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Abstract. This contribution presents a generalized conceptual model for the finite ele-
ment solution of quasi-static isothermal hydro-mechanical processes in (fractured) porous
media at large strains. A frequently used averaging procedure, known as Theory of
Porous Media, serves as background for the complex multifield approach presented here.
Within this context, a consistent representation of the weak formulation of the governing
equations (i.e., overall balance equations for mass and momentum) in the reference config-
uration of the solid skeleton is preferred. The time discretization and the linearization are
performed for the individual variables and nonlinear functions representing the integrands
of the weak formulation instead of applying these conceptual steps to the overall nonlin-
ear system of weighted residuals. Constitutive equations for the solid phase deformation
are based on the multiplicative split of the deformation gradient allowing the adaptation
of existing approaches for technical materials and biological tissues to rock materials in
order to describe various inelastic effects, growth and remodeling in a thermodynami-
cally consistent manner. The presented models will be a feature of the next version of
the scientific open-source finite element code OpenGeoSys developed by an international
developer and user group, and coordinated by the authors.

1 INTRODUCTION

Certain rock materials, like rock salt and claystone, play an important role in geotechni-
cal applications (e.g., energy storage), and are characterized by a highly complex material
behavior. Irreversible deformations, rate dependent stress-strain effects as well as creep,
swelling and shrinking are observed for such materials under realistic load regimes.
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Constitutive relations for the mathematical modeling of the mechanical deformation
behavior of rock materials or their substitutes (e.g., bentonite) have been developed for
decades. Usually, they are phenomenologically, i.e., macroscopically based. Nevertheless,
corresponding constitutive models that are known from literature have certain concep-
tual limitations. Rarely, they consider couplings to thermal and/or hydraulic processes.
Additionally, in general such models are formulated as scalar equations to consider spe-
cific deformation processes, for instance uniaxial or principal axes states, which makes
their transformation to the tensorial description of generalized, three-dimensional stress-
strain states difficult. Usually, specific functions for the modeling of particular consti-
tutive effects are defined in a more heuristic manner based on the results of simplified
lab experiments. Thus, the compliance with the requirements of the axioms of rational
thermodynamics (e.g., thermodynamic consistency, i.e., the a priori compliance with the
fundamental theorems of thermodynamics for arbitrary stress-strain states) that are well-
approved in the continuum mechanics of materials is not verified. In addition, only a few
authors discuss large strain models for rock materials. However, in particular within the
context of the above mentioned swelling effects in reality strains of more than 40% are
measured for claystone [1], which cannot be numerically simulated in a physically useful
manner based on small strain approaches. Consequently, the aforementioned limitations
in constitutive modeling of rock materials result in uncertainties of the transformation of
most of the existing models from simplified to more complex stress-strain states.

The theoretical framework of large strain mechanics is very well established in the
literature (cf. [2, 3] and references given therein). Starting in the 50s of the previous
century the development of large strain models for technical materials such as elastomers
improved the accuracy of numerical analyses of the mechanical behavior of corresponding
components substantially [4]. Based on experimentally observed similarities in the stress
response of mechanically loaded biological soft tissues and certain technical materials,
in the 80s and 90s large strain models have increasingly been discussed in biomechanics
and subsequently extended to biphasic materials such as articular cartilage (cf. [5] and
other authors). Currently, large strain models are state-of-the-art in biomechanics. For
more realistic results in the numerical prediction of consolidation processes, large strain
models have been introduced in soil mechanics starting from the late 90s of the previous
century [6]. Currently, large strain models are discussed in a huge amount of publications
addressing deformation processes as well as their couplings with other physical effects
(e.g., thermal, hydraulic) for technical materials and biological tissues.

