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Abstract. The subloading surface model is endowed the noticeable ability to describe the 
wide classes of irreversible mechanical behavior [1]. However, the past formulations of the 
subloading surface model have contained several inexact equations, which have been 
modified repeatedly after the concept of the subloading surface was proposed in 1977 [2]. The 
exact formulation is presented first in this article for the hypoelastic-based plasticity, which 
enjoys the distinguished superiority in the both aspects of the description of material behavior 
in high accuracy and of the numerical calculation in high efficiency.  

 
 
1 INTRODUCTION 

The subloading surface is based on the quite natural physical insight that the plastic strain 
rate develops continually as the stress approaches the yield surface. The formulation of the 
subloading surface model for the elastoplastic deformation has been modified repeatedly and 
developed from the initial ones [2,3,4,5]. Further, it has been applied to the descriptions of 
wide classes of irreversible mechanical phenomena, i.e. the monotonic and cyclic loadings of 
metals and soils, the viscoplastic deformation behavior 0, the damage behavior, the phase 
transformation behavior, the friction behavior and the crystal plasticity [3]. On the other hand, 
the other unconventional elastoplasticity models, e.g. the multi surface model [6], the two 
surface model [7] and the superposed kinematic hardening model [8], which does not assume 
that the inside of yield surface is an elastic domain but assume the existence of the small 
purely-elastic domain, have been formulated only for the description of cyclic loading 
behavior of metals. The extensive applicability of the subloading surface model to wide 
classes of irreversible mechanical behavior is based on the noticeable advantages such that it 
does not require the yield judgment on whether or not the stress reaches the yield surface and 
it is furnished with the controlling function such that the stress is pulled-back automatically to 
the yield surface when it goes out from the yield surface in numerical calculation due to finite 
incremental steps. However, the translation rules of the anisotropic hardening variable (back-
stress) and the elastic-core, i.e. similarity-center of the yield and the subloading surfaces and 
the accurate expression of the Masing rule have been modified repeatedly but they have been 
formulated in the inexact forms in the past [1,3,9]. Now, the exact formulation of the 
subloading surface model will be attained in this article, passing near a half century after the 
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concept of the subloading surface was proposed in 1977.  
 

2   STRAIN RATE AND HYPOELASTIC RELATION 
In the framework of the hypoelastic-based plasticity, incorporating velocity gradient 

=  v xl / , the strain rate sym[ ]d l  and the continuum spin ant[ ]w l  are used as the 
measures of the rates of deformation and rotation, respectively, where ( )sym[ ] / 2T t t   
and ( )ant[ ] / 2T t t   stand for the symmetric and the anti-symmetric parts, respectively, for 
an arbitrary second-order tensor t  and ( )T  for the transpose. Let the strain rate d  be 
decomposed additively into elastic strain rate ed  and the plastic strain rate pd  as  

= pe d d d                                                                 (1) 
First, assume that the elastic strain rate is given by the hypoelastic relation on the premise 

that the elastic deformation is small compared with the plastic deformation: 
1=e Ed :σ                                                                (2) 

where σ  is the Cauchy stress. E  is the elastic modulus tensor which is given by 
1 1( )2 32{ }ij klik jl il jkijkl ij klE = K G                                     (3) 

for the Hooke’s law, where K  and G  are the bulk modulus and the shear modulus, 
respectively. ( )  stands for the proper objective corotational rate, i.e.  

 
  ω ωt t t t                                                             (4) 

for an arbitrary second order tensor t , where ω  is the spin of substructure of material. The 
continuum spin w  may be used for ω  up to a moderate deformation. Needless to say, the 
corotational rate is also used for tensor-valued internal variables to describe anisotropy. 
   The continuum spin w  is additively decomposed into the elastic spin ew  and the plastic 
spin pw , i.e. 

