsymmetric matrix found.
Scales for dependent variables:
mod1.Ts: 1
mod1.Tf: 1
Iter     Damping    Stepsize #Res #Jac #Sol
   1   1.0000000           1    1    1    1

Stationary Solver 1 {s1} in Solver 1 {sol1}: Solution time: 0 s
.

Fully Coupled 1 (fc1)

General

Name Value

Linear solver Direct
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4 Results

4.1 Data Sets

4.1.1 Solution 1

Selection

Geometric entity level Domain

Selection Geometry geom1

Solution

Name Value

Solution Solver 1

Model Save Point Geometry 1
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4.2 Plot Groups

4.2.1 2D Plot Group 1

Surface: Dependent variable Tf (1)
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4.2.2 2D Plot Group 2

Surface: Dependent variable Ts (1)
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APPENDIX E

COMSOL Model as MATLAB form for SBC
function out = model

%
% SBC_COMSOL_Multiphysics_model.m

%

% Model exported on Jan 25 2014, 17:58 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\');

model.name('SBC_COMSOL_Multiphysics_model.mph');

model.param.set('lamda', '3.78');
model.param.set('phi', '1.847');

model.modelNode.create('mod1');

model.geom.create('geom1', 2);

model.geom('geom1').feature.create('r1', 'Rectangle');

model.geom('geom1').feature('r1').set('size', {'lamda'
'phi'});
model.geom('geom1').run;

model.physics.create('w', 'WeakFormPDE', 'geom1');

model.physics('w').field('dimensionless').field('Tf');

model.physics('w').field('dimensionless').component({'Tf'
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'Ts'});
model.physics('w').feature.create('dir1',
'DirichletBoundary', 1);
model.physics('w').feature('dir1').selection.set([2]);

model.physics('w').feature.create('dir2',
'DirichletBoundary', 1);
model.physics('w').feature('dir2').selection.set([1]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('map1', 'Map');

model.mesh('mesh1').feature('map1').feature.create('dis1',
'Distribution');
model.mesh('mesh1').feature('map1').feature('dis1').selecti
on.set([2 3]);
model.mesh('mesh1').feature('map1').feature.create('dis2',
'Distribution');
model.mesh('mesh1').feature('map1').feature('dis2').selecti
on.set([1 4]);

model.view('view1').axis.set('xmin', '-
0.8489214181900024');
model.view('view1').axis.set('xmax', '4.6289215087890625');
model.view('view1').axis.set('ymin', '-
3.2946972846984863');
model.view('view1').axis.set('ymax', '5.141697406768799');

model.physics('w').prop('ShapeProperty').set('order', '1');

model.physics('w').feature('wfeq1').set('weak',
{'test(Tf)*(Tfx-Ts+Tf)'; 'test(Ts)*(Tsy-Tf+Ts)'});
model.physics('w').feature('dir1').set('useDirichletConditi
on', {'0'; '1'});
model.physics('w').feature('dir2').set('r', {'1'; '0'});
model.physics('w').feature('dir2').set('useDirichletConditi
on', {'1'; '0'});

model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem', '32');
model.mesh('mesh1').feature('map1').feature('dis2').set('nu



Temperature distribution in regenerators

106

melem', '16');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.study.create('std1');

model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');

model.sol('sol1').attach('std1');

model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');

model.sol('sol1').feature.create('s1', 'Stationary');

model.sol('sol1').feature('s1').feature.create('fc1',
'FullyCoupled');
model.sol('sol1').feature('s1').feature.remove('fcDef');

model.result.create('pg1', 'PlotGroup2D');
model.result('pg1').feature.create('surf1', 'Surface');

model.result.create('pg2', 'PlotGroup2D');

model.result('pg2').feature.create('surf1', 'Surface');

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations:
Stationary {stat}');
model.sol('sol1').feature('st1').set('studystep', 'stat');

model.sol('sol1').feature('v1').set('control', 'stat');

model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').runAll;

model.result('pg2').feature('surf1').set('expr', 'Ts');

model.result('pg2').feature('surf1').set('descr',
'Dependent variable Ts');

out = model;



Temperature distribution in regenerators

107

COMSOL Model as MATLAB form for REG
function out = model
%

% REG_COMSOL_Multiphysics_model.m

%

% Model exported on Apr 10 2014, 09:13 by COMSOL 4.3.0.151.

import com.comsol.model.*

import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\');

model.name('REG_COMSOL_Multiphysics_model.mph');

model.param.set('lamda', '1.847');

model.param.set('phi', '3.78');

model.param.set('d', '1');

model.param.set('Tci', '0');
model.param.set('Thi', '1');

model.modelNode.create('mod1');

model.file.create('res1');

model.func.create('int1', 'Interpolation');
model.func('int1').set('funcs', {'T' '1'});

model.func('int1').set('source', 'file');

model.func('int1').set('filename', 'C:\Tinitial.txt');

model.geom.create('geom1', 2);
model.geom('geom1').feature.create('r1', 'Rectangle');
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model.geom('geom1').feature('r1').set('size', {'lamda'
'phi'});

model.geom('geom1').run;

model.physics.create('w', 'WeakFormPDE', 'geom1');

model.physics('w').field('dimensionless').field('Tf');

model.physics('w').field('dimensionless').component({'Tf'
'Ts'});
model.physics('w').feature.create('dir1',
'DirichletBoundary', 1);

model.physics('w').feature('dir1').selection.set([2]);
model.physics('w').feature.create('cons1', 'Constraint',
1);
model.physics('w').feature('cons1').selection.set([1]);

model.physics('w').feature.create('cons2', 'Constraint',
1);
model.physics('w').feature('cons2').selection.set([4]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('map1', 'Map');

model.mesh('mesh1').feature('map1').feature.create('dis1',
'Distribution');
model.mesh('mesh1').feature('map1').feature('dis1').selecti
on.set([2 3]);
model.mesh('mesh1').feature('map1').feature.create('dis2',
'Distribution');
model.mesh('mesh1').feature('map1').feature('dis2').selecti
on.set([1 4]);