Although various experiments for rock materials show comparable large strain effects,
hardly any corresponding model is known from the rock mechanics literature. However,
well-discussed phenomena such as creep of rock salt and swelling of claystone indicate the
necessity of considering large strain approaches in order to avoid physically inappropriate
results of numerical simulations. In this study, we present a generalized numerical model
for the finite element solution of quasi-static coupled processes in (fractured) porous me-
dia at large strains. Without loss of generality, for simplicity of the representation the

2

81



U.-J. Görke, T. Nagel and O. Kolditz

presented model is restricted to isothermal hydro-mechanical (HM) processes in fully sat-
urated biphasic materials neglecting mass production of the constituents as well as mass
transfer between them. The consideration of non-isothermal, multiphase-multicomponent
and/or partly saturated effects follows straightforwardly from the presented procedure.

In the following, tensors will be denoted by bold-faced characters in direct notation.
Their juxtaposition implies the scalar product of two vectors (e. g., a b = ai b

i), or a
single contraction of adjacent indices of two tensors, while double dots indicate a double
contraction of adjacent indices of tensors of rank two and higher (e. g., a ·· b = ai

j bj
i). A

superposed dot indicates the material rate of a tensor, a superscript (.)T the transposed
tensor. Tensors belonging to the reference configuration of the solid skeleton are denoted
by capital letters (additionally labeled by the subscript (.)S), tensors in the current con-
figuration by small letters. The subscripts (.)S and (.)F indicate variables corresponding
to the solid skeleton and the pore fluid, respectively.

2 CONCEPTUAL MODELING

The model, which is discussed in this paper, is mainly based on the so-called Theory
of Porous Media (TPM). In brief, the TPM is a combination of the physically based
mixture theory (see [7]) with the concept of volume fractions (cf. [8–10] and others).
Within the context of this enhanced approach of the mixture theory all kinematical and
physical quantities can be interpreted on the macro scale as local statistical averages of
the corresponding values of the underlying microstructure.

A comprehensive overview of the history and the current state of the TPM is given, for
instance, by [11]. The development of material-independent basic principles (kinematics
of transport and deformation, balance relations) to model the behavior of fully and par-
tially saturated porous continua within the context of the TPM, and the formulation of
appropriate numerical schemes based on standard Galerkin procedures are discussed in
detail by [11–13] and [14] (see also the huge number of references therein).

For the first time, [15] presented a model for large elastoplastic solid skeleton de-
formations within the context of hydro-mechanical porous media behavior based on the
multiplicative split of the deformation gradient. More recently mixed large strain formula-
tions for porous media mechanics are discussed by [6] (elastic solid skeleton), [16] and [17]
(elastoplasticity in case of partially saturated models), [18] (dynamic hyperelastic model)
and [19] (dynamic elastoplastic approach). While these papers are mainly dedicated to
applications in soil mechanics, [5, 20–22] and many other authors present various large
strain porous media models adopted to biomechanical problems.

The conceptual basics, numerical aspects and examples of application of the TPM un-
der large strain conditions have been studied by many authors (only a very short overview
could be given here), but few of the previous works analyzed a consistent representation of
the weak formulation of the governing equations in the reference configuration of the solid
skeleton. This description is preferred here, and serves as the foundation of a generalized
material approach, the details of which are discussed in [23].
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2.1 Preliminary Remarks

Within the context of the TPM, all constituents of the porous medium are understood
as smeared substitute continua with reduced mass density. Consequently, the porous
medium is considered as a substitute continuum model, which is constituted by overlap-
ping homogenized partial continua, and which is able to characterize physical processes
in heterogeneously structured materials using the well-known assumptions and thermo-
dynamically based approaches of continuum mechanics.

As usual in the context of the concept of volume fractions, the pore structure as well as
the pore distribution are described in a statistically averaged sense using scalar variables
representing the fraction of the partial volume of the constituent with respect to the overall
volume dΩ0 in the reference state of a representative elementary volume of the control
space. In case of biphasic porous media the volume fractions φS0 for the solid skeleton
and φF0 for the pore fluid (i.e., the porosity) at time t = t0 are defined as follows:

φS0 = dΩS0 / dΩ0 , φF0 = dΩF0 / dΩ0 (1)

with the partial volume dΩS0 of the solid skeleton and the partial volume dΩF0 of the
pore fluid. The saturation condition

dΩ0 = dΩS0 + dΩF0 ⇒ φS0 + φF0 = 1 (2)

which is assumed to be fulfilled at each time t, represents a constraint condition.
Considering porous media constituents, two different definitions of their mass density

are given. For the effective (aka realistic) density the differential elements of mass dmS0

and dmF0 of the constituents are related to the partial elementary volumes.

