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Abstract

Epidemics have been emerging and reemerging for thousands of years, killing millions of people,
since the first reported plagues in the Bible until the current coronavirus, which has put in quarantine
almost the whole world. Epidemiology, the science studying these diseases, has been being developed
from Hippocrates’ first medical studies until now, and it was not until the 18th century with Daniel
Bernouilli that there appeared a new branch: mathematical epidemiology.

During the following pages, we will first establish some basic concepts and a motivational intro-
duction in order to present some common results on mathematical epidemiology. For that, it will
be introduced some theory using the basic SIRS model so as to understand well the involved tools,
such as Lyapunov theory on equilibrium points and their stability or the basic reproduction number
R0, which will be crucial to determine the future of the disease. Finally, we will try to apply all the
learned concepts to study a more complex mathematical model, still in development, whose aim
is trying to reproduce the behaviour of the well-known COVID-19; concretely, there will be shown
some numerical results for its evolution in the Metropolitan Area of Barcelona.

Keywords: COVID-19, mathematical epidemiology, human infectious disease, disease spread,
basic reproduction number, effective reproduction number, SIRS model, Lyapunov stability, θ-
SEIHRD model, numerical simulation, parameter calibration.
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1 Introduction

The word epidemiology comes from the Greek decomposition epi (upon), demos (the people)
and logos (study, science), i.e., it literally means “the study of what is upon the people”. More
precisely, it is a scientific discipline inside the medical field in charge of studying the dynamics of
a disease in a given population by understanding the causes of the disease, trying to predict its
course and finally developing some ways to control it; although it is referred to any kind of disease
(e.g., alcoholism, overweight, cancer) and may be also applied to animal populations (e.g., swine
influenza), we are concretely interested in human infectious diseases.

The use of mathematical tools applied to this science was a great achievement, since it led to
the opportunity of making more rigorous predictions, and even reconstructions, of these mentioned
dynamics. Nevertheless, before entering the historical motivation and evolution of the mathematical
epidemiology, it is necessary to introduce first some concepts that will help us understand better
the following pages.

1.1 Basic concepts

Here we present some basic concepts constrained to our context of human infectious diseases.

• Epidemic: Rapid spread of a disease to a large number of people in a concrete population
within a short period of time.

• Endemic: Local persistence of a disease in a geographical area without external inputs.

• Pandemic: Spread of an epidemic across a large region, such as multiple continents or
worldwide, increasing substantially the number of infected people.

• Incidence: Rate of occurrence of a disease in a population within a specified period of time.

• Prevalence: Proportion of a population affected by a disease at a specific time.

• Immunity: State of a person having adequate biological defenses to fight a disease.

• Emerging infectious disease (EID): Infectious disease whose incidence has increased re-
cently (e.g., in few years) and could increase in the near future.

• Reemerging disease: Disease that reappears after a significant decline.

• Latent period: Time interval between the infection of the individual and when they become
capable of infecting other susceptible individuals.

• Incubation period: Time interval between the exposure to a disease and the appearance of
the first symptoms and clinical signs.

• Infectious period: Time interval during which an individual is infectious.
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• Case fatality rate (CFR): Proportion of people diagnosed with a disease who die from the
disease.

• Infection fatality rate (IFR): Proportion of people infected by a disease, including asymp-
tomatic and undiagnosed cases, who die from the disease.

• Basic reproduction number (R0): Ratio of secondary infections expected from one infected
individual in a completely susceptible population.

• Effective reproduction number (Rt): Ratio of secondary infections expected from every
infected individual in the current susceptible population.

1.2 Historical motivation

Epidemics have invaded populations since the first recordings of mankind history. Apparently,
the most ancient writings about these infectious diseases are in the Bible under the name of plagues,
and, before Hippocrates (460 B.C. - 370 B.C.) set the first basis on medical science, it was believed
that these diseases came from divine anger against the populations [1]. Hippocrates was the first to
assert in his Third Book of the Epidemics that the spread of these diseases was closely related to the
change of season and the humidity in the air. Since then, many epidemics have been devastating
populations over the time - [2] between 1347 and 1350, the Black Deaths are estimated to have
caused the death of over one third of the European population, and they kept on reemerging during
300 more years; the Spanish flu epidemic caused between 1918 and 1919 more than 50 million
deaths all over the world; and, finally, even though there have been noticeable improvements on
this medical science, the current COVID-19 is estimated to have already killed almost half a million
people worldwide in half a year.

John Graunt (1620-1674) was the first person to study the data related to infectious diseases in
his book Natural and Political Observations made upon the Bills of Mortality (1662), he analyzed
the weekly exitus records in London and gave a method for comparing risks of dying from various
diseases, which set the basis of a theory of competing risks. As these studies were developed, their
interest was every time greater due to the nature of these diseases, since they usually suffer from
some genomic changes which may make them immune to current vaccines or medicines, and hence it
is important to keep on researching and creating new protocols so as to stop their spread as soon as
possible. As a curious fact about these protocols, now that most of the world has been quarantined,
it is known that the first report of a quarantined place dates from 1377, during the aforementioned
Black Plagues, when the Venetian colony Ragusa (the current Dubrovnik in Croatia) imposed a
40-days isolation (which led to the denomination of quarantine, due to the Italian word for 40,
quaranta) to the crews that went to the city for maritime commerce, so as to start avoiding the
spread of the disease [3].

Some years after Graunt’s studies, it appears that the first mathematical work on epidemiology
was thanks to Daniel Bernoulli (1700-1782), during the endemic smallpox disease, who studied if
inoculating a mild strain of smallpox in the population would be beneficial in the long term in
order to confront the disease and end with its endemic nature. After that, many developments have
been made in this area, and we will followingly present several mathematical ways that were set for
studying the dimensions of these problems.
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1.3 Mathematical modelling in epidemiology

Such as aforementioned, Daniel Bernoulli’s study on smallpox is considered the first mathemat-
ical study on epidemiology in history [2], but it was not until the 20th century that the basis of the
current models was presented.

It was set that diseases spread by contact through some kind of virus or bacterium, and therefore
W. H. Hamer proposed in 1906 that this spread should depend on the number of susceptible and
infectious individuals, and suggested a mass-action law for the rate of new infections, which will be
detailed in the next Section with a concrete example. This set the basis of the compartmental
models, which are the ones we are going to work with. The first known basic compartmental
models for our concerning matter in epidemics can be found described in a paper of Kermack and
McKendrick from 1927 [4], and now we will present some compartments that are usually taken into
account in these models:

• M : Individuals with temporary immunity for the disease; for instance, some children may
acquire IgG (immunoglobulin G) antibodies from their mother if she has been infected during
her pregnancy. Once lost this immunity, they become susceptible.

• Susceptible: Healthy individuals who are susceptible of getting infected.

• Exposed: Individuals in the latent period of the infection with low or null probability of
transmitting the infection.

• Infected: Individuals already infected by the disease with high probability of transmitting the
infection.

• Recovered: Individuals who have recovered from the infection.

ES I

Deaths

M R

Passive
immune births

Non-immune
births

DeathsDeaths DeathsDeaths

Figure 1: Example of a diagram for a MSEIR model.

These are the basic states, although there may be more such as hospitalized (H), quarantined
(Q), vaccinated (V), etc. Given these compartments, there are multiple combinations to build
different models depending on the characteristics of the disease, such as the way of transmission

6



(i.e., by contact, using vectors such as mosquitoes, by air) or the infectious agents (i.e., viruses,
bacteria, fungi). In particular, to set up all the basic theory, in Section 2 we will work with a SIRS
model, i.e., the infected individuals recover and go back to be susceptible again after some time.