model.view('view1').axis.set('xmin', '-
0.38010746240615845');
model.view('view1').axis.set('xmax', '2.227107524871826');
model.view('view1').axis.set('ymin', '-
0.1889999955892563');
model.view('view1').axis.set('ymax', '3.9689998626708984');

model.physics('w').prop('ShapeProperty').set('order', '1');

model.physics('w').feature('wfeq1').set('weak',
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{'test(Tf)*(Tfx-d*Ts+d*Tf)'; 'test(Ts)*(Tsy-Tf+Ts)'});
model.physics('w').feature('dir1').set('r', {'0'; 'T(x)'});

model.physics('w').feature('dir1').set('useDirichletConditi
on', {'0'; '1'});
model.physics('w').feature('cons1').set('R', {'Thi-Tf';
'0'});
model.physics('w').feature('cons2').set('R', {'Tci-Tf';
'0'});

model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem', '4');
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem', '8');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.study.create('std1');

model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');

model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');

model.sol('sol1').feature.create('st1', 'StudyStep');

model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');

model.sol('sol1').feature('s1').feature.create('fc1',
'FullyCoupled');
model.sol('sol1').feature('s1').feature.remove('fcDef');

model.result.create('pg1', 'PlotGroup2D');

model.result('pg1').feature.create('surf1', 'Surface');
model.result.create('pg2', 'PlotGroup2D');

model.result('pg2').feature.create('surf1', 'Surface');

model.sol('sol1').attach('std1');

model.sol('sol1').feature('st1').name('Compile Equations:
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Stationary {stat}');
model.sol('sol1').feature('st1').set('studystep', 'stat');

model.sol('sol1').feature('v1').set('control', 'stat');

model.sol('sol1').feature('s1').set('control', 'stat');

model.sol('sol1').runAll;

model.result('pg2').feature('surf1').set('expr', 'Ts');

model.result('pg2').feature('surf1').set('descr',
'Dependent variable Ts');

out = model;
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APPENDIX F

MATLAB codes for SBC
% MAIN CODE FOR SINGLE BLOW CASE (SBC)

%
% This main code determines SBC case temperature
distribution by using COMSOL 4.3 with MATLAB program
% The main code includes four subroutines: (1) the subcode
for given data, (2) the subcode for numerical integration
with trapezoidal method, (3) the subcode for post
processing, and (4) the subcode for dimensional fluid and
solid temperatures
% The equation numbers, referred to, are the same as in the
main part of the report

clear all

format long

model = mphload('SBC_COMSOL_Multiphysics_model'); % Load
COMSOL Multiphysics SBC model (m-file)

SBCdata % Subcode for given data

model.param.set('lamda',SBC_lamda); % Set nondimensional
length, equation (3.3)
model.param.set('phi',SBC_phi); % Set nondimensional time
length, equation (3.5)

% Coarse mesh

model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',SBC_coarse_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',SBC_coarse_numelem2); % Set number of elements in
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time direction

SBC_numerical_integration % Subcode for numerical
integration with trapezoidal method

save SBC_Ts_coarse.txt data6 -ascii -tabs % Save solid
temperatures for post processing

save SBC_Tf_coarse.txt data7 -ascii -tabs % Save fluid
temperatures for post processing

save SBC_Tsmean_coarse.txt data8 -ascii -tabs % Save solid
mean temperature for post processing

% Medium mesh
model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',SBC_medium_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',SBC_medium_numelem2); % Set number of elements in
time direction

SBC_numerical_integration % Subcode for numerical
integration with trapezoidal method

save SBC_Ts_medium.txt data6 -ascii -tabs % Save solid
temperatures for post processing

save SBC_Tf_medium.txt data7 -ascii -tabs % Save fluid
temperatures for post processing

save SBC_Tsmean_medium.txt data8 -ascii -tabs % Save solid
mean temperature for post processing

% Fine mesh
model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',SBC_fine_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',SBC_fine_numelem2); % Set number of elements in time
direction

SBC_numerical_integration % Subcode for numerical
integration with trapezoidal method
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save SBC_Ts_fine.txt data6 -ascii -tabs % Save solid
temperatures for post processing

save SBC_Tf_fine.txt data7 -ascii -tabs % Save fluid
temperatures for post processing

save SBC_Tsmean_fine.txt data8 -ascii -tabs % Save solid
mean temperature for post processing

SBC_post_processing % Subcode for post processing

SBC_dimensional_temperatures % Subcode for dimensional
fluid and solid temperatures
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% SUBCODE FOR GIVEN DATA (SBC)

%
% This subroutine loads the given SBC values from the data
matrix

data1 = load('C:\SBCdata.txt'); % Load given SBC data

A = data1(1,1); % Total heat transfer surface area, m^2
ms = data1(2,1); % Total storage medium mass, kg

cs = data1(3,1); % Storage medium specific heat at constant
pressure, kJ/kg K
cf = data1(4,1); % Fluid specific heat at constant
pressure, kJ/kg K
mf = data1(5,1); % Total mass rate of fluid, kg/s

h = data1(6,1); % Overall heat transfer coefficient,
W/m^2 K

P = data1(7,1); % Period, s
t0 = data1(8,1); % Dimensional constant initial storage
material temperature, equation (3.1)
tfi = data1(9,1); % Dimensional constant fluid inflow
temperature, equation (3.2)

SBC_coarse_numelem1 = data1(10,1); % Number of elements in
axial direction with coarse mesh

SBC_coarse_numelem2 = data1(11,1); % Number of elements in
time direction with coarse mesh

SBC_medium_numelem1 = data1(12,1); % Number of elements in
axial direction with medium mesh
SBC_medium_numelem2 = data1(13,1); % Number of elements in
time direction with medium mesh

SBC_fine_numelem1 = data1(14,1); % Number of elements in
axial direction with fine mesh

SBC_fine_numelem2 = data1(15,1); % Number of elements in
time direction with fine mesh

SBC_lamda = h*A/(mf*cf); % Nondimensional length lamda,
equation (3.3)
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SBC_phi = h*A*P/(ms*cs); % Nondimensional time length phi,
equation (3.5)
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% SUBCODE FOR NUMERICAL INTEGRATION WITH TRAPEZOIDAL METHOD
(SBC)

