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Abstract. Thermal stresses as a result from frictional heating must be considered when
designing disc brakes. The rotational symmetry of a disc brake makes it possible to
model this system using an Eulerian approach instead of a Lagrangian framework. In
this paper such an approach is developed. The sliding object is formulated in an Eu-
lerian frame where the convective terms are defined by the sliding velocity. A node-to-
node formulation of the contact interface is utilized. The energy balance of the interface
is stated by introducing an interfacial temperature. Both frictional power and contact
conductance are included in this energy balance. The contact problem is solved by a
non-smooth Newton method. By adopting the augmented Lagrangian approach, this is
done by rewriting Signorini’s contact conditions to a system of semi-smooth equations.
The heat transfer in the sliding body is discretized by a Petrov-Galerkin approach, i.e.
the numerical difficulties due to the non-symmetric convective matrix appearing in a pure
Galerkin discretization is treated by following the streamline-upwind approach. In such
manner a stabilization is obtained by adding artificial conduction along the streamlines.
For each time step the thermoelastic contact problem is first solved for the temperature
field from the previous time step. Then, the heat transfer problem is solved for the cor-
responding frictional power. In such manner a temperature history is obtained via the
trapezoidal rule. In particular the parameter is set such that both the Crank-Nicolson
and the Galerkin methods are utilized. The method seems very promising. The method
is demonstrated for two-dimensional benchmarks as well as a real disc brake system in
three dimension.

1 INTRODUCTION

In this paper an Eulerian approach for sliding contacts is developed. In the design
of machine components like brakes and clutches it is of importance to consider effects
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from frictional heating. Today, this is mostly done by experiments. The Lagrangian
approaches in our commercial softwares usually fail due convergence difficulties in the
contact algorithms and too long computational times. An idea to improve these draw-
backs is to formulate the problem in an Eulerian frame instead. This is the topic of
this paper. The approach is presented for a two-dimensional translating problem. In a
forthcoming paper the approach will also be developed for rotating systems as well as for
the tree-dimensional case.

Previously, we have studied thermo-mechanical contact problems in the setting of small
displacements. In Strömberg [1] thermo-mechanical wear problems were studied for a
thermo-elastic body in unilateral contact with a rigid foundation. The development of hot
spots was studied by solving the fully coupled equation system using Newton’s method.
The influence of wear on these hot spots was also investigated numerically. That work was
later extended to the case of two thermo-elastic bodies in unilateral contact in Ireman,
Klarbring and Strömberg [2]. An earlier work on this topic in the same research group was
done by Johansson and Klarbring [3]. In this paper, the thermo-mechanical framework
developed in our previous works is now extended to also include large rotations with
superimposed small displacements and this is done in an Eulerian framework.

Examples of early works on frictional heating in large displacements are e.g. the papers
by Oancea and Laursen [4], and by Agelet de Saracibar [5]. A more recent paper is the
one by Rieger and Wriggers [6] where the accuracy of the contact solution, which is most
important in order to represent the frictional power sufficiently well, was controlled by
adaptive techniques. Another way to improve the contact solution in large displacements is
to use the mortar technique. Recently, this was investigated by Hüeber and Wohlmuth [7]
for thermo-mechanical friction problems. A nice feature with the presented Eulerian
approach in this paper is that the contact region is always well defined and a node-to-
node based approach can be adopted, producing very accurate contact solutions. The
contact equations are then treated with the celebrated augmented Lagrangian approach
where the corresponding equation system is solved by a non-smooth Newton algorithm.
The details can be found in Strömberg [8].