Nevertheless, this is not the only way of studying mathematically an epidemic. In the Kermack-
McKendrick models, the authors tend to consider a homogeneous population where there will be
some kind of harmonious (usually, exponential) behaviour, this is, there is a large enough number
of individuals in each compartment so they can be treated homogeneously in terms of age or gen-
der. However, when the number of infected individuals is too low, there is a strong stochastic
component, since the disease will spread in one way or another depending on the behaviour and
characteristics of these individuals. The stochastic models are based on the Galton-Watson process,
a result which was first given by Galton and Watson in [5]; when graph theory was developed on
the 50’s, combined became a strong tool for mathematical epidemiology. Moreover, of course, it
can be also considered a hybrid model using both techniques.

As many scientific models, these mathematical models may, for instance, help us to:

• Clarify the hypotheses, variables and parameters, and observe the possible changes in the
disease dynamics when varying some of them.

• Study, compare and optimize the control measures for the disease.

• Test experimentally some theories and conjectures to have some intuitions on them.

• Identify tendencies, make general predictions or reconstruct the global behaviour of the dis-
ease.

Nevertheless, all these models have also some limitations:

• To work mathematically with the epidemic, they must be sufficiently complex to generally
adapt to their behaviour, but also simple enough or it will not be possible to treat it theoretical
nor numerically. Therefore, they often simplify the reality and do not pretend to model it
exactly.

• When we work with deterministic models, our results will be determined and will not consider
random events that may interfere with homogeneities.

• On the other hand, considering stochasticity highly increases the computational costs, and
hence an equilibrium between both approaches must be found.

In conclusion, the following results must be treated as tools and always resituated in their
context. This will help us to clarify the limitations of our models.
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2 The SIRS model

To illustrate a typical mathematical model for epidemiology, a study of a basic SIRS model is
presented, which will lead us to introduce some new concepts and results that will be useful later
for our future study.

First of all, what does the name SIRS stand for? As presented before, each of the letters
represent one of the compartments (also called states) of the population we are going to work with
- in this case, we have the following ones:

• Susceptible: Healthy individuals who are susceptible of getting infected.

• Infected: Individuals infected by the disease.

• Recovered: Individuals who have recovered from the infection and are temporarily immune
to the disease.

Each of these compartments is a portion of the total population. This model is circular in the
sense that, once recovered, an individual turns to be susceptible again after a period of time.

In this example, although the model will be defined for infinite time, we will effectively work with
a time short enough to suppose a normalized constant total population N = 1, i.e., S(t) + I(t) +
R(t) = 1, and will not have into account natural mortality nor any births. Since we have normalized,
our compartments S, I and R are dimensionless and represent proportions of the population.

Now, as aforementioned in Section 1.3, to define our system, we will consider a mass-action
law, which consists on supposing the rate of new infections is directly proportional to the current
proportion of infected individuals I/N ; this rate, therefore, will be βSI/N , for some constant β.
Because of the previous explanation, this is the same as βSI. Hence, we define the following system
of ordinary differential equations:

dS
dt (t) = −βI(t)S(t) + µR(t),

dI
dt (t) = βI(t)S(t)− γI(t),

dR
dt (t) = γI(t)− µR(t),

(1)

where

• β > 0 (day−1) is the effective contact rate of the disease,

• µ > 0 (day−1) is the loss of immunity rate,

• γ > 0 (day−1) is the recovery rate.
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IS R
βI γ

µ

Figure 2: Example of a diagram for a SIRS model.

Recall that the dimensions of our system are consistent due to the previous explanation of the
mass-action law, and each equation has dimension [1/T].

Once introduced our model, we can start with the theoretical study. The first step is checking
the biological consistency of this model (i.e., the population effectively remains constant and S, I
and R are always non-negative). Then, we present more formally the basic reproduction number R0
and a mathematical way for computing it; this will help us to establish the nature of the equilibria
of our system, since R0 will be a threshold number which will determine if the disease becomes
endemic or refers. Finally, some numerical results are presented in order to contrast our theory.

2.1 Biological consistency of the model

In this section, we will check some characteristics of our model, observing that our system fulfills
our constraint S(t) + I(t) + R(t) = 1 (i.e., the population remains constant), for all t ≥ 0, and is
biologically consistent, meaning that we never reach negative proportions of the population; thus,
we state:

Theorem 1. The set
Ω = {(S, I,R) ∈ [0,∞)3 : S + I +R = 1}

is positively invariant for the system (1), given that S(0) + I(0) +R(0) = 1.

Proof. Let Φt be the continuous flux of the system (1). Then, given an initial condition (S0, I0, R0) ∈
[0,∞)3, let us see that

Φt(S0, I0, R0) ∈ [0,∞)3, ∀t ≥ 0.

To do that, let (S, I,R) = (X1, X2, X3). Then, if (X1(t̄), X2(t̄), X3(t̄)) ∈ Ω, for some t̄ ≥ 0, it is
easy to prove that

Xi(t̄) = 0 =⇒ dXi

dt (t̄) ≥ 0, ∀i = 1, 2, 3.

Thus, for any initial condition (X1(0), X2(0), X3(0)) ∈ Ω, given that our flow Φt is continuous, if
any of the derivatives is negative, there may exist times ti, i = 1, 2, 3 such that Xi(ti) = 0. Without
loss of generality, suppose t1 ≤ t2 ≤ t3; hence,

Φt1(X1(0), X2(0), X3(0)) = (0, X2(t1), X3(t1)) ∈ {0} × [0,∞)2.

Now, since dX1
dt (t1) ≥ 0 as stated before, X1 will either increase or remain being 0, and, thus, X1

remains non-negative.

9



This is valid for the three of our compartments, so we deduce that Ω is a positive set for our
continuous flow Φt≥0.

On the other hand, for any initial solution (S0, I0, R0) ∈ Ω, S0 + I0 + R0 = 1. Besides, adding
up the three equations of our system (1), we obtain

dS
dt (t) + dI

dt (t) + dR
dt (t) = 0, ∀t ≥ 0.

Hence, S(t) + I(t) + R(t) = S0 + I0 + R0 = 1 is a first integral, which leads us to conclude that Ω
is positively invariant with respect to the flow. �

2.2 Basic reproduction number

Before starting the mathematical study of the equilibria for (1), we need to present an important
threshold number that will help to determine the future of the disease:

Definition 1. The basic reproduction number R0 of a disease is the expected number of cases
generated by one infected individual in a completely susceptible population, i.e., the ratio of secondary
infections expected from a single case.

This characteristic number is widely known for establishing an initial criterion to predict the
short time evolution of the spread of a disease [6]. Nevertheless, sometimes some part of the
population becomes immune to the disease or some control measures are taken to reduce the contact
among infected people, and thus this number does not describe the evolution of the disease anymore.
Consequently, we define the effective reproduction number.

Definition 2. The effective reproduction number Rt of a disease is the expected number of
cases generated by one infected individual at a given time t in a partially susceptible population.

For an autonomous system, we have that Rt = (S(t)/N)R0, and hence computing R0 already
gives us enough information. Nevertheless, for non-autonomous systems it is more complicated and
we will see in Section 3 that R0 will give us less information. However, it is always interesting to
compute it and required for most of scientific works on epidemiology.

To compute this number, we are going to use the Next Generation Matrix method following
the notation of van der Driessche and Watmough [6]. It is named this way since we are aiming to
determine the number of secondary infections, i.e., who is the next generation of infected people.
Let us describe briefly the method as in the mentioned paper:

We consider a population divided into n compartments (e.g., S, I, R,...). Let p = (p1, ..., pn)T
such that pi ≥ 0 is the number of individuals in the ith compartment. Suppose there are m
compartments with individuals who have the disease active in their body, and n−m who have not got
the disease. Then, rearrange and rename these compartments such that (p1, ..., pm) = (x1, ..., xm)
are the m populations with infected individuals and (pm+1, ..., pn) = (y1, ..., yn−m) are the n −m
disease-free compartments. Let Pf be the set of populations in disease-free state

Pf = {p = (x,y) ≥ 0 |xi = 0, i = 1, ...,m}.
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Next, let us define the following functions under the assumption that they will be C2:

• Fi(p): rate of appearance of new infections in i = 1, ...,m.