%
% This subroutine calculates solid mean temperature on
boundary 3 with trapezoidal method

model.study('std1').run;

data1 =
mpheval(model,'Ts','edim','boundary','selection',3); % Load
solid temperatures on boundary 3
data2 =
mpheval(model,'Tf','edim','boundary','selection',3); % Load
fluid temperatures on boundary 3

ind = data1.p(1,:)'; % Nondimensional position coordinate
nodes, equation (3.4)
Tsnewh = data1.d1'; % Solid temperatures

Tfnewh = data2.d1'; % Fluid temperatures

data1h = [ind Tsnewh];

data2h = [ind Tfnewh];
data11h = sortrows(data1h); % Sorts the rows of data1h in
ascending order
data22h = sortrows(data2h); % Sorts the rows of data2h in
ascending order

ind2h = data11h(:,1); % Shorted nondimensional position
coordinate nodes
Tshnew = data11h(:,2); % Shorted solid temperatures

Tfhnew = data22h(:,2); % Shorted fluid temperatures

Tshnewm = trapz(ind2h,Tshnew)/(ind2h(end)- ind2h(1)); %
Solid mean temperature calculated with trapezoidal method,
equation (3.18)

data5 = load('C:\T.txt');

data6 = [ind2h Tshnew];
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data7 = [ind2h Tfhnew];
data8 = Tshnewm;

h1 = figure;

mphplot(model,'pg1','rangenum',1) % Plot fluid temperatures

xlabel('{\it\xi} [-]', 'FontSize', 12);
ylabel('{\it\eta} [-]', 'FontSize', 12);

hgsave(h1,'SBC_Tf','-v6')

h2 = figure;

mphplot(model,'pg2','rangenum',1) % Plot solid temperatures
xlabel('{\it\xi} [-]', 'FontSize', 12);

ylabel('{\it\eta} [-]', 'FontSize', 12);

hgsave(h2,'SBC_Ts','-v6')
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% SUBCODE FOR POST PROCESSING (SBC)

%
% This subroutine post processes the calculated SBC values

lamda = 2; % Refinement ratio or scale factor

Fs = 1.25; % Factor of safety

Ts_0 = 0.977177; % Given exact solution point Ts(0,phi),
equation (3.34)
Tf_lamda = 0.853587; % Given exact solution point
Tf(lamda,phi), equation (3.35)

Ts_lamda = 0.727046; % Given exact solution point
Ts(lamda,phi), equation (3.35)

Ts_mean = 0.863840; % The solid mean temperature on line
AB, equation (3.36)

data61 = load('C:\SBC_Ts_coarse.txt'); % Load solid
temperatures with coarse mesh
data62 = load('C:\SBC_Ts_medium.txt'); % Load solid
temperatures with medium mesh
data63 = load('C:\SBC_Ts_fine.txt'); % Load solid
temperatures with fine mesh

data71 = load('C:\SBC_Tf_coarse.txt'); % Load fluid
temperatures with coarse mesh
data72 = load('C:\SBC_Tf_medium.txt'); % Load fluid
temperatures with medium mesh
data73 = load('C:\SBC_Tf_fine.txt'); % Load fluid
temperatures with fine mesh

data81 = load('C:\SBC_Tsmean_coarse.txt'); % Load solid
mean temperature with coarse mesh
data82 = load('C:\SBC_Tsmean_medium.txt'); % Load solid
mean temperature with medium mesh
data83 = load('C:\SBC_Tsmean_fine.txt'); % Load solid mean
temperature with fine mesh

Tsc = data61(1,2); % Solid temperature with coarse mesh at
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point A(0,phi)
Tsm = data62(1,2); % Solid temperature with medium mesh at
point A(0,phi)
Tsf = data63(1,2); % Solid temperature with fine mesh at
point A(0,phi)

Tsmeanc = data81; % Solid mean temperature with coarse mesh
on line AB, equation (3.18)
Tsmeanm = data82; % Solid mean temperature with medium mesh
on line AB, equation (3.18)
Tsmeanf = data83; % Solid mean temperature with fine mesh
on line AB, equation (3.18)

disp(['Results for Ts at A']);

eacr = (Ts_0 - Tsc)/Ts_0 * 100 % Actual relative
(percentage) error with coarse mesh, equation (3.30)
eamr = (Ts_0 - Tsm)/Ts_0 * 100 % Actual relative
(percentage) error with medium mesh, equation (3.30)
eafr = (Ts_0 - Tsf)/Ts_0 * 100 % Actual relative
(percentage) error with fine mesh, equation (3.30)

efm = Tsf - Tsm; % An error measure, equation (3.30)

efmr = (Tsf - Tsm)/Tsf * 100; % Relative (percentage)
error, equation (3.26)

r = log((Tsm - Tsc)/(Tsf - Tsm))/log(lamda) % Effective
convergence rate, equation (3.23)

er = Fs * abs(efmr)/(lamda^r-1) % Relative (percentage)
error estimate, equation (3.28)

disp(['Results for Tf at B']);

Tfc = data71(end,2); % Fluid temperature with coarse mesh
at point B(0,phi)
Tfm = data72(end,2); % Fluid temperature with medium mesh
at point B(0,phi)
Tff = data73(end,2); % Fluid temperature with fine mesh at
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point B(0,phi)
eacr = (Tf_lamda - Tfc)/Tf_lamda * 100 % Actual relative
(percentage) error with coarse mesh, equation (3.30)
eamr = (Tf_lamda - Tfm)/Tf_lamda * 100 % Actual relative
(percentage) error with medium mesh, equation (3.30)
eafr = (Tf_lamda - Tff)/Tf_lamda * 100 % Actual relative
(percentage) error with fine mesh, equation (3.30)

efm = Tff - Tfm; % An error measure, equation (3.25)

efmr = (Tff - Tfm)/Tff * 100; % Relative (percentage)
error, equation (3.26)
r = log((Tfm - Tfc)/(Tff - Tfm))/log(lamda) % Effective
convergence rate, equation (3.23)
er = Fs * abs(efmr)/(lamda^r-1) % Relative (percentage)
error estimate, equation (3.28)

disp(['Results for Ts at B']);