�SR0 = dmS0 / dΩS0 , �FR0 = dmF0 / dΩF0 (3)

In contrast, the partial (aka global) mass density of the constituents is related to the
elementary volume of the overall continuum.

�S0 = dmS0 / dΩ0 = φS0 �SR0 , �F0 = dmF0 / dΩ0 = φF0 �FR0 (4)

The averaged density of the (homogenized) overall porous structure is defined as

�0 = �S0 + �F0 (5)

2.2 Kinematics of Transport and Deformation

Below, the description of the kinematics of a multiphase medium is based on two
fundamental assumptions

1. At the current time t, each particle located at the position x of the mapping of the
real body into the physical space simultaneously consists of material points of all of
the partial constituents, and

2. all constituents are characterized by an individual, independent motion process (i.e.,
transport, deformation) of their material points.
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The reference configuration of the porous body is identical to the reference configuration
of the solid skeleton, and represents a set Ω0 ⊂ R3 of material points with the boundary
Γ0 (i. e., an area within the three-dimensional Euclidian space E3). The material points
of the solid skeleton are uniquely defined by their position vectors XS ∈ Ω0. Regarding
the individual motion of the considered constituents, material points of the solid skeleton
and the pore fluid, both belonging to x at the current time t, were located at different
positions in the reference configuration. With the individual laws of motion

x = ϕS(XS , t) , x = ϕF (XF , t) (6)

unique relations between the current position of material points of the constituents in E3

at any time t, and their assignment to the reference state are given.
Within the context of TPM applications, usually a Lagrangian description is used for

the kinematics of the solid skeleton. For physical correctness, the fluid flow as motion rel-
ative to the motion of the solid skeleton is originally referred to the current configuration,
which is actually a description of Eulerian nature. In order to smooth out some short-
comings of an inconsistent formulation of the motion of individual constituents, [24–26]
and others proposed a so-called generalized material description of the balance relations
of the TPM considering the reference configuration of the solid skeleton as reference con-
figuration of the overall continuum.

The displacement vector for material points of the solid skeleton is the primary kine-
matical variable of the TPM. Using the motion law (61), the displacement vector can be
represented as a function of the coordinates of the reference configuration and the time.

uS = uS(x , t) = uS(ϕS(XS , t), t) = US(XS , t) = x(XS , t) − XS (7)

Kinematical reflections regarding the balance relations and constitutive models at large
strains are usually based on the deformation gradient

FS = (GradS x)T = (GradS US)T + I (8)

providing the mapping of material line elements of the solid skeleton from the reference
into the current configurations. The determinant JS of the deformation gradient

JS = det FS = dΩ / dΩ0 (9)

represents the volume ratio of the solid skeleton smeared over the current configuration
with respect to the reference configuration. Based on the deformation gradient, different
strain measures can be defined. Within the context of the generalized material description
the right Cauchy-Green tensor CS = F T

S FS and Green’s strain tensor 2ES = CS − I are
of particular interest.

2.3 Effective Stress Concept

Based on experimental observations on saturated soils [27] introduced the concept of
effective stresses, in order to calculate the overall stress state in porous media. This
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heuristic principle implies the decomposition of the stress state at any spatial point of
the current configuration into partial stresses. Characterizing the interaction between
the moving pore fluid and the deforming solid skeleton, one of the partial stresses acts
equally in material points of the pore fluid and the solid skeleton that occupy the same
location in the current configuration. This partial stress can be represented using a second
order isotropic tensor (hydrostatic state), whose coefficient is known as pore pressure p.
Consequently, the overall stress state has to be determined by additional partial stresses,
which are caused by the history of the fluid transport as well as the deformation of the
solid skeleton themselves. These partial stresses are called effective stresses.