= pe w w w                                                               (5) 
Here, we adopt the isoclinic concept insisting that the rigid-body spin is involved in the elastic 
spin ew  under the postulate that the spin of the substructure is induced by the rotations due to 
the rigid-body motion and the elastic distortion. Then, the spin of substructure ω  is given by 

ew , i.e. 
= = pe ω w w w                                                        (6) 

 
3   REFINEMENT FOR FORMULATION OF PLASTIC STRAIN RATE 

The plastic strain rate will be formulated based on the concept of subloading surface in the 
following.  
3.1  Yield surface 

The normal-yield surface with the isotropic and the kinematic hardenings is described as 
( ) = ( )ˆf F Hσ                                                          (7) 
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where H  is the isotropic hardening variable and 
ˆ  σ σ α                                                             (8) 

 tr =  ( 0)αα  being the kinematic hardening variable, i.e. back stress. The rates of these 
internal variables can be described by 

( ; || || )|| ||,( ; ) /,   =  =

( ; ) ( ; || || )|| ||, , , , /=       =

p ppp

p pp p

hdhd

kdkd

FfFfH

F F' '

 


ff

d ddd

d dd d

σσ

σ α σ αα
                      (9) 

since they are homogeneous functions of pd  in degree-one since they are induced only in the 
plastic loading process p Od  and the first-order time-differential quantities, where ||  ||  
designates the magnitude and ( )'  the deviatoric part, . Here, assume that ( )ˆf σ  is the 
homogeneous function of σ̂  in degree-one and thus it follows by the Euler’s theorem that 

( ) ( )=
ˆ ˆ ˆˆ

f f

σ σ σσ :                                                         (10) 

3.2  Concept of subloading surface model  
The plastic strain rate is induced explicitly when the stress lies on the yield surface. Here, 

in facts, the plastic strain rate is induced not suddenly at the moment when the stress reaches 
the yield surface but it is induced gradually as the stress approaches the yield surface. The 
accurate description of the plastic strain rate induced by the rate of stress inside the yield 
surface is required in order to predict the cyclic loading behavior of materials, although it has 
been ignored in the conventional elastoplasticity. Then, let the following postulate be 
incorporated, which is the basic concept of the subloading surface model [1,2,3,4,5]. 
Fundamental postulate of elastoplasticity (Subloading surface concept): The plastic strain 
rate is induced when the stress approaches the yield surface but only the elastic strain rate is 
induced when the stress moves towards of the inside the yield surface as shown in Fig. 1, 
while the stress rate causes the elastic strain rate inevitably. In other words, the stress 
approaches the yield surface when a plastic strain rate is induced but it moves towards 
the inside of the yield surface when only an elastic strain rate is induced. 

 Fig. 1 Background of the subloading surface concept.
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Then, it is first required to incorporate the measure which describes the approaching 
degree of the stress to the yield surface, renamed the normal-yield surface, in order to 
formulate the plastic strain rate based on the above-mentioned subloading surface concept.  

Then, let the following subloading surface which passes through the current stress and 
keeps the similar shape and orientation to the normal-yield surface be introduced, which plays 
the general measure of approaching degree of the stress to the normal-yield surface (see Fig. 
2). 

( ) = ( )f RF Hσ                                                      (11) 
where (0 1)R R   is the ratio of the size of the subloading surface to that of the normal-
yield surface and referred to as the normal-yield ratio which plays the role for the general 
measure to describe the approaching degree to the normal-yield surface. 

( )= /  

,   

ˆ
ˆ

R
R

 


  
 

 c cc α α
α c c

σ σ cσ σ α
                                         (12) 

leading to the expressions 
( ))(= = = ˆˆR R  σ cσ σ α σ cc                                       (13) 

c  represents the center of similarity of the normal-yield and the subloading surfaces, i.e. the 
similarity-center, while let it be called the elastic-core since the most elastic deformation 
behavior is induced when the stress lies on it. α  stands for the conjugate (similar) point in the 
subloading surface to the point α  in the normal-yield surface. All of the relations of variables 
in Eq. (12) hold by virtue of the similarity of the subloading surface to the normal-yield 
surface as known from Fig. 2. 