Tsc = data61(end,2); % Solid temperature with coarse mesh
at point B(lamda,phi)

Tsm = data62(end,2); % Solid temperature with medium mesh
at point B(lamda,phi)
Tsf = data63(end,2); % Solid temperature with fine mesh at
point B(lamda,phi)

eacr = (Ts_lamda - Tsc)/Ts_lamda * 100 % Actual relative
(percentage) error with coarse mesh, equation (3.30)
eamr = (Ts_lamda - Tsm)/Ts_lamda * 100 % Actual relative
(percentage) error with medium mesh, equation (3.30)
eafr = (Ts_lamda - Tsf)/Ts_lamda * 100 % Actual relative
(percentage) error with fine mesh, equation (3.30)

efm = Tsf - Tsm; % An error measure, equation (3.30)

efmr = (Tsf - Tsm)/Tsf * 100; % Relative (percentage)
error, equation (3.26)
r = log((Tsm - Tsc)/(Tsf - Tsm))/log(lamda) % Effective
convergence rate, equation (3.23)
er = Fs * abs(efmr)/(lamda^r-1) % Relative (percentage)
error estimate, equation (3.28)
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disp(['Results for average Ts on line AB']);

eacr = (Ts_mean - Tsmeanc)/Ts_mean * 100 % Actual relative
(percentage) error with coarse mesh, equation (3.30)
eamr = (Ts_mean - Tsmeanm)/Ts_mean * 100 % Actual relative
(percentage) error with medium mesh, equation (3.30)
eafr = (Ts_mean - Tsmeanf)/Ts_mean * 100 % Actual relative
(percentage) error with fine mesh, equation (3.30)

efm = Tsmeanf - Tsmeanm; % An error measure, equation
(3.25)
efmr = (Tsmeanf - Tsmeanm)/Tsmeanf * 100; % Relative
(percentage) error, equation (3.26)

r = log((Tsmeanm - Tsmeanc)/(Tsmeanf - Tsmeanm))/log(lamda)
% Effective convergence rate, equation (3.23)
er = Fs * abs(efmr)/(lamda^r-1) % Relative (percentage)
error estimate, equation (3.28)
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% SUBCODE FOR DIMENSIONAL TEMPERATURES (SBC)

%
% This subroutine calculates dimensional temperatures

disp(['Dimensional fluid and solid temperatures']);

data1 = load('C:\SBCdata.txt'); % Load SBC data

t0 = data1(8,1); % Dimensional constant initial storage
material temperature, equation (3.1)
tfi = data1(9,1); % Dimensional constant fluid inflow
temperature, equation (3.2)

data61 = load('C:\SBC_Ts_coarse.txt'); % Load
nondimensional storage material temperatures with coarse
mesh
data62 = load('C:\SBC_Ts_medium.txt'); % Load
nondimensional storage material temperatures with medium
mesh
data63 = load('C:\SBC_Ts_fine.txt'); % Load nondimensional
storage material temperatures with fine mesh

data71 = load('C:\SBC_Tf_coarse.txt'); % Load
nondimensional fluid temperatures with coarse mesh
data72 = load('C:\SBC_Tf_medium.txt'); % Load
nondimensional fluid temperatures with medium mesh
data73 = load('C:\SBC_Tf_fine.txt'); % Load nondimensional
fluid temperatures with fine mesh

[xc] = data61(:,1)/SBC_lamda;

[xm] = data62(:,1)/SBC_lamda;
[xf] = data63(:,1)/SBC_lamda;

[tsc] = data61(:,2)*(tfi-t0)+t0; % Dimensional solid
temperatures with coarse mesh, equation (A.14)
[tsm] = data62(:,2)*(tfi-t0)+t0; % Dimensional solid
temperatures with medium mesh, equation (A.14)
[tsf] = data63(:,2)*(tfi-t0)+t0; % Dimensional solid
temperatures with fine mesh, equation (A.14)
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[tfc] = data71(:,2)*(tfi-t0)+t0; % Dimensional fluid
temperatures with coarse mesh, equation (A.14)

[tfm] = data72(:,2)*(tfi-t0)+t0; % Dimensional fluid
temperatures with medium mesh, equation (A.14)

[tff] = data73(:,2)*(tfi-t0)+t0; % Dimensional fluid
temperatures with fine mesh, equation (A.14)

data81 = [xc tfc];
data82 = [xm tfm];

data83 = [xf tff];

data91 = [xc tsc];
data92 = [xm tsm];

data93 = [xf tsf];

subplot(1,2,1)

plot(xc,tfc,'--d',xm,tfm,'-.*',xf,tff,'-
ro','LineWidth',2,'MarkerEdgeColor','k') % Plot dimensional
fluid temperatures
xlabel('{\itx/L} [-]', 'FontSize', 12);

ylabel('{\itt}_f [\circ{C}]', 'FontSize', 12);
legend('tf with coarse mesh','tf with medium mesh','tf with
fine mesh')
axis([0 1 10 81]);

subplot(1,2,2)
plot(xc,tsc,'--d',xm,tsm,'-.*',xf,tsf,'-
ro','LineWidth',2,'MarkerEdgeColor','k') % Plot dimensional
solid temperatures
xlabel('{\itx/L} [-]', 'FontSize', 12);

ylabel('{\itt}_s [\circ{C}]', 'FontSize', 12);

legend('ts with coarse mesh','ts with medium mesh','ts with
fine mesh')

axis([0 1 10 81]);

save SBC_tf_coarse_dimensional_temperatures.txt data81 -
ascii -tabs % Save dimensional fluid temperatures with
coarse mesh
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save SBC_tf_medium_dimensional_temperatures.txt data82 -
ascii -tabs % Save dimensional fluid temperatures with
medium mesh
save SBC_tf_fine_dimensional_temperatures.txt data83 -ascii
-tabs % Save dimensional fluid temperatures with fine mesh
for post processing

save SBC_ts_coarse_dimensional_temperatures.txt data91 -
ascii -tabs % Save dimensional solid temperatures with
coarse mesh
save SBC_ts_medium_dimensional_temperatures.txt data92 -
ascii -tabs % Save dimensional solid temperatures with
medium mesh
save SBC_ts_fine_dimensional_temperatures.txt data93 -ascii
-tabs % Save dimensional solid temperatures with fine mesh
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MATLAB codes for REG
% MAIN CODE FOR REGENERATOR PROBLEM CASE (REG)