The generalized material description of the partial stresses for the solid skeleton and the
pore fluid of a saturated biphasic porous medium in terms of 2nd Piola-Kirchhoff partial
stress tensors TS and TF follows from the corresponding spatial description performing
usual pull-back operations.

TS = −JS φS p C−1
S + T E

S (10a)
TF = −JS φF p C−1

S + T E
F (10b)

Here, T E
S and T E

F denote the effective stress tensors for the solid skeleton and the pore
fluid, respectively. Neglecting internal friction forces of the pore fluid, and considering
the saturation condition (2), the 2nd Piola-Kirchhoff overall stress tensor T is defined as
follows:

T = T E
S − p Sv = T E

S − T v with Sv
def= JSC−1

S (11)

2.4 Constitutive Models for the Solid Skeleton

The effective stress tensor T E
S is characterized by the deformation of the solid skele-

ton as well as non-mechanical processes (e. g., thermal and/or (electro-)chemical effects
in geo- and biomechanics). Preferring phenomenological, macroscopic constitutive con-
cepts, this causes certain additive decompositions of the effective stress tensor. As known
from respective approaches in solid mechanics, appropriate evolutional relations for par-
tial stresses can be thermodynamically consistently formulated considering the classical
axioms of material theory (cf. [2, 28]).

In particular, the formulation of thermodynamically consistent constitutive relations is
based on the conceptual analysis of the combination of the first and second laws of ther-
modynamics, which is frequently called the Clausius-Duhem inequality. Based on corre-
sponding definitions of the energy and entropy balances for the individual constituents, the
Clausius-Duhem inequality for the considered porous media problem can be represented
in generalized material description as follows:

1
2

T E
S ·· ĊS − �S0

.
ψ̃S ≥ 0 (12)

Defining relation (12) certain assumptions on the relationships between partial balance
laws of the constituents and their counterparts for the overall continuum, and on the vari-
able characterizing the momentum exchange due to the interaction between the inviscid
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pore fluid and the solid skeleton have been taken into account. Furthermore, the volume
balance of the overall continuum, the decomposition of the partial stress tensors (10a),
(10b), and the saturation condition (2) have been used (for details see [10, 23]).

Dependent on the material properties of the solid skeleton, its partial free energy ψ̃S

represents a function of an elastic strain measure and, occasionally, on different internal
variables. Consequently, analyzing relation (12) a thermodynamically consistent constitu-
tive relation for T E

S can be defined as well as potential evolutional equations for stress-type
quantities, which are work-conjugated to the internal variables. Within this context, the
definition of specific constitutive relations is based on the multiplicative split of the defor-
mation gradient into an elastic and various inelastic parts FS = F e

S F i
S, dependent on the

relevant physical effects. Obviously, the following approaches that are well-approved for
technical materials and/or biological tissues are of interest for applications in rock mechan-
ics (in brackets only one early relevant reference is given, respectively, although, currently
a huge number of publications exist on this topic): elastoplastic models (F i

S = F p
S ; [29]),

viscoelastic models (F i
S = F v

S ; [30]), growth models (F i
S = F g

S ; [31]).

3 GOVERNING EQUATIONS

In this section, the balance laws for mass and momentum related to the overall con-
tinuum are presented to provide a complete set of governing equations, which enables the
solution of coupled quasi-static initial-boundary value HM problems for saturated bipha-
sic porous media in terms of a generalized total Lagrangian finite element approach. The
proposed conceptual steps can be summarized as follows:

1. Development of the weak formulation from the strong form of the problem

2. Time discretization of rate terms of the integrands of the weak formulation

3. Consistent linearization of individual nonlinear functions of the integrands of the
weak formulation using Taylor series representations

4. Spatial discretization of the linearized weak formulations using standard Galerkin
procedures

3.1 Governing Balance Relations of the Overall Continuum

For the important case of quasi-static loading, inertial forces are neglected, and the
local balance of (linear) momentum of the overall continuum reduces to the classical form
of the equilibrium conditions given in generalized material description (cf. [14] and others)