 
3.3 Evolution rule of normal-yield ratio 

Based on the afore-mentioned fundamental postulate of elastoplasticity, the rate of the 

Fig. 2 Normal-yield, subloading and elastic-core surfaces.
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normal-yield ratio must satisfy the following conditions. 
for  

for 0 for    = 0 for  
(< 0 for  

 = 0
<1

1=
)1>

p
R

R
R
R
R




 



d O                                       (14) 

 

 0 =for   for = 0 for  

pe

e
R


 

Od d O
Od

                                       (15) 

Taking account of the requirement in Eq. (14), let the evolution rule of the normal-yield ratio 
in the plastic deformation process be formulated as follows: 

 

  ( )|| || for=  
ppRR U  Odd                                            (16) 

where ( )U R  is the monotonically-increasing function of R  fulfilling the conditions (Fig. 3). 
  for  0  (quasi-elastic state)

0 for  < 1  (subyield state)
( )

= 0 for  = 1  (normal-yield state)
0 for  1  (over normal-yield state)

R
R

U R
R
R

 



 

                           (17) 

 
The function ( )U R  is given by the following equation, where u  is the material parameter.  

=( ) cot 2( )uR RU                                                      (18) 

      Equation (17) should be extended to the following equation for metals in which plastic 
strain rate is not induced until the normal-yield ratio R  reaches a certain value  (<1)eR  which 
is the material parameter. 

 

   

  for  0   (quasi-elastic state)
0 for  < 1  (subyield state)

( )
= 0  for  = 1  (normal-yield state)

0  for  1  (over normal-yield state)

e

e

R R
R < R

U R
R
R

  



 

                            (19) 

Fig. 3 Function U(R) in the evolution rule 
of normal-yield ratio.
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Eqs. (18) is modified for Eq. (19) as follows: 

=( ) cot 2 1( )e
e

RRuRU R
  


                                               (20) 

where     is the Macauley’s bracket. If u  is fixed to be constant, Eq. (16) with Eq. (20) can 
be integrated analytically as  

1 00
0( )2    1 cos for = cos exp 122 1 )][ ( ) (

p p
ee e e

ee
R RR RR u R RRR

 


 
  

       (21) 

under the initial condition 00 = := pp R R  , where || || ( : time)pp dt t   d , whilst one must 
set 0 eR R  for 0 eR R . The use of the analytical integration in Eqs. (21) contributes to the 
enhancement of the numerical calculation in the return-mapping projection. However, it spoils 
the automatic controlling function to attract the stress to the normal-yield surface, which is 
inevitable in the numerical calculation in the forward-Euler method. 

   The subloading surface model possesses the following distinguished abilities. 
1 ) Smooth transition from elastic to plastic state is described, fulfilling always the 

smoothness condition 0 as shown schematically in Fig. 4.  

 
Then, we don’t need suffer from the determination of an offset-value of strain for yielding. 
On the other hand, the determination of an offset value is required in the conventional 
elastoplasticity with an abrupt elastic-plastic transition, although it is accompanied with an 
arbitrariness. Smoother stress-strain curve is described for smaller value of the material 
parameter u . 

2 ) Plastic strain rate can be described even for the loadings under a low stress level and a 
small stress amplitude since a purely-elastic domain is not assumed. 

3 ) The yield-judgment whether or not the stress reaches the yield surface is unnecessary for 
the loading criterion, since the plastic strain rate develops continuously as the stress 
approaches the normal-yield surface.  

4 ) The stress is automatically attracted to the normal-yield surface in the plastic loading 
process. Therefore, in the numerical calculation due to the forward-Euler method, it is 
pulled back automatically to the normal-yield surface when it goes out from the normal-
yield surface in numerical calculation because of 0R


  for 1R   from Eq. (16) with Eq. 