% This main code determines REG problem case temperature
distribution by using COMSOL 4.3 with MATLAB program

% The main code includes seven subroutines: (1) the subcode
for given data, (2) the subcode for initial coordinate
nodes, (3) the subcode for while-loop, (4) the subcode for
hot period, (5) the subcode for_cold period, (6) the
subcode for post processing, and (7) the subcode for
dimensional fluid and solid temperatures
% The equation numbers, referred to, are the same as in the
main part of the report

clear all

format long

model = mphload('REG_COMSOL_Multiphysics_model'); % Load
COMSOL Multiphysics REG model (m-file)

REGdata % Subcode for given data

% Coarse mesh

disp(['coarse mesh']);
e=1;

data1 = load('C:\Tinitial.txt'); % Load initial values of
interpolation function for boundary condition
save T.txt data1 -ascii -tabs % Save initial values for
boundary condition
model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',REG_coarse_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',REG_coarse_numelem2); % Set number of elements in
time direction
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REG_initial_coordinate_nodes % Subcode for initial
coordinate nodes

REG_while_loop % Subcode for while-loop

data2 = load('C:\etaREG.txt'); % Load etaREG.txt file
data21 = [REG_lamdah REG_lamdac REG_phih REG_phic delta
etaREGh etaREGc Number_of_iteration]; % Lamdah, lamdac,
phih, phic, delta, etaREGh, etaREGc and number of total
cycles needed for convergence

save REGcoarse.txt data21 -ascii -tabs % Save REG values
for post processing
save REG_Ts_coarse.txt data61h -ascii -tabs % Save
nondimensional storage material temperatures for post
processing
save REG_Tf_coarse.txt data81h -ascii -tabs % Save
nondimensional fluid temperatures for post processing

% Medium_mesh

disp(['medium mesh']);

e=1;

data1 = load('C:\Tinitial.txt'); % Load initial values of
interpolation function for boundary condition
save T.txt data1 -ascii -tabs % Save initial values for
boundary condition
model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',REG_medium_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',REG_medium_numelem2); % Set number of elements in
time direction

REG_initial_coordinate_nodes % Subcode for initial
coordinate nodes

REG_while_loop % Subcode for while-loop

data3 = load('C:\etaREG.txt'); % Load etaREG.txt file
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data31 = [REG_lamdah REG_lamdac REG_phih REG_phic delta
etaREGh etaREGc Number_of_iteration]; % Lamdah, lamdac,
phih, phic, delta, etaREGh, etaREGc and number of total
cycles needed for convergence

save REGmedium.txt data31 -ascii -tabs % Save REG values
for post processing

save REG_Ts_medium.txt data61h -ascii -tabs % Save
nondimensional storage material temperatures for post
processing
save REG_Tf_medium.txt data81h -ascii -tabs % Save
nondimensional fluid temperatures for post processing

% Fine mesh
disp(['fine mesh']);

e=1;

data1 = load('C:\Tinitial.txt'); % Load initial values of
interpolation function for boundary condition
save T.txt data1 -ascii -tabs % Save initial values for
boundary condition

model.mesh('mesh1').feature('map1').feature('dis1').set('nu
melem',REG_fine_numelem1); % Set number of elements in
axial direction
model.mesh('mesh1').feature('map1').feature('dis2').set('nu
melem',REG_fine_numelem2); % Set number of elements in time
direction

REG_initial_coordinate_nodes % Subcode for initial
coordinate nodes

REG_while_loop % Subcode for while-loop

data4 = load('C:\etaREG.txt'); % Load etaREG.txt file
data41 = [REG_lamdah REG_lamdac REG_phih REG_phic delta
etaREGh etaREGc Number_of_iteration]; % Lamdah, lamdac,
phih, phic, delta, etaREGh, etaREGc and number of total
cycles needed for convergence

save REGfine.txt data41 -ascii -tabs % Save REG values for
post processing
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save REG_Ts_fine.txt data61h -ascii -tabs % Save
nondimensional storage material temperatures for post
processing
save REG_Tf_fine.txt data81h -ascii -tabs % Save
nondimensional fluid temperatures for post processing

REG_post_processing % Subcode for post processing

REG_dimensional_temperatures % Subcode for dimensional
fluid and solid temperatures
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% SUBCODE FOR GIVEN DATA (REG)

%
% This subroutine loads the given REG values from the data
matrix

data5 = load('C:\REGdata.txt'); % Load given REG data

A = data5(1,1); % Total heat transfer surface area, m^2
ms = data5(2,1); % Total storage medium mass, kg

cs = data5(3,1); % Medium specific heat at constant
pressure, kJ/kg K
cf = data5(4,1); % Fluid specific heat at constant
pressure, kJ/kg K
mfh = data5(5,1); % Total mass rate of fluid in hot period,
kg/s
mfc = data5(6,1); % Total mass rate of fluid in cold
period, kg/s
hh = data5(7,1); % Overall heat transfer coefficient in hot
period, W/m^2 K

hc = data5(8,1); % Overall heat transfer coefficient in
cold period, W/m^2 K

Ph = data5(9,1); % Hot period, s
Pc = data5(10,1); % Cold period, s

delta = data5(11,1); % Given stopping criteria

Tshnewmo = data5(12,1); % Initial value for Tshnewmo
temperature for equation (4.28)
Tscnewmo = data5(13,1); % Initial value for Tscnewmo
temperature for equation (4.29)

REG_coarse_numelem1 = data5(14,1); % Number of elements in
axial direction with coarse mesh
REG_coarse_numelem2 = data5(15,1); % Number of elements in
time direction with coarse mesh