• V +
i (p): rate of transfer of individuals to i by other means than infection (for instance, for

transition rate).

• V −i (p): rate of transfer of individuals out of i.

Given this, we can rewrite our epidemiological model as follows:{
ṗi = fi(p) = Fi(p)− Vi(p), i = 1, ..., n,
Non-negative initial conditions,

Vi = V −i − V
+
i . (2)

We impose the described functions also fulfill the following assumptions:

1. Since our functions Fi, V +
i and V −i are positive transfers of individuals, each function will be

non-negative. Thus,
p ≥ 0 =⇒ Fi, V

−
i , V

+
i ≥ 0, ∀i = 1, ..., n.

2. An empty compartment cannot transfer any individuals out of it, hence

pi = 0 =⇒ V −i = 0.

Particularly,
p ∈ Pf =⇒ V −i = 0, ∀i = 1, ...,m.

Note: Satisfying conditions 1. and 2. for (2) leads to the existence of a unique non-negative
solution for each non-negative initial condition (see [7]).

3. Since the incidence of infection for uninfected compartments is zero, Fi = 0, ∀i > m.

4. To maintain Pf invariant, we assume that a population free of disease will remain free of
disease. Thus,

p ∈ Pf =⇒ Fi(p) = V +
i (p) = 0, ∀i = 1, ...,m.

5. We want an equilibrium point pf of the disease free state set Pf to be (locally asymptotically)
stable, i.e., if we remain close to pf , the population will tend to the disease free equilibrium
(DFE). Taking into account the linearized system

ṗ = Df(pf )(p− pf ), (3)

we ask that
F (p) = 0 =⇒ eig(Df(pf )) ⊂ {(a+ bi) ∈ C | a < 0},

this is, we want pf to be stable in absence of new infection. Be aware that pf is usually on
the boundary of our domain, and hence we should work with one sided derivatives.
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Given these assumptions, we state the following result from [6]:

Lemma 1. If pf is a DFE of (2) and fi(p) satisfies the aforementioned assumptions, then

DF (pf ) =
(
F 0
0 0

)
, DV (pf ) =

(
V 0
J3 J4

)
,

where

• F and V are m×m matrices such that

F =
[
∂Fi
∂pj

(pf )
]
i=1...,m,
j=1,...,m

is non-negative, V =
[
∂Vi
∂pj

(pf )
]
i=1...,m,
j=1,...,m

∈ GL(m,R),

• V is an M-matrix, i.e., its non-diagonal entries are non-positive and its eigenvalues have
non-negative real part (positive real part, indeed, due to the invertibility),

• J3 and J4 are an (n−m)×m and an (n−m)× (n−m) matrices, respectively, such that

eig(J4) ⊂ {(a+ ib) ∈ C | a > 0}.

Now, to determine the infections produced by one individual, let us consider again the linearized
system with no reinfections introduced in 5.

ṗ = −DV (pf )(p− pf ).

Recall that we asserted in this case pf is locally asymptotically stable. From here, we are going to
determine the local behaviour when introducing a small number of infected individuals.

Let ri(0) be the initial number of infected individuals in compartment i and denote r(t) =
(ri(t))i=1,...,m the number of these initially infected individuals in the infected compartments after
t time units, i.e., r(t) represents the first m components of p. Recalling the form of DV (pf ) in the
previous Lemma, we have the equation for r(t)

ṙ(t) = −Vr(t),

whose solution is r(t) = e−Vtr(0).

Attending to Lemma 1, V is invertible with all its eigenvalues having positive real part; hence,
considering the linearized system (3) and integrating Fr(t) from zero to infinite, it is obtained the
expected number of new infections due to the initially infected individuals as FV−1r(0). The fact
that V is a non-singular M-matrix is equivalent to the fact that it is positive-inverse, i.e., V−1 has
all positive entries. This, added up to Lemma 1, leads to FV−1 positive. Let us now interpret what
each entry of this last matrix means:

Suppose an infected individual entering to compartment k. V−1(j, k) corresponds to the average
period of time this individual will spend in compartment j before leaving. On the other hand, F(i, j)
corresponds to the transmission rate from compartment j to i. Thus, FV−1(i, k) corresponds to
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the expected number of infections in i from the infected individual introduced in k.
Van der Driessche and Watmough based themselves on the first study of this method by Diekmann,
Heesterbeek and Metz in 1990 (see [8]) to conclude that FV−1 is the so-called Next Generation
Matrix and R0 is defined as

R0 = ρ(FV−1), (4)

being ρ(FV−1) the spectral radius of the matrix, which makes sense since we are supposing that
the persistence of the disease will depend on the largest of these expected numbers.

Let us now computeR0 for our particular model (1). Sincem = 1, as the only infected population
is I, we rewrite our equations as follows:

d
dt

 I(t)
S(t)
R(t)

 = F (I, S,R)− V (I, S,R), (5)

being

F (I, S,R) =

 βIS
0
0

 and V (I, S,R) =

 γI
βIS − µR
−γI + µR

 .
Differentiating both functions with respect to (I, S,R), we obtain

DF (I, S,R) =

 βS βI 0
0 0 0
0 0 0

 and DV (I, S,R) =

 γ 0 0
βS βI −µ
−γ 0 µ

 .

Next, we determine the disease free equilibrium (DFE) of our model, i.e., we look for a point
pf = (0, Sf , Rf ) such that dI

dt = dS
dt = dR

dt = 0. Thus, substituting in (5) by a point satisfying this
criterion, we have that 

0 = 0,
0 = µRf ,

0 = −µRf ,

and we obtain (0, Sf , 0). Attending to our constraint S + I +R = 1, we get

pf = (0, 1, 0).

Considering this point in the Jacobian matrices, we have that

DF (pf ) =

 β 0 0
0 0 0
0 0 0

 and DV (pf ) =

 γ 0 0
β 0 −µ
−γ 0 µ

 ,
from which we deduce, taking into account that m = 1, that the basic reproduction number is given
by

R0 = ρ(FV−1) = β/γ.

Remark: One can observe that the condition of Lemma 1 for the eigenvalues of J4 is not fulfilled,
which is due to the fact that our three equations are linearly dependent due to the aforementioned
constraint. Later, we will reduce this system in order to make our computations easier.
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On the other hand, we can find another equilibrium point pe = (Ie, Se, Re) for our system such
that I > 0. This point will be our endemic equilibrium, i.e., the equilibrium for which the disease
persists.

0 = βSe − γ,
0 = −βIeSe + µRe = −βIeSe + µ(1− Se − Ie),
0 = γIe − µRe = γIe − µ(1− Se − Ie),

=⇒ Se = γ

β
, Ie = µ(1− γ/β)

γ + µ
, Re = γ(1− γ/β)

γ + µ
,

which, rewritten in terms of R0, leads us to the endemic equilibrium

pe =
(
µ(1− 1/R0)

γ + µ
,

1
R0
,
γ(1− 1/R0)

γ + µ

)
=
(
Ie, Se,

γ

µ
Ie

)
.

Notice that this equilibrium point is only admissible (and different from pf ) for R0 > 1.

2.3 Stability of the equilibria

The next step is studying the stability of these two points, pf and pe, with respect to the value
of R0. To do that, let us recall first some definitions regarding Lyapunov’s stability theory.

Let us consider the following autonomous non-linear system:{
ṗ = f(p(t)),

p(0) = p0,
(6)

where x(t) ∈ D ⊆ Rn, D open, and f : D → Rn a continuous function. Suppose the system has an
equilibrium point ps.

Definition 3. The equilibrium point ps is said to be Lyapunov stable if, for all ε > 0, ∃ δ > 0
such that ‖p(0)− ps‖ < δ =⇒ ‖p(t)− ps‖ < ε, for all t > 0.