DivS

(
T F T

S

)
+ �0B = 0 (13)

where �0B represents the barycentric overall volume force.
Starting from the material time derivative of the saturation condition (2) with respect

to the motion of a material point of the solid skeleton using the relations between the
effective and partial density (4) of the constituents as well as the individual mass balances
neglecting mass exchange between the constituents, and assuming intrinsic incompress-
ibility of the constituents, the volume balance of the overall biphasic saturated porous
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medium is originally obtained in spatial description (cf. [14] and others). Its generalized
material formulation is given as:

JS C−1
S ·· ĖS + DivS W̃F = 0 (14)

Frequently, the term W̃F
def
= φF0WF is called filter velocity representing the relative

velocity of the pore fluid against the deforming solid skeleton. In the mathematical sense,
�FR0W̃F can be understood as the mapping of the spatial mass flux vector per unit time
and surface area into the reference configuration of the solid skeleton.

3.2 Weak Formulation

Multiplying Eq. (13) with an arbitrary test function VS = VS(XS) (VS = 0 at the
Dirichlet part Γ0DU of the boundary of the domain under consideration) and integrat-
ing the result over the volume of the undeformed domain Ω0, the weighted form of the
equilibrium conditions for the overall continuum, i. e., the weak formulation follows. With

DivS

(
T F T

S

)
VS = DivS

(
T F T

S VS

)
− T F T

S ·· (GradSVS)T (15)

neglecting volume forces, using Eq. (8) as well as the decomposition (11) of the overall
stress tensor, based on Gauss-Ostrogradski’s integral theorem and considering the sym-
metry of the 2nd Piola-Kirchhoff stress tensor, the weak formulation of the equilibrium
conditions of the overall continuum becomes:

∫

Ω0

T E
S ·· ES (US ;VS) dΩ0 −

∫

Ω0

p (Sv ·· ES (US ;VS)) dΩ0 =
∫

Γ0NU

R̄UVS dΓ0 (16)

Here, R̄U is the given external loading related to the corresponding Neumann surface
Γ0NU , and the kinematic variable

2ES(US ;VS)def= (GradSVS)T+ GradSVS + GradSUS(GradSVS)T+ GradSVS(GradSUS)T (17)

has been defined in order to simplify further representations.
Considering the stress decomposition (11), multiplying Eq. (14) with an arbitrary test

function q = q(XS) (q = 0 at the Dirichlet part Γ0Dp of the boundary of the domain
under consideration) and integrating the result over Ω0, the weighted form of the volume
balance relation for the overall continuum, i. e., the weak formulation follows. Adopting
Gauss-Ostrogradski’s integral theorem to the corresponding flux term in an analogous
manner as it was done for the equilibrium conditions, a simplified representation can be
derived

∫

Ω0

(
Sv ·· ES

(
US ; U̇S

))
q dΩ0 −

∫

Ω0

(GradS q) W̃F dΩ0 = −
∫

Γ0Np

R̄p q dΓ0 (18)

where R̄p defines the prescribed fluid flux related to the part Γ0Np of the surface affected
by an external impact. In order to integrate the pore pressure as primary variable into
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Eq. (18), the filter velocity is eliminated using Darcy’s (filter) law in generalized material
description neglecting volume forces.

W̃F = −K GradS p (19)

3.3 Numerical Scheme

The coupled problem (16), (18) shows a nonlinear dependency on the primary variable

US, and linear dependency on the primary variable p, on the rate variable U̇S and on
the test functions. In order to eliminate rate-dependent terms of primary variables by
discretizing them in time, a generalized trapezoidal single-step scheme is applied. Within
this context, regarding the material time derivative of the solid skeleton displacements

(US)n+1 = (US)n +
[
α (U̇S)n+1 + (1 − α) (U̇S)n

]
∆ t (20)

folloows, where the time increment ∆ t is given by tn+1 − tn, the subscript (.)n denotes
variables at time tn, which are known from the solution of the previous time step within
the context of an incremental numerical scheme, and the subscript (.)n+1 denotes variables,
which belong to the unknown current solution at time tn+1.