REG_medium_numelem1 = data5(16,1); % Number of elements in
axial direction with medium mesh
REG_medium_numelem2 = data5(17,1); % Number of elements in
time direction with medium mesh
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REG_fine_numelem1 = data5(18,1); % Number of elements in
axial direction with fine mesh

REG_fine_numelem2 = data5(19,1); % Number of elements in
time direction with fine mesh

REG_lamdah = hh*A/(mfh*cf); % Nondimensional length lamda
for hot period, equation (4.1)
REG_lamdac = hc*A/(mfc*cf); % Nondimensional length lamda
for cold period, equation (4.1)

REG_phih = hh*A*Ph/(ms*cs); % Nondimensional time length
phi for hot period, equation (4.3)

REG_phic = hc*A*Pc/(ms*cs); % Nondimensional time length
phi for cold period, equation (4.3)

tfih = data5(24,1); % Dimensional constant fluid inflow
temperature during hot period, equations (4.5) with one
dash
tfic = data5(25,1); % Dimensional constant fluid inflow
temperature during cold period, equations (4.5) with double
dash

Ratioh = REG_lamdah/REG_phih; % Ratio of nondimensional
length lamda to nondimensional time length phi during hot
period
Ratioc = REG_lamdac/REG_phic; % Ratio of nondimensional
length lamda and nondimensional time length phi during cold
period
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% SUBCODE FOR INITIAL COORDINATE NODES FOR COLD PERIOD
(REG)

%
% This subroutine determines initial coordinate nodes

model.param.set('lamda',REG_lamdah); % Set nondimensional
length lamda for hot period, equation (4.1)
model.param.set('phi',REG_phih); % Set nondimensional time
length phi for cold period, equation (4.3)
model.param.set('d','-1'); % Set parameter for sign of Tf,
equations (4.8) and (4.12)

model.physics('w').feature('cons1').active(false); %
Boundary condition for cold period, equation (4.10)

model.physics('w').feature('cons2').active(true); %
Boundary condition for cold period, equation (4.14)
model.study('std1').run;

data6 =
mpheval(model,'Ts','edim','boundary','selection',3); % Load
solid temperatures on boundary 3
data7 =
mpheval(model,'Ts','edim','boundary','selection',2); % Load
solid temperatures on boundary 2

data8 =
mpheval(model,'Tf','edim','boundary','selection',3); % Load
fluid temperatures on boundary 3

indc = data6.p(1,:)'; % Initial nondimensional coordinate
nodes, equation (4.2)
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% SUBCODE FOR WHILE-LOOP (REG)

%
% This subroutine calculates regenerator temperature
distribution in hot and cold periods and stops calculation,
when the given error limit (stopping criteria) is reached

Number_of_iteration = 0; % Initial iteration number

tic % Record elapsed time
while (e>delta)

  REG_hot % Subcode for hot period

  subplot(2,2,1)
  mphplot(model,'pg1','rangenum',1) % Plot fluid
temperatures
  xlabel('{\it\Lambda} [-]', 'FontSize', 12);

  ylabel('{\it\Pi} [-]', 'FontSize', 12);

  subplot(2,2,2)
  mphplot(model,'pg2','rangenum',1) % Plot solid
temperatures
  xlabel('{\it\Lambda} [-]', 'FontSize', 12);

  ylabel('{\it\Pi} [-]', 'FontSize', 12);

  REG_cold % Subcode for cold period

  subplot(2,2,3)
  mphplot(model,'pg1','rangenum',1) % Plot fluid
temperatures
  xlabel('{\it\Lambda} [-]', 'FontSize', 12);

  ylabel('{\it\Pi} [-]', 'FontSize', 12);

  subplot(2,2,4)
  mphplot(model,'pg2','rangenum',1) % Plot solid
temperatures
  xlabel('{\it\Lambda} [-]', 'FontSize', 12);

  ylabel('{\it\Pi} [-]', 'FontSize', 12);

if (eh<delta) && (ec<delta)
    e>delta % Stopping criteria
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    e = sum(eh + ec)/2; % Mean value of stopping criteria
(mean value of hot and cold periods)

else
    e<delta;

end

  Number_of_iteration = Number_of_iteration + 1; %
Calculates the number of total cycles needed for
convergence

end
toc % Elapsed time

etaREGh = REG_lamdah/REG_phih*(Tshnewm - Tsholdm) % Thermal
ratio for hot period, equation (4.28)
etaREGc = REG_lamdac/REG_phic*(Tscoldm - Tscnewm) % Thermal
ratio for cold period, equation (4.29)

Number_of_iteration % Number of total cycles needed for
convergence
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% SUBCODE FOR HOT PERIOD (REG)

% This subroutine calculates regenerator solid mean
temperature on boundary 3 in hot period

disp(['hot period']);

model.func('int1').set('filename','C:\T.txt'); % Set solid
nodal temperatures for boundary condition, equation (4.10)

model.param.set('lamda',REG_lamdah); % Set nondimensional
length lamda for hot period, equation (4.1)

model.param.set('phi',REG_phih); % Set nondimensional time
length phi for hot period, equation (4.3)
model.param.set('d','1'); % Set parameter for sign of Tf,
equations (4.8) and (4.12)

model.physics('w').feature('cons1').active(true); %
Boundary condition for hot period, equation (4.10)
model.physics('w').feature('cons2').active(false); %
Boundary condition for hot period, equation (4.14)
model.study('std1').run;

data6 =
mpheval(model,'Ts','edim','boundary','selection',3); % Load
solid temperatures on boundary 3
data7 =
mpheval(model,'Ts','edim','boundary','selection',2); % Load
solid temperatures after previous cold period on boundary 2
data8 =
mpheval(model,'Tf','edim','boundary','selection',3); % Load
fluid temperatures on boundary 3

indh = data6.p(1,:)' % Nondimensional position coordinate
nodes, equation (4.2)

Tsnewh = data6.d1' % Solid temperatures
Tsoldh = data7.d1' % Solid temperatures after previous cold
period
Tfnewh = data8.d1'; % Fluid temperatures