Definition 4. The equilibrium point ps is said to be asymptotically stable if there exists δ > 0
such that ‖p(0)− ps‖ < δ =⇒ lim

t→∞
‖p(t)− ps‖ = 0.

Definition 5. The equilibrium point ps is said to be unstable if it is not stable, i.e., if there exists
an ε > 0 such that, ∀δ > 0 and ‖p(0)− ps‖ < δ, ∃t0 > 0 | ‖p(t)− ps‖ > ε, ∀t > t0.

Given this, we state the following assertion:

Theorem 2. The two equilibria of system (2) fulfill the next stability behaviours:

1. pf = (0, 1, 0) is globally asymptotically stable (GAS) if R0 ≤ 1 and unstable if R0 > 1.

2. pe = (Ie, Se, γµIe), being

Ie = µ
(1− 1/R0)
γ + µ

, Se = 1
R0
,

is locally asymptotically stable (LAS) for R0 > 1 (and not feasible for R0 ≤ 1).
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To prove this, we will first present some theoretical results that will help us. The part for the
global stability will be based on the study proposed by van der Driessche and Shuai in [9], including
the use of LaSalle’s Invariance Principle [10]. On the other hand, we will use Hartman-Grobman’s
theorem for the local results [11]. Thus, let us state this theory.

Definition 6 (Sharp threshold property). Suppose a model of the form (2) and R0 computed by
the NGM, this model has the sharp threshold property if R0 is such that

• pf is GAS for R0 ≤ 1, and

• ∃!pe GAS in the interior of the feasible region for R0 > 1.

Indeed, this is a more complete result than the one we want to prove, already knowing that this
endemic equilibrium exists. Nevertheless, stating an equilibrium is globally asymptotically stable
may be a tough labor for complex models. For biological models, Lyapunov functions are very
useful, although they may not be easy to build.

Definition 7 (Lyapunov function). Suppose p0 is an equilibrium for system (6). Then, a scalar
function V : Rn → R is a Lyapunov function for this equilibrium if V is continuous, V (p0) = 0,
it is locally positive-definite (i.e., there exists a p0-neighbourhood D ⊂ Rn such that V (p) > 0, for
all p ∈ D \ {p0}) and V̇ (p) = ∇V · f(p) ≤ 0, for all p ∈ D.

It is clear from the definition that V̇ (p0) = 0. If we are able to find a Lyapunov function, we
have the following theorem to state the stability of the equilibrium.

Theorem (Lyapunov stability [12]). Let p0 be an equilibrium for system (6), and let V be a
Lyapunov function for this point. Then:

• p0 is stable for system (6).

• If there exists an p0-neighbourhood B ⊂ D such that V̇ (p) < 0, for all p ∈ B \ {p0}, then p0
is locally asymptotically stable.

• If V is globally positive-definite (i.e., V (p) > 0, for all p ∈ Rn \ {p0}) and V̇ (p) < 0, for all
p ∈ Rn \ {p0}, then p0 is globally asymptotically stable.

To prove the global asymptotical stability for pf , van der Driessche and Shuai present a matrix-
theoretic method based on the Perron-Frobenius theorem, which asserts that a real square positive
matrix has a unique largest real eigenvalue for which its corresponding eigenvector may be chosen
with all its entries positive. On the other hand, for pe, they present a graph-theoretic method which,
unfortunately, in our case we have not been able to make it work, and thus we will not introduce
this second theory.

pf GAS, matrix-theoretic method:

To perform this method, we will follow a guide to construct a Lyapunov-type function, i.e., a
locally positive-definite and non-increasing function. It is necessary to clarify that it will not be a
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proper Lyapunov function since we are working in a compact set, and therefore the original theorem
would not be directly applicable. Indeed, it is usual working in compact sets in mathematical
epidemiology given that we are working with populations that cannot be negative quantities and
are sometimes constrained by a constant number of individuals. Hence, recalling p = (x,y), set
first

f(x,y) := (F − V)x− F (x,y) + V (x,y).

Notice that we are making an abuse of notation and now we are restricting F and V to the infected
compartments (i.e., x). For these compartments, we have

ẋ = (F − V)x− f(x,y). (7)

From previous assumptions, f(0,y) = 0. Let νT ≥ 0 be the left eigenvector of V−1F , cor-
responding to the eigenvalue R0. Then, we present a general method to construct a Lyapunov
function:

Theorem 3 ([9]). Let F ,V and f(x,y) as previously defined. If f(x,y) ≥ 0 in Ω ⊂ Rn0+, F ≥ 0,
V−1 ≥ 0 and R0 ≤ 1, then Q(x) = νTV−1x is a Lyapunov-type function for our model (7).

Proof. It is clearly locally positive-definite for x , 0. If we now differentiate:

Q̇(x) = νTV−1ẋ = νTV−1 ((F − V)x− f(x,y)) = νT (R0 − 1)x− νTV−1f(x,y).

The last term is non-positive, since νT ,V−1 ≥ 0, f(x,y) ≥ 0 in Ω. Besides, given that R0 ≤ 1, this
implies Q̇(x) ≤ 0 in Ω. Hence, Q is Lyapunov-type for our system. �

Theorem (LaSalle’s Invariance principle, [10]). Let V be a Lyapunov-type function of the
system in a compact positively invariant set Ω and let x(t) = φ(t,x0) be a solution that remains in
Ω for 0 ≤ t < t∗, for some t∗ > 0. Suppose there exists a constant c ∈ R+ such that V (x) ≤ c in
Ω and let Γ = {x ∈ Ω | V̇ (x) = 0} and Γ0 ⊂ Γ its largest invariant subset. Then, any solution x(t)
that is precompact (i.e., its closure is compact), tends to Γ0 when t→∞.

Theorem (Hartman-Grobman, [11]). Suppose system (6) and let xs be a hyperbolic equilibrium
point (i.e., the Jacobian of the system evaluated at this point has no eigenvalue with real part equal to
zero). Then, the local flow around xs is topologically conjugate to the linear flow ẋ = J(xs)(x−xs)
around xs, being J the Jacobian of the system.

Once established all these tools, we prove Theorem 2.

Proof. • pf :

Let us start rewriting our system as in (7), i.e.,

ẋ = (F − V)x− f(x,y),

where
f(x,y) = βI(1− S).
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Since (I, S,R) ∈ [0, 1]3, f(I, (S,R)) ≥ 0 in Ω. Now, let νT ≥ 0 be the left eigenvector of V−1F
corresponding to the eigenvalue R0, i.e., a row vector such that νTV−1F = R0ν

T . Let us notice
that, if R0 is an eigenvalue for FV−1, so it is for V−1F , since

det(FV−1 −R0Im) = 0 =⇒ det(F −R0V) = 0 =⇒ det(V−1F −R0Im) = 0.

Therefore, given that νTV−1F = β/γ = R0, let us choose νT = 1. Thus, attending to Theorem 3,

Q(x) = νTV−1I = I

γ

is a Lyapunov-type function for our system.

To prove now the global asymptotic stability, we need to apply LaSalle’s invariance principle:

We have Q, a Lyapunov-type function in the compact set Ω, and we know that any solution x(t)
remains in Ω, i.e., it is bounded (which is equivalent to being precompact in this case). Besides,
Q(x) ≤ 1/γ in Ω. Let us see who Γ is in our case, taking into account that R0 ≤ 1:

Q̇(x) = 0 =⇒ f(x,y) = βI(1− S) = 0,

i.e., I = 0 and S + R = 1 or S = 1 and I = R = 0. Hence, the maximal invariant subset is
Γ0 = {(0, S,R) ∈ Ω}. If we now suppose R > 0, we obtain the equation for S

dS
dt (t) = µ(1− S(t)),

which has solution S(t) = 1 + S0e
−µt, but then S(t) > 1, which is in contradiction with the fact

that Ω is invariant with respect to the flow. Thus, the remaining possibility is Γ0 = {pf = (0, 1, 0)}.
from where we conclude that any solution x(t) will tend to xf when t → ∞, which means that xf
is GAS for R0 ≤ 1, and so it is pf .