One can find several other works where a Lagrangian formulation has been utilized
for treating frictional heating, e.g. [9], but it is not easy to find any paper where an
Eulerian framework is used. One example is the paper by Pauk and Yevtushenko [10]
where a cylinder sliding over a half-space was considered. In this work we present a finite
element approach using an Eulerian framework for solving frictional heating in sliding
contacts. The fully coupled problem is decoupled in one mechanical part and another
thermal problem. These two equation systems are then solved sequentially by using
Crank-Nicolson’s and Galerkin’s settings of the trapezoidal rule in the time discretization.
Other possibilities of performing the time discretization are of course also available. For
instance, Laursen [11] proposed thermodynamically consistent algorithms for this class of
problems. The convective term is stabilized by the streamline-upwind approach. For this
task the excellent text-book by Donea and Huerta [12] has been consulted.
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The proposed method is implemented on 64-bits Windows using Intel Fortran and the
sparse Cholesky and LU solvers of Matlab. The pre- and postprocessing are performed on
Abaqus/CAE by Python scripts. The implementation seems to be very robust and pro-
duce accurate solutions at low computational times. This is demonstrated by presenting
numerical examples.
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Figure 1: Two linear thermoelastic bodies in unilateral contact.

2 GOVERNING EQUATIONS

Let us consider two linear thermo-elastic bodies Ωm in unilateral contact, see Figure 1.
The first body is subjected to external forces F = {FA

i } and heat powers Q = {QA} at
finite element nodes xA on the top of the first body. The second body is translating with
a constant velocity v = ve1 and has superimposed small displacements onto the current
rigid body configuration at time t. For each body Ωm, the nodal displacements are
collected in dm = {dAj } and the nodal temperature vectors is represented by Tm = {TA},
respectively.

At the contact surface of each body, the normal displacements are given by

dNm = CNmdm, (1)

where the rows of the transformation matrices CNm contain surface normals in proper
positions, i.e.

Crow
N1 = [0 [0−1] 0],
Crow

N2 = [0 [0 1] 0].
(2)

The corresponding normal contact forces FNm are obtained by

FNm = −CT
NmP , (3)

where P is a vector of Lagrange multipliers which are governed by Signorini’s contact
conditions:

P ≥ 0, dN1 + dN2 ≤ g, P ◦ (dN1 + dN2 − g) = 0. (4)
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Here, g represents a vector of initial gaps gA between contact nodes in node-to-node
contact, see Figure 1, and ◦ is the Hadamard product.

It is assumed that sliding is always developed and that the corresponding frictional
forces are given by

F Tm = µCT
TmP , (5)

where
Crow

T1 = [0 [1 0] 0],
Crow

T2 = [0 [−1 0] 0].
(6)

These assumptions are in agreement with Coulomb’s law of friction when sliding is devel-
oped.

By introducing finite element shape functions NA = NA(x) and performing a finite
element discretization, the following equilibrium equations in forces can be derived:

K1d1 − K̂1T 1 = F + FN1 + F T1,

K2d2 − K̂2T 2 = FN2 + F T2,
(7)

where

Km = [KBA
ik ], KBA

ik =

∫

Ωm

Eijkl
∂NA

∂xl

∂NB

∂xj
dV,

K̂m = [K̂BA
i ], K̂BA

i =

∫

Ωm

α(3λ+ 2G)NA∂N
B

∂xi
dV,

(8)

Eijkl = λδijδkl + G(δikδjl + δilδjk), λ and G are Lame’s coefficients, respectively, and α
represents the thermal expansion coefficient.

The energy balance for the first body reads

M 1Ṫ 1 +O1T 1 = Q+QC1, (9)

where

Mm = [MBA], MBA =

∫

Ωm

ρcNANB dV,

Om = [OBA], OBA =

∫

Ωm

k
∂NA

∂xi

∂NB

∂xi
dV,

(10)

ρ is the mass density, c is the heat capacity and k is the thermal conductivity. Furthermore,
by introducing the contact conductance ϑ and the frictional dissipation at each contact
pair as

µP v, (11)

we can define the heat power transferred at the first contact surface as

QC1 =
ϑ

2
P ◦ (S2T 2 − S1T 1) +

1

2
µP v. (12)
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Here, we have also introduced Si, where Srow
i = [0 [1] 0], in order to obtain the nodal

temperatures at the contact surfaces. In a similar way, we can define the heat power
transferred at the second contact surface as

