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I. INTRODUCTION

Rockets have always been one of the most challeng-
ing and passionate scientific objects in history. Their
development has been improved since its first studies in
ancient China [1], where they were used as a weapon
for firing arrows. It is believed that the Mongols were
responsible for bringing rocketry into Europe. Since the
15th century its importance has been balanced between a
war weapon and entertainment fireworks. Its importance
as a scientific tool began during the 17th century, when
Isaac Newton developed the motion laws, including the
rocket equation which will be explained later. However,
its modern usage as the fundamental way to take scien-
tific instruments out of the atmosphere and into space
was studied during the 20th century. After nearly 50
years of study, it was possible to send the first men to
the moon and to take a satellite into orbit, and henceforth
its importance in space exploration has put its study in
one of the most interesting fields in which physics relies.

Its major importance has been the principal motiva-
tion of the iZAR group in order to undertake this project.
Moreover it provided the opportunity to design and im-
plement what learned from rocket physics and engineer-
ing.

II. IZAR DESIGN

The first thing that comes in mind when rocket design
is proposed is bullet shape aerodynamics. Some say that
the first thought is, usually, the most appropriate, that
intuition leads to success, but we needed further investi-
gations.

First of all, there exists the dichotomy between sharp-
ness and bluntness. Doing some research, it can be
proven that aerodynamics is not an easy matter. On our
project there are di↵erent aspects that are involved in
the good functioning of the rocket. As it is obvious, drag
force is one of the primordial aspects to bear in mind,
but stability, point pressure and centre of gravity matter
as well. There are shapes that are designed exclusively
to reduce the e↵ects of these inconveniences at minimum;
some have the form of a water drop, that have a lot of
surface to distribute most of the pressure at the nose,
and less at the tail. These shapes seem reasonable, but
this unbalance of pressure surface sets forward the point

of pressure, leading to instability.
One of the principles followed during all the design

procedure is that the point of pressure has to be as near
as possible to the tail, as the centre of gravity close to
the nose. With that in mind, the shape of our rocket
should have an increasing surface of pressure as we move
from nose to tail. Three fins are implemented with that
objective, but the body must help too.
Another important aspect is the velocity, as it has an

important role in aerodynamics. That is how we can
solve the dichotomy. Some researchers give data that
helps with that decision. At low velocities, blunt shapes,
like parabolas, show the lowest drag coe�cients. If veloc-
ity increases and approaches the supersonic limit, sharp-
ness starts to equal any parabola. But these are not the
only things to consider. If the final point of the nose
is sharp, determine which shape is the best for the rest
of the nose is as important. LV-Haack is a profile build
on the principle of obtaining the minimum drag with a
specified length and volume, this has a sharp point and
an ogive-like shape. Another similar profile is called LD-
Haack, which searches for the minimum drag with a given
length and diameter. This last one is also referred as the
Von Kármán ogive, and it is one of the most used in
supersonic aviation. Them both are represented by the
following function [2] [3].
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Where D corresponds to the diameter, L to the length
of the profile, x is the distance from the tip and C is equal
to 0 or 1/3 if it is Von Kármán or LV-Haack.
It is more than proved that there exist multiple factors

to consider and options to choose. The iZAR-404 has a
profile of LV-Haack with a parabolic tip. In order to
improve stability and reduce drag and weight, the shape
of the rocket is composed of two noses, facing opposite
directions. The one located on the back of the rocket has
a major length of definition, and the rear end is cut so
as to enable a proper functioning of the engine.
The fins are regulated by the certification require-

ments. We used curved shapes to approach elliptic con-
tours, which are most aerodynamically e�cient, and air-
foils profiles to reduce drag, like the wings of planes do.
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The rocket is composed of two parts, the nose and
the body. The nose houses the payload and because it
needs to be ejected, it is not fixed to the body. The
payload, composed by the altimeter and the batteries, is
concealed by a fabric subjected to the nose by a big ring
and adjusted with tape. The body consists of three parts
printed separately and fused together.

The interior of the iZAR-404 has a solid structure
build to hold the thin fuselage, the rocket engine, the
parachutes and the altimeter. Three structural girders
with several circular enforcements are the principal struc-
ture. There are 6 small rings joined to that structure of
the body where the major parachute is attached, and the
big ring fitted in the nose holding the fabric that also fixes
the minor parachute to the payload.Two engine adapters
were designed to fit them perfectly into our curved inte-
rior without losing alignment and stability.