On the other hand, the proof of the global instability of pf for R0 > 1 can be found in Theorem 2
of [6]. However, we can easily prove the local instability, which for this case is already an important
result, because that would mean that the disease would become persistent, independently on the
global behaviour of the solution. To do this, we are going to use Hartman-Grobman’s theorem.
But, first, notice that, if we work directly with our original system, we will always obtain a zero
eigenvalue, since there is a constraint relating them. Thus, let us rewrite the system taking into
account that S(t) + I(t) +R(t) = 1, for all t > 0:

dI
dt = βSI − γI,

dS
dt = −βSI + µR,

dR
dt = γI − µR,

S + I +R = 1,

=⇒


dI
dt = βSI − γI,

dS
dt = −βSI + µ(1− S − I),

(8)
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for which we have the restricted disease-free equilibrium pf = (0, 1). Now, we will compute the
Jacobian of this system on pf in order to see if Hartman-Grobman may be applied:

J(pf ) =
(

β − γ 0
−β − µ −µ

)
.

Given that R0 = β/γ > 1 by hypothesis, we obtain β − γ > 0. Hence, we obtain both one
negative and one positive eigenvalues, i.e., pf is locally a saddle-point, which means that there is
still a stable manifold such that every solution starting (locally) on this manifold will tend to our
disease-free equilibrium. This stable manifold must be tangent to the linear space Es = 〈(0, 1)〉,
since (0, 1) is the eigenvector associated to −µ. Moreover, our stable manifold is Es, since it must
be a 1D curve and any solution with initial condition (0, S∗), S∗ ∈ (0, 1), tends to pf , given that
dI/ dt = 0, dS/ dt > 0, for all t > 0. Concretely, dS/ dt would be less or equal than zero in this case
only for S ≥ 1, but, in particular, we would have already reached the equilibrium (I = 0, S = 1).

In conclusion, any solution with initial condition (I∗, S∗), I∗ > 0, close to pf will move away
when time goes to infinite and, as previously said, the disease will not refer.

• pe:

We have already seen that pe is only feasible for R0 > 1, so let us see what happens for this
case.

In [9], the authors present a graph-theoretic method, but we have not been able to find appro-
priate functions for this theory to work in this case. Hence, we are going to prove local asymptotic
stability using Hartman-Grobman again. For that, we use again our restricted system (8) and com-
pute its Jacobian on pe = (µ(1−1/R0)/(γ+µ), 1/R0) (recall that we are in the case R0 = β/γ > 1):

J(pe) =


β

1
R0
− γ βµ

1− 1/R0
γ + µ

−β 1
R0
− µ −βµ1− 1/R0

γ + µ
− µ

 =


0 µ

β − γ
γ + µ

−γ − µ −µβ + µ

γ + µ

 .

Let us compute its eigenvalues in order to see if we can apply Hartman-Grobman’s theorem:∣∣∣∣∣∣∣∣∣∣
−λ µ

β − γ
γ + µ

−γ − µ −µβ + µ

γ + µ
− λ

∣∣∣∣∣∣∣∣∣∣
= λ

(
µ
β + µ

γ + µ
+ λ

)
+ µ(β − γ) = 0 =⇒

=⇒ λ = −µ(β + µ)/(γ + µ)±
√
µ2(β + µ)2/(γ + µ)2 − 4(β − γ)

2 .

We can study the possible eigenvalues for two different cases for the term under the square root:

18



• µ2(β + µ)2/(γ + µ)2 − 4(β − γ) ≥ 0: In this case, the square root is real. Besides, since
R0 = β/γ > 0, we have 4(β − γ) > 0 and, thus,√

µ2(β + µ)2/(γ + µ)2 − 4(β − γ) <
√
µ2(β + µ)2/(γ + µ)2 = µ2(β + µ)2/(γ + µ)2,

which implies that both eigenvalues would be negative. Hence, we are at a locally asymptot-
ically stable (LAS) point.

• µ2(β+µ)2/(γ+µ)2−4(β−γ) < 0: This implies that the square root is imaginary and, again,
the real part of both of our eigenvalues would be negative, leading to a LAS point.

Combining this result with the one for pf , R0 > 1, we obtain that the the number of infected
people will never be zero and will often tend to an equilibrium.

�

2.4 Numerical study

In this section, we show two examples that illustrate our theoretical results. More precisely, we
suppose two different diseases, Disease 1 and Disease 2, with different values of β, and compare
their evolution with respect to the exposed results.

Since our 3D system has a constraint, S+ I +R = 1, we can plot our results in the Susceptible-
Infected plane, such that S + I ≤ 1.

• Disease 1: In Figure 3, we plot the trajectories of a disease associated to a SIRS model with
parameters (β, γ, µ) = (0.05, 0.2, 0.2). These parameters lead to the reproduction number
R0 = 0.05/0.2 = 0.25 < 1, i.e., the disease refers. Indeed, consistently with the exposed
theory, our solution trajectories tend to the disease-free equilibrium (S = 1, I = 0).

Figure 3: Numerical result for the SIRS model with parameters (β, γ, µ) = (0.05, 0.2, 0.2).
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• Disease 2: In Figure 4, we plot the trajectories of a disease associated to a SIRS model with
parameters (β, γ, µ) = (0.3, 0.2, 0.2). These parameters lead to the basic reproduction number
R0 = 0.3/0.2 = 1.5 > 1, i.e., the disease should tend to the endemic equilibrium.

Figure 4: Numerical result for the SIRS model with parameters (β, γ, µ) = (0.3, 0.2, 0.2).

Figure 5: One particular case for each disease. On the left, evolution of Disease 1 with an initial
amount of 50% of infections; on the right, evolution of Disease 2 with an initial amount of 20% of
infections.

Remember that the endemic equilibrium was on the form

pe = (Se, Ie) =
( 1
R0
,
µ(1− 1/R0)

γ + µ

)
,

which, in our case, should correspond to

pe ≈ (0.6667, 0.1667).

In fact, our results match with our theory, since we can observe that our trajectories approach
to this point pe.
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We note the importance of this threshold number regarding each previous example. In Figure
5, we present the evolution of each compartment, S, I and R, for each set of parameters, given an
initial condition. For Disease 1 (which has R0 < 1), although we start with a 50% of the population
infected, it rapidly refers. On the other hand, when starting with a 20% of infections in Disease 2
(R0 > 1), we tend to our theoretical endemic equilibrium (notice that, for this case, the limits for
R and I coincide since Re = (γ/µ)Ie and γ = µ = 0.2).
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3 Epidemiological model for COVID-19

In this section, we study a compartmental θ-SEIHRD model proposed for describing the novel
coronavirus disease, denoted by COVID-19, caused by the virus SARS-CoV-2 (severe acute respira-
tory syndrome coronavirus 2). To construct this model, we will consider the studies performed by
B. Ivorra, A. M. Ramos et al. in [13]. We do a theoretical study analogous to the one presented in
the previous section and then adapt the methods proposed in the mentioned paper to reconstruct
the evolution of the disease in the Metropolitan Area of Barcelona (AMB, in its name in Catalan).

3.1 Formulation of the model

For this model, we are going to take into account initially 9 different compartments:

• Susceptible (S): Healthy individuals susceptible of being infected.

• Exposed (E): Infected individuals during their incubation period, they do not present any
symptoms and can infect other people, but with lower probability that the ones in the infec-
tious compartments. Once finished the incubation period, they pass to one of the infectious
compartments. In the literature, they are also called presymptomatics.

• Infectious (I): Infected individuals who present symptoms and may infect other people.