Temperature distribution in regenerators

135

data6h = [indh Tsnewh];
data7h = [indh Tsoldh];

data8h = [indh Tfnewh];

data61h = sortrows(data6h); % Sorts the rows of data6h in
ascending order
data71h = sortrows(data7h); % Sorts the rows of data7h in
ascending order
data81h = sortrows(data8h); % Sorts the rows of data8h in
ascending order

ind2h = data61h(:,1); % Sorted nondimensional position
coordinate nodes
Tshnew = data61h(:,2); % Sorted solid temperatures

Tshold = data71h(:,2); % Sorted solid temperatures after
cold period
Tfhnew = data81h(:,2); % Sorted fluid temperatures

Tshnewm = trapz(ind2h,Tshnew)/(ind2h(end)- ind2h(1)); %
Solid mean temperature calculated with trapezoidal method,
equation (3.18)
Tsholdm = trapz(ind2h,Tshold)/(ind2h(end)- ind2h(1)); %
Solid mean temperature after previous cold period
calculated with trapezoidal method, equation (3.18)

eh = abs((Tshnewmo - Tshnewm)/Tshnewmo) % Stopping criteria

Tshnewmo = Tshnewm; % Save solid mean temperature for next
hot period

Ts1 = Tsnewh(1);

Ts2 = Tsnewh(2);

Tsnewh (1:2,1) = [Ts2 Ts1];

data9h = load('C:\T.txt'); % Load interpolation function
T.txt file

data91h = [indc Tsnewh];

data10h = [indc Tfnewh];
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save T.txt data91h -ascii -tabs % Save solid temperatures
for boundary condition of next cold period
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% SUBCODE FOR COLD PERIOD (REG)

% This subroutine calculates regenerator solid mean
temperature on boundary 3 in cold period

disp(['cold period']);

model.func('int1').set('filename','C:\T.txt'); % Set solid
nodal temperatures for boundary condition, equation (4.14)

model.param.set('lamda',REG_lamdac); % Set nondimensional
length lamda for hot period, equation (4.1)

model.param.set('phi',REG_phic); % Set nondimensional time
length phi for cold period, equation (4.3)
model.param.set('d','-1'); % Set parameter for sign of Tf,
equations (4.8) and (4.12)

model.physics('w').feature('cons1').active(false); %
Boundary condition for cold period, equation (4.10)
model.physics('w').feature('cons2').active(true); %
Boundary condition for cold period, equation (4.14)
model.study('std1').run;

data6 =
mpheval(model,'Ts','edim','boundary','selection',3); % Load
solid temperatures on boundary 3
data7 =
mpheval(model,'Ts','edim','boundary','selection',2); % Load
solid temperatures after previous hot period on boundary 2
data8 =
mpheval(model,'Tf','edim','boundary','selection',3); % Load
fluid temperatures on boundary 3

indc = data6.p(1,:)' % Nondimensional position coordinate
nodes, equation (4.2)

Tsnewc = data6.d1' % Solid temperatures
Tsoldc = data7.d1' % Solid temperatures after previous hot
period
Tfnewc = data8.d1'; % Fluid temperatures
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data6c = [indc Tsnewc];
data7c = [indc Tsoldc];

data8c = [indc Tfnewc];

data61c = sortrows(data6c); % Sorts the rows of data6c in
ascending order
data71c = sortrows(data7c); % Sorts the rows of data7c in
ascending order

data81c = sortrows(data8c); % Sorts the rows of data8c in
ascending order

ind2c = data61c(:,1); % Sorted nondimensional position
coordinate nodes
Tscnew = data61c(:,2); % Sorted solid temperatures

Tscold = data71c(:,2); % Sorted solid temperatures after
hot period
Tfcnew = data81c(:,2); % Sorted fluid temperatures

Tscnewm = trapz(ind2c,Tscnew)/(ind2c(end)- ind2c(1)); %
Solid mean temperature calculated with trapezoidal method,
equation (3.18)

Tscoldm = trapz(ind2c,Tscold)/(ind2c(end)- ind2c(1)); %
Solid mean temperature after previous hot period calculated
with trapezoidal method, equation (3.18)

ec = abs((Tscnewmo - Tscnewm)/Tscnewmo) % Stopping criteria

Tscnewmo = Tscnewm; % Save solid mean temperature for next
cold period

Ts1 = Tsnewc(1);
Ts2 = Tsnewc(2);

Tsnewc (1:2,1) = [Ts2 Ts1];

data9c = load('C:\T.txt'); % Load interpolation function
T.txt file

data91c = [indh Tsnewc];

data10c = [indh Tfnewc];
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save T.txt data91c -ascii -tabs % Save solid temperatures
for boundary condition of next hot period
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% SUBCODE FOR POST PROCESSING (REG)

%
% This subroutine post processes the calculated REG values

lamda = 2; % Refinement ratio or scale factor

Fs = 1.25; % Factor of safety

data21 = load('C:\REGcoarse.txt'); % Load REG values with
coarse mesh
data31 = load('C:\REGmedium.txt'); % Load REG values with
medium mesh

data41 = load('C:\REGfine.txt'); % Load REG values with
fine mesh

etaREGhcoarse = data21(6); % Thermal ratio with coarse mesh
after hot period, equation (4.26)

etaREGccoarse = data21(7); % Thermal ratio with coarse mesh
after cold period, equation (4.27)

etaREGhmedium = data31(6); % Thermal ratio with medium mesh
after hot period, equation (4.26)
etaREGcmedium = data31(7); % Thermal ratio with medium mesh
after cold period, equation (4.27)

etaREGhfine = data41(6); % Thermal ratio with fine mesh
after hot period, equation (4.26)

etaREGcfine = data41(7); % Thermal ratio with fine mesh
after cold period, equation (4.27)

rh = log((etaREGhmedium - etaREGhcoarse)/(etaREGhfine -
etaREGhmedium))/log(lamda) % Effective convergence rate for
hot period, equation (3.23)
rc = log((etaREGcmedium - etaREGccoarse)/(etaREGcfine -
etaREGcmedium))/log(lamda) % Effective convergence rate for
cold period, equation (3.23)

efmrh = (etaREGhfine - etaREGhmedium)/etaREGhfine * 100; %
Relative (percentage) error for hot period, equation (3.26)
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efmrc = (etaREGcfine - etaREGcmedium)/etaREGcfine * 100; %
Relative (percentage) error for cold period, equation
(3.26)

erh = Fs * abs(efmrh)/(lamda^rh-1) % Relative (percentage)
error for hot period, equation (3.28)
erc = Fs * abs(efmrc)/(lamda^rc-1) % Relative (percentage)
error for cold period, equation (3.28)