 

 

Fig. 4 Influence of material parameter  u on curvature 
of stress vs. strain curve. 

0
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(17) 4  or (19) 4  as seen in Fig. 5.  

 
Consequently, the realistic description of mechanical behavior is attained by virtue of 1 ) and 
2 ) and further the efficient numerical calculation is realized by virtue of 3 ) and 4 ). Thus, the 
subloading surface model possesses the noticeable advantages in both aspects of the physical 
description and the numerical calculation. 
 
3.4  Associated flow rule for subloading surface 

The associated flow rule for the subloading surface is adopted: 

)  ( 0)   ( || || =p p  
   d dn                                              (22) 

where 10 
( ) ( ) ( ) ( )   (|| || 1)==|| || || ||/ /f f f f   

    
σ σ σ σ nn σσ σ σ                        (23) 

designating the magnitude and the direction of plastic strain rate by 


 and n , respectively. 
Then, H  and α  in Eq. (9) are expressed as follows: 

( ; ), ,( ; ), ,     =  =   kh nn Ff FH 
 f σ α nσ αn                              (24) 

where hnf  and nf  are the homogeneous functions of n  in degree-one.  
 
3.5  Unified nonlinear kinematic hardening rule 

The nonlinear kinematic-hardening rule of Armstrong and Frederick [10] is inapplicable to 
the general anisotropic hardening material with the plastically-compressibility causing the 
rotational-hardening as known from the fact that the anisotropic hardening is not induced by 
the isotropic plastic deformation but is induced by the deviatoric plastic deformation. Then, 
let the generalized evolution rule of anisotropic hardening variable ( )tr tr 0= =α α α  be given 
as follows: 

1 1|| || || ||= == ,   ) )( (p p

k k
k kkk nnb bc c'' ' '


 ffd d n nα α α                       (25) 

where kc  is the material constant but kb  is the material function in general. Equation (25) is 
applicable not only to the kinematic hardening in metals but also to the rotational hardening, 
i.e. the rotation of yield surface in soils [1]. 

0







0R=

 

 

Fig. 5 Stress is automatically attracted to normal-yield surface
in plastic loading process.

Subloading plasticity

 y
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3.6 Translation rule of elastic-core 
The most elastic deformation behavior is induced in the state that the stress lies on the 

similarity-center, i.e. =σ c  leading to = 0R . Then, the similarity-center c  in the 
mathematical sense is interpreted physically as the most elastic stress state so that let it be 
called the elastic-core or elastic-center. Here, note that the elastic-core c  approaches the 
normal-yield surface, following the stress σ  in the plastic loading process. However, from the 
physical point of view the elastic-core should not approach the normal-yield surface without 
limitation as known from the fact that the abrupt transition from the elastic to the plastic state 
is predicted if the elastic-core lies on the normal-yield surface. On the other hand, the small 
yield surface enclosing a purely-elastic region is allowed to contact with the yield surface in 
the cyclic kinematic-hardening models [6,7] predicting the abrupt elastic-plastic transition. In 
addition, from the mathematical point of view the subloading surface is not determined 
uniquely if the stress coincides with the similarity-center lying just on the normal-yield 
surface.  

Now, let the following elastic-core surface be introduced, which always passes through 
the elastic-core c  and keeps the similar shape and orientation to the normal-yield surface with 
respect to the kinematic-hardening variable α . 

( ) ( ), i.e. /( ) ( )= =ˆ ˆc cf fF H F H c c                                (26) 
where c  designates the ratio of the size of the elastic-core surface to the normal-yield 
surface (see Fig. 2) so that let it be called the elastic-core yield ratio. Here, the elastic-core 
should not reach (lie on) the normal-yield surface as described above so that the elastic-core 
does not go over the following limit elastic-core surface. 

( ) ( )=ˆf F Hc                                                           (27) 
where (<1)　  is material parameter and the following inequality must be satisfied.  