FIG. 1. Rocket final prototype, iZAR-404, Star Not Found,
ready to be launched. The UPC and engineering physics logos
are the ones printed on the fins.

III. CERTIFICATION REQUIREMENTS

Before rockets can be launched, some requirements for
sizes and resilience of the parts of the rocket, as well as

some safety requirements and conditions about the con-
struction materials. The list of requirements that both
rockets fulfill is as follows

• Fins resist a longitudinal force F = 2M
fin

a

max

and
a lateral force F = 0.052S

fin

v

2
max

.

• Applying a transversal force, the maximum fin
bending is smaller than 17%.

• Fins have a better alignment with the rocket axis
than 5 degrees.

• The maximum bending of the body tube is smaller
than the 1% required.

• Engine bracket resist a longitudinal force

F = 2T
fin

.

• The respective recovery system are able to with-
stand the payload and the fuselage and both glide
at a vertical velocity according to the specified
range, smaller than 5m/s.

• In order to guarantee the recovery of all parts two
parachutes are used for each rocket. A hole of 3cm
of diameter in the centre of parachutes is done to
ensure stability in gliding phase.

• The altimeter is ready to take measures of the alti-
tude as a function of time during the trajectory. A
hole has to be done in the nose in order to let the
altimeter do the measures.

An important aspect before the launch is to verify the
stability of the rocket. In order to start talking about
stability the concepts of centre of pressure, centre of mass
and margin of stability must be introduced [6]. A rocket
will be stable if the margin of stability (the distance be-
tween the centre of mass and pressure) is bigger than the
maximum diameter of te rocket. The centre of mass is
defined as the point of the rocket where is concentrated
all the mass of the rocket, whereas the centre of pressure
is the point where all the aerodynamic normal forces act.
An easy way to calculate the centre of mass is by hang-

ing the rocket from a string and moving the point of
application until the rocket remains totally horizontally.
The procedure to calculate the centre of pressure is more
analytical. The expression of the centre of pressure is
shown in (1)
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with a

i

are the respective areas in 2D of ech part of the
rocket; body, fins and nose, d

i

the respective distance of
the parts with respect to the base of the rocket,cp the
centre of pressure and A the sum of all a

i

. It is found
that the centre of pressure for the 3D rocket is 20cm far
from the bottom of the rocket, using the data from table
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1, and the centre of mass 38cm from the bottom,then
the di↵erence is bigger than the maximum diameter of
the rocket, 6cm.

Part of the rocket Area (ai) Distance(di)
Nose 30.31cm2 45cm
Body 1 52.01cm2 30cm
Body 2 52.52cm2 21cm
Tail 12.62cm2 12cm
Fins 52, 81cm2 9cm

With all these requirements and stablity criterion full-
filled the rocket can be launched perfectly safe.

IV. THE ROCKET EQUATION: THEORY
FUNDAMENTALS

The purpose of this part is to explain the trajectory
of an object which losses mass along the motion. This is
especially important when implementing a rocket trajec-
tory, as a great part of the mass is the fuel used to propel
it. The equation that models the motion of a body is the
Newton’s second law.

~

F = m~a

However, in rockets this well-known equation cannot be
applied for the reasons aforementioned, and what prevails
is the rocket equation, which is as follows [4].

M

d~v

dt

= ~

F +
dM
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~u

A. Rocket Equation

The right term of the previous ocasion is the force.
That force is comprised of several parts. Its most im-

portant is the term ~

T = dM

dt

~u which is the thrust of
the rocket, and comprises the acceleration due to the gas
propulsion. The quantity ~u relates to the relative ejec-
tion velocity with respect to the rocket. It is important
to note that it is a vectorial magnitude, as the rocket
motion is vertical as well as horizontal, due to the initial
launch angle and the weather conditions. In this initial
expression, two major e↵ects directly a↵ect the trajec-
tory: Gravity and Drag. Gravity is a vertical force, as-
sumed of the same magnitude through all flight.