QC2 =
ϑ

2
P ◦ (S1T 1 − S2T 2) +

1

2
µP v. (13)

In the energy balance for the second body convective terms appear due to the speed
v. These are represented by NT 2, where

N = [NBA], NBA =

∫

Ω2

ρcv
∂NA

∂x1

NB dV, (14)

Thus, the convection matrix N is non-symmetric. When this matrix dominates over the
symmetric conduction matrix O2, then the thermal solution might be unstable. This
might be stabilized by adding artificial conduction along the streamlines by RT 2, where

R = [RBA], RBA = k̄v

∫

Ω2

∂NA

∂x1

∂NB

∂x1
dV, (15)

and k̄ is an artificial conduction coefficient. By using (14) and (15), we obtain the following
energy balance for the second body:

M 2Ṫ 2 + (N +R+O2)T 2 = QC2. (16)

3 NUMERICAL TREATMENT

The equations presented in the previous section are treated sequentially for each time
step by decoupling the mechanical and thermal equations. That is, for a given temperature
distribution the thermo-mechanical contact problem is first solved, then for the obtained
contact force distribution the energy balance is solved. Details are presented in this
section.

The contact problem is treated by the augmented Lagrangian approach. The key idea
is to rewrite (4) as

P = (P + r(dN1 + dN2 − g))+ , (17)

where r > 0 is a penalty coefficient and (x)+ = (x + |x|)/2. (7) and (17) are then put
together to form an equation system as

h = h(d1,d2,P ,T 1,T 2) = 0. (18)

This is a semi-smooth equation system which is efficiently solved by a Newton algorithm
with an inexact line-search procedure for given temperatures Tm.
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Figure 2: The nodal temperatures plotted at different times: after 20, 40, 60 and 80 increments, respec-
tively.
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The time rates appearing in the energy balances are discretized by the trapezoidal
rule. Let T n

m = Tm(tn) at time tn, then the temperatures at the next time step tn+1 are
updated according to

T n+1
m = T n

m +∆t
(

(1− ξ)Ṫ
n

m + ξṪ
n+1

m

)

, (19)

where ∆t = tn+1 − tn and ξ = 1/2 (Crank-Nicolson) or ξ = 2/3 (Galerkin). (19) inserted
in (9) and (16) yields

(

O1 +
1

ξ∆t
M 1

)

T n+1
1 = Qeff

1 +QC1,
(

N +R+O2 +
1

ξ∆t
M 2

)

T n+1
2 = Qeff

2 +QC2,
(20)

where

Qeff
1 = Q+

(1− ξ)

ξ
M 1Ṫ

n

1 +
1

ξ∆t
M 1T

n
1 ,

Qeff
2 =

(1− ξ)

ξ
M 2Ṫ

n

2 +
1

ξ∆t
M 2T

n
2 .

(21)

Furthermore, (12) and (13) can also be written as

QC1 = SP2T 2 − SP1T 1 +Qµ,
QC2 = SP1T 1 − SP2T 2 +Qµ,

(22)

where SPi and Qµ all depend on P . By putting together (20) and (22), one obtaines an
equation system on the following form:

A(P )

{

T 1

T 2

}

= Q(P ), (23)

which of course becomes a linear system for given multipliers P .
In conclusion, let dn

m, T
n
m, P

n be given at time tn, then dn+1
m , T n+1

m , P n+1 are obtained
by the following steps:

Step 1:
h(dn+1

1 ,dn+1
2 ,P n+1,T n

1 ,T
n
2 ) = 0

is solved by Newton’s method, details can be found in [8].

Step 2:
{

T n+1
1

T n+1
2

}

= A(P n+1)−1Q(P n+1).

Step 3:

Ṫ
n+1

m = −
1 − ξ

ξ
Ṫ

n

m +
T n+1

m − T n
m

ξ∆t
.
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Figure 3: A comparison when the friction force is neglected in the equilibrium equations.