• Undetected infectious (Iu): Infected individuals who are asymptomatic or present mild or
medium symptom and may infect other people but will not be diagnosed. After this period,
they will directly recover.

• Hospitalized or quarantined at home (HR): Detected infected individuals that may still infect
other people, they will recover.

• Severe hospitalization (HD): Hospitalized individuals that may still infect other people and
will die.

• Detected recovered (Rd): Detected individuals who have recovered from the infection, cannot
infect anymore and have developed immunity.

• Undetected recovered (Ru): Undetected individuals who have recovered from the infection,
cannot infect anymore and have developed immunity.

• Dead (D): Individuals who have not survived the infection, not infectious anymore.

There may be other compartments, depending on the imposition of the authorities or the sanitary
developments (for example, in a near future we could consider a Vaccinated compartment), but we
will not study these cases for the lack of information.

Our model will focus on the evolution of the disease in the AMB, Barcelona, Spain. The first
reported case was on February 27th, and on March 11th the World Health Organization declared the
disease to be a pandemic [14]. This declaration led the Spanish government to approve the alarm
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state on March 14th to be effective on March 15th at 12 a.m. [15] and put in quarantine the whole
country. On March 28th, this quarantine was hardened and the workers of no-essential services
were also obligated to stay home. The first step of the de-escalation was on April 12th when some
workers of no-essential services were allowed to go back to work. Two weeks later, on April 26th,
kids were allowed to go out with their parents, and then on May 2nd people were allowed exercise
outside, always on their own and during some determined hours [16]. On May 13th, the Instituto
de Salud Carlos III presented the first results of the seroprevalence test [17], and on May 19th, the
Government declared the compulsory use of masks [18], which reinforced the control measures.

In this study, we will do a reconstruction from February 17th, ten days before the first reported
case, until May 31st, one day before the AMB entered the Phase One of the de-escalation. We will
use days as the time units, i.e., we will study the evolution day by day. If at the end of some
day tf all the population is susceptible, recovered or dead, we stop our simulation, since there is
no more possibility of infection. In this model, we will consider a homogeneous distribution of the
population (without considerations of age or gender) and will not take into account natality and
mortality rates, since we will work in a period of few months, so births and natural deaths may
be negligible in the model. We will neither consider migratory fluxes for simplicity and due to the
control measures imposed to stop the pandemic. Given these assumptions, we present the following
model, summarized in a diagram in Figure 6:

Figure 6: Diagram summarizing the epidemiological model θ-SEIHRD for COVID-19 given by (9).
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dS
dt (t) = −S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIu(θ(t))Iu(t))−

−S(t)
N

(mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t)) ,

dE
dt (t) = S(t)

N
(mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIu(θ(t))Iu(t)) +

+S(t)
N

(mHR
(t)βHR

HR(t) +mHD
(t)βHD

HD(t))− γEE(t),

dI
dt (t) = γEE(t)− γI(t)I(t),

dIu
dt (t) = (1− θ(t))γII(t)− γIuIu(t),

dHR

dt (t) = θ(t)(1− ω(t)
θ(t) )γI(t)I(t)− γHR

(t)HR(t),

dHD

dt (t) = ω(t)γI(t)I(t)− γHD
(t)HD(t),

dRd
dt (t) = γHR

(t)HR(t),

dRu
dt (t) = γIu(t)Iu(t),

dD
dt (t) = γHD

(t)HD(t),

(9)

Let us notice that the equations for the recovered and dead individuals may be treated separately
from the rest, and thus can be computed later using their explicit form

Rd(t) = Rd(t0)+
∫ t

t0
γHR

(s)HR(s) ds, Ru(t) = Ru(t0)+
∫ t

t0
γIu(s)Iu(s) ds, D(t) = D(t0)+

∫ t

t0
γHd

(s)HD(s) ds.

Now, we define all the parameters used in system (9):

• N ∈ N (number of individuals): population of the AMB before the pandemic.

• ω(t) ∈ [ω, ω] (adimensional): infection fatality rate (IFR), proportion of infected people who
do not survive the disease. The quantities ω and ω are the minimum and the maximum IFRs,
respectively.

• θ(t) ∈ [ω, 1] (adimensional): proportion of infected people detected and documented by the
authorities. We suppose for simplicity that all deaths due to COVID-19 are detected and
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reported, and thus θ ≥ ω. The quantity ω(t)/θ(t) ≤ 1 corresponds to the case fatality rate
(CFR), the proportion of deaths compared to the detected infections.

• βE , βI , βHR
, βHD

∈ R+ (day−1): disease effective contact rates of a person in the corresponding
state, i.e., the effective contact rate for an infected individual to infect a susceptible person
per day.

• βIu(θ) ∈ R+ (day−1): disease effective contact rate of an undetected infectious person in terms
of the portion of detected infected individuals.

• γE ∈ (0,+∞) (day−1): transition rate from E to infection I.

• γIu(t), γHR
(t), γHD

(t) ∈ (0,+∞) (day−1): transition rates from Iu, HR and HD to Ru, Rd
and D, respectively.

• γI(t) ∈ (0,+∞) (day−1): transition rate from infected I to undetected (Iu) or hospitalized
(HR, HD).

• mE(t), mIu(t), mI(t), mHR
(t), mHD

(t) ∈ [0, 1] (%): functions representing the efficiency of
the control measures applied to each corresponding state: mX = 1 means there are no control
measures for state X, and any value mX < 1, since it multiplies βX , will directly diminish the
transmission of the disease from compartment X.

Such as observed with the SIRS model, our system of equations is also biologically consistent
and deals with a constant population, which intuitively makes sense since we are also considering
the recoveries and deaths.

Theorem 4. The set

Ω = {(S,E, I, Iu, HR, HD, Rd, Ru, D) ∈ [0,+∞)9 : S +E + I + Iu +HR +HD +Rd +Ru +D = N}

is positively invariant for system (9), given that S(0) +E(0) + I(0) + Iu(0) +HR(0) +HD(0) +
Rd(0) +Ru(0) +D(0) = N .

Proof. Let Φt be the continuous flux of system (9). Then, given an initial condition X ∈ [0,+∞),
corresponding X to (S,E, I, Iu, HR, HD, Rd, Ru, D), let us see that

Φt(X) ∈ [0,+∞)9, ∀t ≥ 0.

To do that, let X(t̄) ∈ Ω, for some t̄ ≥ 0. Then, it is straightforward to deduce that

Xi(t̄) = 0 =⇒ dXi

dt (t̄) ≥ 0, ∀i = 1, ..., 9.

Hence, for any initial condition X(0) ∈ Ω, given that our flow Φt is continuous, if any of the
derivatives is negative, there may exist times ti, i = 1, ..., 9 such that Xi(ti) = 0. Without loss of
generality, we suppose t1 ≤ ... ≤ t9. Therefore,

Φt1(X0) = (0, X2(t1), ..., X9(t1)) ∈ {0} × [0,∞)8.
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Now, since dX1
dt (t1) ≥ 0 as stated before, X1 will either increase or remain being 0, and hence will

remain positive or null.

This is valid for the 9 compartments. Thus, we deduce that Ω is a positive invariant set for our
continuous flow Φt≥0.

On the other hand, for any initial solution (S0, ..., D0) ∈ Ω, S0 + ... + D0 = N . Adding up the
9 equations of our system, we obtain

dS
dt (t) + ...+ dD

dt (t) = 0, ∀t ≥ 0.

This is a first integral that implies the sum of all the compartments remains constant, i.e., S(t) +
...+D(t) = S0 + ...+D0 = N , which leads us to conclude that Ω is positively invariant with respect
to the flow of system (9). �

This result will be relevant in order to study the stability of the system. Next, we compute its
basic and effective reproduction numbers R0 and Rt, respectively.

3.2 Computation of the reproductive numbers R0 and Rt

For this task, we start computing R0 by using the Next Generation Matrix as done previously.