( ) , i.e. ( )ˆ cf F H  c                                          (28) 
Let the translation rule of elastic-core be formulated as 

|| || = , == ˆ ˆ   ( ) ( )p pc c
c cn cn cc c 


 d d f f nn nc R R                         (29) 

  for 0=
  for ==  

 for =
  for =

ˆ
ˆ2

p

p

c

c
c

c

c

c


 
 

  
    

d
nO

d n

n
n

R

R
 

where c  is a material constant or material parameter and 
( ) ( ) ( ) ( ) = (|| ||=1)ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ|| || || ||/ / cc
f f f f   
   

n nc c c c
c c c c

                       (30) 

Here, it follows from Eq. (29) that 
 for = 0  <ˆ ˆ( )cc ccc  


n n n:c : R R                                  (31) 
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Therefore, the evolution rule of the elastic-core in Eq. (29) is furnished with the distinguished 
ability in numerical calculation that the elastic-core is automatically pulled-back to the limit 
elastic-core surface when it goes out from that surface by the input of finite numerical 
increment as shown in Fig. 6． 

 
 

3.7  Plastic strain rate 
The material-time derivative of Eq. (11) leads to the consistency condition of the 

subloading surface in the corotational time-derivative: 

( ) ( )
0=

f f
R F RF
  

  
 
σ σσ: :ασ σ                                  (32) 

It holds for Eq. (11) that 
( )

=
f RF

σ :σσ

                                                        (33) 

instead of Eq. (10), and then it follows that 
( ) ( ) ( )= =|| || || ||/ /f f f

RF
  
  
σ σ σ:n: σσ σ σ σ                                        (34) 

leading to 
( )1 =|| ||/ f

RF


σ n:σ
σ                                                        (35) 

The substitution of Eq. (35) into Eq. (32) leads to 

0=[( ) ]F R
F R

 

  :: n σσn α                                          (36) 

Here, the rate variable α  is described from Eq. (12) 2  as 

(1 )= ˆRR R
  α cα c                                                 (37) 

The substitution of Eq. (37) into Eq. (36) leads to 

( ) 0(1 ) =ˆ ][F R RR RF R

 

  : : cαn σ σσ n c                               (38) 

Further, noting the relation 

c>c R

=c R

Fig. 6 Elastic-core is automatically attracted to the limit 
elastic-core surface when it goes out from the surface.

ˆ cn

c

( ) ( )=ˆf F Hc
Limit elastic-core surface
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)(= =ˆR   σ αc c σασ                                               (39) 
it follows from Eq. (38) that 

(1 ) 0=[ ]F R RRF R

 
  c: : α σσn σ n                                    (40) 

Substituting Eqs. (16), (25) and (29) into Eq. (40), one has 

)(1 0][ cnhn kn
UF f R RF R c'    

   
    f f: :n σ n σ σ                      (41) 

where /F dF dH'  . 
Further substituting the associated flow rule in Eq. (22) into Eq. (41), one has 

0=pM 


:n σ                                       (42) 
where 

1 )(1 ˆ( ) ( )[ ]p ckhn ck
UF f RRM F b Rc c'

    n nα:n σ σ n R               (43) 

by Eqs. (25) and (29). 
The plastic multiplier 


 and the plastic strain rate pd  are given from Eq. (42) and (22) 

as follows: 
,  = =p p

p

M M



  d: :n nσ σn                                                     (44) 
 

3.8  Stress-strain relations 
The strain rate is given by substituting Eqs. (2) and (44) 2  into Eq. (1) as follows:  

1  = pM
 d E :n σ:σ n                                                      (45) 

from which the proportionality factor described in terms of the strain rate, denoted by 


 
instead of 


, in the flow rule (22) is given as follows: 

,=   =p
p pM M



 
d dE Ed
E E

n n: :: : nn nn n: : : :                                   (46) 

The stress rate is given from Eq. (45) by use of Eq. (46) 1  instead of Eq. (44) 1 , as follows: 