4 NUMERICAL EXAMPLES

The problem in Figure 1 is here considered as a numerical benchmark. The dimensions
of the two bodies are taken to be 0.1x0.04 [m2] and 0.5x0.02 [m2], respectively. The plain
strain assumption is adopted with a thickness of 1 [m]. The first body is meshed using
8151 elements and for the second body 20735 elements are used. Young’s modulus is
2.1E11 [Pa], Poisson’s ratio is 0.3, the expansion coefficient is 1.2E-5 [1/K], the density is
7800 [kg/m3], the heat capacity is 460 [J/kgK], the conductivity is 46 [W/mK] and the
conduct conductance is taken to be ϕ =1 [W/NK].

A total heat power of Q =5760 [W] is applied on the top of body Ω1 as well as a
total force of F =72E4 [N] (corresponding to a pressure of 7.2 [MPa]). Both the total heat
power and the total force are equally distributed over all contact nodes on the top surface.
The heat power is applied at time zero and the force is ramped up using a log-sigmoid
function for 20 time increments. The problem is solved for 80 time increments with a
constant time step ∆t =0.125 [s]. The speed of the second body is v =1 [m/s]. Thus,
the total sliding distance is 10 [m]. The evolution in temperatures for this problem when
µ = 0.1 are plotted in Figure 2.

The bottle-neck of the algorithm is to solve the linear system appearing in the Newton
algorithm. Typically 4-6 such linear systems have to be solved for getting convergence in
each time step. The system is also non-symmetric du to the friction force. One approach
to speed up these calculation is to assume that the friction force has a little influence on
the thermal solution. If the friction force is neglected in the mechanical problem, then only
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N. Strömberg

−0.05 0 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

contact nodes

P

−0.05 0 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

contact nodes

P

−0.05 0 0.05
0

1

2

3

4

5

6

7

8

9
x 104

contact nodes

P

−0.05 0 0.05
0

0.5

1

1.5

2

2.5

3

3.5
x 104

contact nodes

P

Figure 4: Comparison of temperatures and contact forces for µ = 0.2 and 0.3 when friction forces are
included as well as neglected.
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N. Strömberg

2-3 Newton steps are needed and the linear system also becomes symmetric. In Figure 3
we have utilized this approach and compare the final solution to the original one presented
in Figure 2. The resemblance of the two solutions are very close. A similar comparison is
performed when the friction coefficient is taken to be 0.2 and 0.3, respectively. The results
are presented in Figure 4. Also here a close resemblance between the results is obtained
for the two different approaches, with and without frictional forces. The difference shown
in the plots for µ = 0.3 depends mostly on a time shift. This will be explained in more
detail at the conference.

Another approach for speeding up the calculations but still consider the frictional force
is to first solve the frictionless problem and then letting the friction force be defined by the
obtained frictionless contact pressure, and solving the friction problem for this constant
friction force. That is, at each iteration, (18) is first solved for F Tm = 0. Let P̂ denote
the solution and then solve (18) again but now with F Tm = µCT

TmP̂ . In general, the
number of iterations will be twice the number of iterations for the frictionless case. Of
course, for this case, we will also have a symmetric Jacobian which is most beneficial for
large size problems.

Figure 5: A heat band developed in a disc brake.

5 CONCLUSIONS

In this work a method for simulating frictional heating in sliding contacts is devel-
oped and implemented. A key idea of the approach is to use an Eulerian frame for
the sliding object. The convective term appearing in this approach is stabilized by the
streamline-upwind technique. The method seems promising. This is shown by solving a
two-dimensional benchmark with a translating object for different coefficients of friction.
The next step in the development will be to consider rotating objects. The ultimate goal
is to solve frictional heating in disc brakes efficiently. A preliminary result is presented in
Figure 5.
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N. Strömberg

and Volvo 3P.

REFERENCES
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