In this case, we have the following infected states: E, Id, Iu, HR, HD. Thus, m = 5. We sort
our compartmental vector as C = (E, Id, Iu, HR, HD, S,Rd, Ru, D) and define our functions F (C)
and V (C) as follows:

F (C) =



S(t)
N

INF(t)

0

0

0

0

0

0

0

0



, V (C) =



γEE(t)

−γEE(t) + γII(t)

−(1− θ)γII(t) + γIuIu(t)

−θ(1− ω
θ )γII(t) + γHR

HR(t)

−ωγII(t) + γHD
HD(t)

S(t)
N

INF(t)

−γHR
(t)HR(t)

−γIu(t)Iu(t)

−γHD
(t)HD(t)



, (10)

where
INF(t) = βEE(t) + βIuIu(t) + βII(t) + βHR

HR(t) + βHD
HD(t).
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Notice that, to simplify notations, each parameter function corresponds to its value at t0.

The next step is to compute the Jacobian matrices of these functions:

DF (C) =



βE
S(t)
N

βI
S(t)
N

βIu

S(t)
N

βHR

S(t)
N

βHD

S(t)
N

INF(t)
N

0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,

DV (C) =



γE 0 0 0 0 0 0 0 0
−γE γI 0 0 0 0 0 0 0

0 −(1− θ)γI γIu 0 0 0 0 0 0
0 −(θ − ω)γI 0 γHR

0 0 0 0 0
0 −ωγI 0 0 γHD

0 0 0 0

βE
S(t)
N

βI
S(t)
N

βIu

S(t)
N

βHR

S(t)
N

βHD

S(t)
N

INF(t)
N

0 0 0
0 0 0 −γHR

0 0 0 0 0
0 0 −γIu 0 0 0 0 0 0
0 0 0 0 −γHD

0 0 0 0


.

To continue on the computations of R0, we need to determine the disease-free equilibrium where
all the individuals are susceptible. It is clear that, since we have a constant population of N
people, our desired point will be

Cf = (0, 0, 0, 0, 0, N, 0, 0, 0),

which satisfies the condition for being an equilibrium.

Therefore, we can compute our new Jacobian matrices associated to Cf , obtaining

DF (C) =



βE βI βIu βHR
βHD

0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


,
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DV (C) =



γE 0 0 0 0 0 0 0 0
−γE γI 0 0 0 0 0 0 0

0 −(1− θ)γI γIu 0 0 0 0 0 0
0 −θ(1− ω

θ )γI 0 γHR
0 0 0 0 0

0 −ωγI 0 0 γHD
0 0 0 0

βE βI βIu βHR
βHD

0 0 0 0
0 0 0 −γHR

0 0 0 0 0
0 0 −γIu 0 0 0 0 0 0
0 0 0 0 −γHD

0 0 0 0


.

Since m = 5, we need to extract the first 5× 5 blocks, and, therefore,

FV−1 =


βE βI βIu βHR

βHD

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




1/γE 0 0 0 0
1/γI 1/γI 0 0 0

(1− θ)/γIu (1− θ)/γIu 1/γIu 0 0
(θ − ω)/γHR

(θ − ω)/γHR
0 1/γHR

0
ω/γHD

ω/γHD
0 0 1/γHD

 =

=


µE + µI + µHR

(θ − ω) + µIu(1− θ) + µHD
ω µI + µHR

(θ − ω) + µIu(1− θ) + µHD
ω µIu µHR

µHD

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Hence,
R0 = µE + µI + µHR

(θ − ω) + µIu(1− θ) + µHD
ω,

where we denote µX = βX/γX . Notice that R0 ≥ 0, since our parameters are non-negative and
ω ≤ θ ≤ 1.

Followingly, given that the system is non-autonomous, depending on the evolution of our pa-
rameters (specially our control measures mX(t)), this R0 may not be valid after some time, since
it is defined on a whole susceptible population; for this reason, it is useful computing in this case
also the effective reproduction number Rt, which should be similar to R0 (remember we already
mentioned that, for an autonomous system, they are related as Rt = (S(t)/N)R0).

If we repeat the same process, in this case the point on which we evaluate our matrices will not
be Cf but

Ct = (Et, It, Iu,t, HR,t, HD,t, Rd,t, Ru,t, Dt),
i.e., the individuals in each compartment at the instant t. Focusing on (10), we will have the same
functions but with the difference that, in this case,

INF(t) = mE(t)βEE(t) +mI(t)βII(t) +mIu(t)βIu(θ)Iu(t) +mHR
(t)βHR

HR(t) +mHD
βHD

HD(t).

Performing the same computations as before, we get

F =


mE(t)βESt/N mI(t)βISt/N mIuβIu(θ)St/N mHR

(t)βHR
St/N mHD

(t)βHD
St/N

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
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V =


γE 0 0 0 0
−γE γI 0 0 0

0 −(1− θ(t))γI γIu 0 0
0 −(θ(t)− ω(t))γI 0 γHR

0
0 −ω(t)γI 0 0 γHD

 ,
from which we obtain

Rt = St
N

(mE(t)µE +mI(t)µI +mIu(t)µIu(θ(t))(1− θ(t))+

+mHR
(t)µHR

(θ(t)− ω(t)) +mHD
(t)µHD

ω(t)) .
(11)

We note that it is very similar to our R0, but depends on the temporal evolution of our parameters.
However, Rt is also non-negative, for every t ≥ 0.

Let us now compute the rest of the equilibria and see their stability with respect to our repro-
duction numbers.

3.3 Equilibria and stability

To start with, notice that there is no endemic equilibrium. In fact, any equilibrium needs to
fulfill dS/ dt = 0, i.e.,

S

N
(βEE + βII + βIuIu + βHR

HR + βHD
HD) = 0.

Here, we find two options: S = 0 or INF = 0. Since βX > 0 and each compartment is also non-
negative, INF = 0 would mean that each infected state is equal to zero. Therefore, if there was
an endemic equilibrium, we would need S = 0, this is, the whole population has been infected.
Consequently, it would be obtained

dE
dt = S

N
INF− γEE = −γEE = 0,

which implies E = 0. It is straightforward seeing that this also implies all the infected compartments
are empty, and, hence, no endemic equilibrium is possible. In fact, this makes sense, given
that our very last states are recovery (Ru and Rd) and death (D), and it is naturally clear that
every infected individual will eventually end up in some of these states. Moreover, it is worth to
remark they cannot be reinfected since our model is not circular and there is no incoming flux for
the S compartment.

Thus, our equilibria will be of the form

C = (0, 0, 0, 0, 0, S∗, R∗d, R∗u, D∗), S∗ +R∗d +R∗u +D∗ = N. (12)

This would mean that we have, a priori, a 3-dimensional space of equilibria. Nevertheless, it is
not true since we have some hidden constraints due to ω and θ. Indeed,

IFR(t) = HD +D

I + Iu +HR +HD +Ru +Rd +D
, CFR(t) = I +HR +Rd +HD +D

I + Iu +HR +HD +Ru +Rd +D
,

(13)
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where CFR(t) and IFR(t) are the instantaneous case and infection fatality rates, respectively.
Nevertheless, notice that these rates are a priori unknowns.

Considering now that I∗ = I∗u = H∗R = H∗D = 0, we would obtain two constraining relations
between R∗u, R∗d and D∗. Hence, it seems that we have a 4-dimensional hyperspace with three con-
straints ((12) and both from (13)), which would lead us to a 1-dimensional manifold of equilibria.
However, notice that two of our constraints depend on the time instant we are at, since the instan-
taneous IFR and CFR may change with the improvement or relaxation of the control measures, for
instance. This implies that we have one more dimension (time), and thus in reality this would be
the equilibrium 2-dimensional manifold

C = {C = (0, 0, 0, 0, 0, S∗, R∗d, R∗u, D∗) ∈ {0}5 × [0,+∞)4 : C satisfies (12) and (13),∀t ≥ 0} ⊂ R5.