Linearization of the system (16), (18) is required in order to solve it numerically within
the context of a Newton-Raphson scheme. It is performed based on Taylor series rep-
resentations applied to functions of the primary variables US and p instead of adopting
Gateaux derivatives of functionals. The idea is to find the solution

(US + ∆US , p + ∆p) := (U i+1
S(t+∆t), p

i+1
(t+∆t)) (21)

of the coupled two-field problem for the current (i + 1)st Newton iteration at time tn+1

based on the given solution (US, p) := (U i
S(t+∆t), p

i
(t+∆t)) for the ith Newton iteration at

time tn+1, where (U 0
S(t+∆t), p

0
(t+∆t)) = ((US)n, pn) serves as initial solution known from

the previous time step at time tn.
Considering the backward Euler case (α = 1) in terms of the generalized time dis-

cretization scheme (20), based on the proposed linearization procedure, and neglecting
terms that are at least quadratic with respect to the increments of the primary variables
∆US and ∆p as well as with respect to products of these increments, the solution of the
mixed initial-boundary value problem for saturated biphasic media within the TPM at
large strains results in the incremental-iterative solution of the linear system

∫

Ω0

ES (US ;VS) ·· ∂T (ES(US), p)
∂ES

·· ES (US ; ∆US) dΩ0

+
∫

Ω0

T(ES(US), p) ·· GradS∆US(GradSVS)T dΩ0 −
∫

Ω0

∆p (Sv(US) ·· ES (US ;VS)) dΩ0

=
∫

Γ0NU

R̄UVS dΓ0 −
∫

Ω0

T (US) ·· ES (US ;VS) dΩ0 (22a)

9

88



U.-J. Görke, T. Nagel and O. Kolditz

∫

Ω0

[Sv(US) ·· ES (US ; ∆US)] q dΩ0 + ∆t

∫

Ω0

(GradS q) K (GradS ∆p) dΩ0

= −∆t

∫

Γ0Np

R̄p q dΓ0 − ∆t

∫

Ω0

(GradS q) K (GradS p) dΩ0

−
∫

Ω0

[Sv(US) ·· ES (US ;US − (US)n)] q dΩ0 (22b)

in terms of the increments ∆US and ∆p of the primary variables, valid for all functions VS ∈
(H1

0 (Ω0))3 as well as q ∈ L2(Ω0).
For the numerical solution of the system (22a), (22b) in appropriate partial spaces ∆US , VS ∈

V3
h ⊂ V3 and ∆p, q ∈ Xh ⊂ X of ansatz functions within the context of a mixed finite element

formulation, the usual spatial discretization procedures are applied.

4 CONCLUSIONS

This paper has been contributed to the conceptual modeling and the numerical realization of
a mixed finite element formulation for hydro-mechanical processes in saturated biphasic porous
media at large strains based on the Theory of Porous Media. Within this context, the work
was focused on isothermal, quasi-static models neglecting mass exchange between the phases.
Defining all field variables consistently on the reference configuration of the solid skeleton, a
generalized material approach has been presented resulting in the realization of a generalized
total Lagrangian finite element approach.

The presented finite element procedure has been successfully applied to study several exam-
ples from biomechanics and soil mechanics illustrating the capabilities of the algorithms [23]. In
comparison to small strain solutions, the presented results show the importance to consider large
strain models developed in a consistent way. Consequently, the discussed numerical concept rep-
resents a kind of blueprint for the numerical modeling of porous media mechanics considering
multiphase-multicomponent flow, reactive transport aspects and nonisothermal effects as typical
phenomena observed for geotechnical applications in rock mechanics.

The discussed numerical scheme is prepared to be realized in an object oriented scientific
software tool, OpenGeoSys, developed under the coordination of the authors, and applied to
various hydrological and geotechnical applications (for details see [32]).
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