REG_hot % Subcode for hot period

h1 = figure;
mphplot(model,'pg1','rangenum',1) % Plot fluid temperatures

xlabel('{\it\xi} [-]', 'FontSize', 12);

ylabel('{\it\eta} [-]', 'FontSize', 12);
axis([-1 2.7 0 4.08]);

hgsave(h1,'REG_Tf_hot','-v6')

h2 = figure;
mphplot(model,'pg2','rangenum',1) % Plot solid temperatures

xlabel('{\it\xi} [-]', 'FontSize', 12);

ylabel('{\it\eta} [-]', 'FontSize', 12);

axis([-1 2.7 0 4.08]);
hgsave(h2,'REG_Ts_hot','-v6')

REG_cold % Subcode for cold period
h3 = figure;

mphplot(model,'pg1','rangenum',1) % Plot fluid temperatures

xlabel('{\it\xi} [-]', 'FontSize', 12);

ylabel('{\it\eta} [-]', 'FontSize', 12);
axis([-1 2.7 0 4.08]);

hgsave(h3,'REG_Tf_cold','-v6')

h4 = figure;
mphplot(model,'pg2','rangenum',1) % Plot solid temperatures

xlabel('{\it\xi} [-]', 'FontSize', 12);

ylabel('{\it\eta} [-]', 'FontSize', 12);
axis([-1 2.7 0 4.08]);

hgsave(h4,'REG_Ts_cold','-v6')
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% SUBCODE FOR DIMENSIONAL TEMPERATURES (REG)

%
% This subroutine calculates dimensional temperatures

disp(['Dimensional fluid and solid temperatures']);

tfih = data5(24,1); % Dimensional constant fluid inflow
temperature during hot period, equations (4.5) with one
dash
tfic = data5(25,1); % Dimensional constant fluid inflow
temperature during cold period, equations (4.5) with double
dash

data11 = load('C:\REG_Tf_coarse.txt'); % Load
nondimensional fluid temperatures with coarse mesh
data12 = load('C:\REG_Tf_medium.txt'); % Load
nondimensional fluid temperatures with medium mesh
data13 = load('C:\REG_Tf_fine.txt'); % Load nondimensional
fluid temperatures with fine mesh

data21 = load('C:\REG_Ts_coarse.txt'); % Load
nondimensional solid temperatures with coarse mesh
data22 = load('C:\REG_Ts_medium.txt'); % Load
nondimensional solid temperatures with medium mesh
data23 = load('C:\REG_Ts_fine.txt'); % Load nondimensional
solid temperatures with fine mesh

[xc] = data11(:,1)/REG_lamdah;

[xm] = data12(:,1)/REG_lamdah;

[xf] = data13(:,1)/REG_lamdah;

[tfc] = data11(:,2)*(tfih-tfic)+tfic; % Dimensional fluid
temperatures with coarse mesh, equations (4.5)
[tfm] = data12(:,2)*(tfih-tfic)+tfic; % Dimensional fluid
temperatures with medium mesh, equations (4.5)
[tff] = data13(:,2)*(tfih-tfic)+tfic; % Dimensional fluid
temperatures with fine mesh, equations (4.5)
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[tsc] = data21(:,2)*(tfih-tfic)+tfic; % Dimensional solid
temperatures with coarse mesh, equations (4.6)

[tsm] = data22(:,2)*(tfih-tfic)+tfic; % Dimensional solid
temperatures with medium mesh, equations (4.6)

[tsf] = data23(:,2)*(tfih-tfic)+tfic; % Dimensional solid
temperatures with fine mesh, equations (4.6)

data14 = [xc tfc];
data15 = [xm tfm];

data16 = [xf tff];

data24 = [xc tsc];
data25 = [xm tsm];

data26 = [xf tsf];

subplot(1,2,1)

plot(xc,tfc,'--d',xm,tfm,'-.*',xf,tff,'-
ro','LineWidth',2.3,'MarkerEdgeColor','k') % Plot
dimensional fluid temperatures
xlabel('{\itx/L} [-]', 'FontSize', 12);

ylabel('{\itt}_f [ \circ{C}]', 'FontSize', 12);
legend('tf with coarse mesh','tf with medium mesh','tf with
fine mesh')
axis([0 1 60 81]);

subplot(1,2,2)
plot(xc,tsc,'--d',xm,tsm,'-.*',xf,tsf,'-
ro','LineWidth',2.3,'MarkerEdgeColor','k') % Plot
dimensional solid temperatures
xlabel('{\itx/L} [-]', 'FontSize', 12);

ylabel('{\itt}_s [ \circ{C}]', 'FontSize', 12);

legend('ts with coarse mesh','ts with medium mesh','ts with
fine mesh')

axis([0 1 60 81]);

save REG_tf_coarse_dimensional_temperatures.txt data14 -
ascii -tabs % Save dimensional fluid temperatures with
coarse mesh
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save REG_tf_medium_dimensional_temperatures.txt data15 -
ascii -tabs % Save dimensional fluid temperatures with
medium mesh
save REG_tf_fine_dimensional_temperatures.txt data16 -ascii
-tabs % Save dimensional fluid temperatures with fine mesh

save REG_ts_coarse_dimensional_temperatures.txt data24 -
ascii -tabs % Save dimensional solid temperatures with
coarse mesh
save REG_ts_medium_dimensional_temperatures.txt data25 -
ascii -tabs % Save dimensional solid temperatures with
medium mesh
save REG_ts_fine_dimensional_temperatures.txt data26 -ascii
-tabs % Save dimensional solid temperatures with fine mesh
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