= pM  dE EE d
E

n ::: :σ nn n: :
                                             (47) 

3.9  Loading criterion 
The loading criterion is given as follows : 

 for > 0

 for 0

p

p









 

  

Od

Od
    or     for > 0

 for 0

p

p

 


  

Od dE
O dd E

n ::
n ::

                        (48) 

where the judgment whether or not the stress reaches the yield surface is not required since 
the plastic strain rate is induced continuously as the stress approaches the normal-yield 
surface. It should be noted that the loading judgment by the plastic multiplier 


 in terms of 
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the stress rate in Eq. (44) 1  cannot be used for the softening behavior and even for the 
hardening behavior since the stress is required to be pulled-back to the normal-yield surface 
leading to the contraction of the subloading surface after it goes over the normal-yield surface 
in the plastic loading process. 
 
3.10  Calculation of normal-yield ratio 

Substituting Eq. (13) into Eq. (11), the subloading surface is described as follows: 

( ) = ( )ˆf R RF Hσ c                                                     (49) 
from which the normal-yield ratio R  is calculated by substituting the updated values of 

,  , , Fcσ α .  
The normal-yield ratio can be calculated by the following two methods: 

1 ) We calculate it from Eq. (49) in both of the plastic (loading) and the elastic (unloading) 
processes after all the other variables are calculated. 

2 ) We calculate it by Eq. (49) in the elastic (unloading) process and in the state eR R  but 
we calculate it by the time-integration of Eq. (16) in the plastic (loading) process. Here, 
the analytical time-integration in Eq. (21) is beneficial to the enhancement of numerical 
analysis in the return-mapping projection 0. However, its use spoils the controlling 
function to pull-back the stress to the normal-yield surface numerical analysis in the 
forward-Euler method.  

The second method 2) would be superior to the first method 1), since the normal-yield ratio is 
calculated directly from the plastic strain rate.  
 
3.11  Expression of Masing rule 

Note the following facts: 
1 ) The difference between the curvatures in the reloading and the reverse loading curves 

becomes larger as the plastic deformation proceeds, which is called the Masing rule. 
2 ) The elastic core approaches the normal-yield surface, following the current stress, when 

the plastic deformation proceeds continuously, and the approaching degree of the elastic 
core to the normal-yield surface is expressed by the elastic-core yield ratio c  in Eq. (26).  

3 ) The transition from the elastic to plastic state is more abrupt, i.e. the curvature of stress–
strain curve is greater for a larger value of the material parameter u  in the function ( )RU  
in Eq. (16). Therefore, the increase in the curvature of stress-strain curve can be described 
by giving a larger value to the material parameter u .  

4 ) By the facts 1)-3), the difference between the values u  in the reloading process and the 
reverse loading process is greater for a larger value of c . 

5 ) The direction n  of plastic strain rate is near to the outward-normal ˆ cn  of the elastic core 
surface (Fig. 2) in the reloading process but it is far from ˆ cn  in the unloading process. 
Then, the degree how the process is near the reloading process can be expressed by the 
following scalar product of these unit tensors: 

ˆ   ( )cC C   n n:                                               (50) 
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Eventually, introducing the variables c  and C , let the material parameter u  in Eq. 
(18) or Eq. (20) be extended as follows:  

= exp( )c cuu Cu                                                      (51) 

where u  (average value of u ) and cu  are the material constant. u  is the continuous function 
of the variables c  and C . = 1C , 0  and  designate the states that the current stress has 
the outward-normal, tangential and inward-normal directions, respectively, of the similarity-
center surface. Then, u  increases in the loading direction but inversely it decreases in the 
opposite direction.  
 
3.12  Plastic spin 

The plastic spin in Eq. (6) is given following Zbib and Aifantis [11] by 

( ) ( )= =p p pp p  


 w d dσ σ σn nσ                                    (52) 
where p  is the material parameter.  
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