~

F

g

= m~g

Drag is a force component against the motion, quadrat-
ically dependent on the velocity of the rocket, as it can
be seen in the drag coe�cient equation [4].
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In this equation, C

D

is the drag coe�cient, which is
given by the literature; A is the cross-sectional area of

the rocket, where it is the largest. RHO represents the
air density, which has been taken constant at a value of
0.25 (Kg/m3). It is important to know that the drag
force is usually a small fraction of the gravity. Nonethe-
less, it must be taken into account, so the final rocket
equation to simulate is[4]:
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V. SIMULATIONS

A fundamental part of this project is to predict the
rocket estimated trajectory using a simulation software.
In this case of study, the software MATLAB was used.
The main objective is using the aforementioned equations
of the rocket to estimate how the trajectory would be in
the di↵erent stages of the flight. As they consist on a
set of di↵erential equations with no analytical solution,
to integrate the velocity and attain the position the in-
tegrating method of Runge-Kutta was used [5]. For the
simulations, a series of assumptions have been mad and
those are applied in all flight stages. Firstly, the air den-
sity, as well as gravity, are considered to be constant in all
altitudes. Also, no lateral forces are taken into account,
thus permitting a 2D simulation of the trajectory. There
are 5 principal stages in the rocket flight trajectory:

A. Rocket flight up to burn out

The first stage starts with the ignition and lasts until
all the propellant is burned out. Since the thrust in-
creases gradually, when its value overcomes gravity the
rocket will take o↵. In order to simulate that, firstly the
thrust curve of the rocket’s engine D9-3 is modelled with
a series of linear functions that imitate the original non
linear one. Using the drag coe�cient given in the Model
Rocket Workshop manual (approximately 0.15) and tak-
ing into account an initial inclination due to the rocket
lauch base, the rocket equation is applied. In it it is
also taken into account that mass linearly decreases with
time, and the thrust is aligned with the rocket’s longitu-
dinal axis. In the simulation is studied and plotted the
altitud in function of time and in function of the cylin-
drical coordinate. The code is annexed in XI.

B. Rocket flight from burn out to nose and
fuselage separation

The second part starts when all the propellant is con-
sumed. At this moment, the rocket starts a ballistic tra-
jectory, where mass is constant, and the forces acting
are only gravity and drag. While gravity acts downward,
drag acts as a viscous force against the motion. This has
been taken into account, and the plots of this parts have
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been made exactly as before. This part last the delay
time of the rocket, since burn out until nose and fairing
are separated.

C. Rocket flight from separation till parachute
opening

For the treatment of this part of the flight, nose and
fairing have to be treated separately,as each have their
own drag coe�cient. It is also important to consider the
impulse created by the ejection, which will propulse the
nose along the propagation direction, whereas the fairing
will be propulsed in the opposite direction. The new drag
coe�cients will be 0.78 for the fuselage and 0.47 for the
nose.The momentum change is 13 N with a duration of
0.01s. This part last until the peak altitude is reached,
as from that moment the velocity will be negative. It is
considered that at this point the parachutes start acting.

D. Parachute gliding

The last part of the flight consist on the parts lowering
with the parachutes opened until those parts reach the
floor. As it was wanted to ensure a certain landing ve-
locity, the areas of the parachutes had to be determined,
and the drag coe�cient used with the parachutes was
of 1.15, as stated in the guidelines of the Model Rocket
Workshop. As in the second part of the flight, the only
forces acting are gravity and drag.

FIG. 2. Graphic corresponding to the altitude reached by the
nose (blue) and the body (red), according to the simulation
code, with a take-o↵ angle of 5 degrees.

VI. RESULTS

This part of the article refers to the results ob-
tained with the altimeter, which stores the flight alti-
tude through all flight, in order to study the correla-
tion between the simulations and the reality. Compar-
ing one versus the other, one could study how accurate
the assumptions made to make the simulations were, or
in which stages the simulation fails and how. Unfortu-
nately, no data could be retrieved from the flights. Al-
though the both the design and the simulation prevision
were both checked by the project manager, the lauch-
ing site was chosen too near the sea, which resulted in
our rocket landing on the water Although it was possible
to retrieve the body parts and the altimeter, the water
damage made it impossible to obtain the anaylisis data.

FIG. 3. Panoramic view of the launch site and the rocket
trajectory described by iZAR 404. Tha launch took place in
June 13th 2017, in Sitges.

VII. CONCLUSIONS

Going in depth into a scientific matter is a process
that needs time and e↵ort to be fullfiled. Model rocket
engineering has been a no di↵erent experience: computer
design, code programming, testing procedures, certifica-
tion requirements or launching protocol are some of the
most superficial aspects of a process that has given us a
di↵erent and deeper view of an engineering project, in-
volving many factors that we can find in superior, more
technical environments.
We have chosen a di↵erent design, a more aerodynamic

shape full of detail and e↵ort that has resulted in an
engineering piece that we are proud of.
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