Theorem 5. The equilibrium 2D-manifold of system (9)

C = {C = (0, 0, 0, 0, 0, S∗, R∗d, R∗u, D∗) ∈ {0}5 × [0,+∞)4 : C satisfies (12) and (13), ∀t ≥ 0} ⊂ R5

is a GAS manifold for any R0 > 0.

Proof. Following the procedure used in the proof of Theorem 2, in this case we also have F ,V−1 > 0.
Restricting our system as previously justified, we have x = (E, I, Iu, HR, HD) and y = S, and our
function f(x, y) is

f(x, y) = (F − V)x− F + V =
(
βEE +

(
1 + S

N

)
INF, 0, 0, 0, 0

)T
,

which is clearly non-negative for every (x, y) ∈ Ω (here we make an abuse of notation naming Ω the
previous Ω set restricted to (x, y)). Hence, we rewrite our system for the infected compartments as

ẋ = (F − V)x− f(x, y).

Now, notice that, if R0 is an eigenvalue for FV−1, so it is for V−1F , since

det(FV−1 −R0I5) = 0 =⇒ det(F −R0V) = 0 =⇒ det(V−1F −R0I5) = 0.

Thus, we can find νT ≥ 0 the left eigenvector of V−1F for the eigenvalue R0:

νTV−1F = νT


µE βI/γE βIu/γE βHR

/γE βHD
/γE

βE/γI µI βIu/γI βHR
/γI βHD

/γI
(1− θ)βE/γIu (1− θ)βI/γIu (1− θ)µIu (1− θ)βHR

/γIu (1− θ)βHD
/γIu

(θ − ω)βE/γHR
(θ − ω)βI/γHR

(θ − ω)βIu/γHR
(θ − ω)µHR

(θ − ω)βHD
/γHR

ωβE/γHD
ωβI/γHD

ωβIu/γHD
ωβHR

/γHD
ωµHD

 = R0ν
T .

If we look only at the first component and recall R0 was

R0 = µE + θµI + (1− θ)µIu + (θ − ω)µHR
+ ωµHD

,

we can easily deduce
νT = (1, βI/βE , βIu/βE , βHR

/βE , βHD
/βE).
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These are a little bit cumbersome computations, but it can be proved with some symbolic program
that this equality with this ν is also fulfilled for the other four components (which makes sense,
since R0 is an eigenvalue and we have already found a possible eigenvector associated to it).

Then, attending to Theorem 3,
Q(x) = νTV−1x

is a Lyapunov-type function for our system. But, do we obtain from here global asymptotic stability?
We can see explicitly who this Q is:

Q(x) = νTV−1


E
I
Iu
HR

HD

 = E

γE
+ µI
βE

(E+I)+µIu

βE
((1−θ)(E+I)+Iu)+µHR

βE
((θ−ω)(E+I)+HR)+µHD

βE
(ω(E+I)+HD).

Such as we saw in the proof of Theorem 3,

Q̇(x) = νT (R0 − 1)x− νTV−1f(x, y).

Hence, we may proceed to prove the global stability by using again the LaSalle’s principle again:

Since we are computing at t = 0, all our parameters are constant and this, with the fact that
(E, I, Iu, HR, HD) are bounded means that there exists some constant c ∈ R+ such that Q(x) < c
in Ω. Now it only remains to see who Γ is. Let R0 ≤ 1, then we need

f(x, y) = 0 =⇒ βEE +
(

1 + S

N

)
INF = 0.

Given that x, y ≥ 0 and our parameters are also positive, we need

INF = 0 =⇒ E = I = Iu = HR = HD = 0,

and therefore our maximal invariant subset is

Γ0 = {(0, 0, 0, 0, 0, S,Rd, Ru, D) ∈ Ω},

from which we obtain, as expected, that C is globally asymptotically stable for R0 ≤ 1.

What happens for R0 > 1? Well... It is also GAS! Let us have a closer look at νTV−1f(x, y):

νTV−1f(x, y) = νTV−1e1

(
βEE +

(
1 + S

N

)
INF

)
=

= 1
βE

(βE , βI , βIu , βHR
, βHD

)


1/γE
1/γI

(1− θ)/γIu

(θ − ω)/γHR

ω/γHD


(
βEE +

(
1 + S

N

)
INF

)
=

= 1
βE

R0

(
βEE +

(
1 + S

N

)
INF

)
,
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where e1 is the first vector of the canonical basis of R5. Besides, recall that

νT (R0 − 1)x = (R0 − 1)νTx = 1
βE

(R0 − 1)INF.

Therefore,

Q̇(x) = νT (R0 − 1)x− νTV−1f(x, y) = 1
βE

(
−INF−R0βEE −R0

S

N
INF

)
< 0,

for all x , 0.

Consequently, LaSalle’s principle is also applicable in this case and C results to be a globally
asymptotically 2D-manifold for any value of R0 > 0. �

Given this result, one may think this is not contributing with new information, since it is
intuitively clear, because of the structure of our model, that every individual will eventually be
either recovered, dead or will keep on being susceptible. However, it is important to check that the
mathematical results are consistent with the biological behaviour, and obtaining a different result
would have meant we are working with an invalid model.

Finally, our following task would have been observing if we can tend to a point with susceptible
population or if S = 0 is the real GAS equilibrium. In first place, it is arguably clear that S = N is
unstable due to the non-circularity of our model. Nevertheless, after some failed results, we have
not found a theoretical way to determine the precise fate of any concrete point starting with both
susceptible and infected population.

3.4 Numerical study

3.4.1 Context and considerations

Now, we present some numerical results aiming to reproduce the observed behaviour of the pan-
demic in the Metropolitan Area of Barcelona (say, AMB due to its initials in Catalan). The consid-
ered data have been recompiled from the retrospection dispensed by the Departament de Salut, Gen-
eralitat de Catalunya on June 21st [19], which can be found at https://govern.cat/salapremsa/no
tes-premsa/386043/comunicat-del-departament-salut, and the simulations have been run from
February 17th, ten days before the report of the first case. Nevertheless, there have been recently
discovered rests of SARS-CoV-2 in Catalan waste waters from January 15th [20], i.e., it will be
necessary to suppose some amount of initial cases on February 17th, even though they were not
reported; this lack of reporting could be due to the fact that it is estimated there are around 80% of
asymptomatic individuals or with low symptoms1, added to the fact that, given the lack of knowl-
edge about the disease at that period, hospitals may have done wrong diagnostics cataloguing it
as, for example, influenza. Therefore, it will be very important to estimate properly the initial
conditions in order to fit duly the reported evolution.

1This can be estimated by using the results of the seroprevalence test performed on May 13th: it showed that 7.1%
of the population in Barcelona was infected, which compared to the reported cases of that day leads to a detection of
∼ 20%.
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Before discussing the estimation of the parameters involved in our model, we should have some
considerations first with respect to this study:

• First of all, one must take into account that this is a new disease and many studies are
currently being performed to obtain more information about it. It has been observed, for
example, that the lethality may substantially vary from one region to another, depending on
the sanitary services, mean age of the population, etc. Hence, in this work, we pretend to
estimate the parameters from the recompiled data, by considering existing studies (e.g., the
study by B. Ivorra, A. M. Ramos et al. [21]) so as to have a first intuition.

• Thus, this study only pretends to be a first approach to know better the evolution of the
pandemic in the AMB. Although some types of predictions will be shown, they just aim to
expose an intuition of what could happen with the relaxation of the control measures, but do
not pretend to fit with the actual evolution during the de-escalation.

• Besides, it is well-known the lack of protocols for recompiling the data and the continuous
corrections that are being made [22]. This is, although we use official data to obtain the
parameters, these parameters do not necessarily correspond to the real situation; therefore,
the results for our uncertainty compartments (i.e., Iu and Ru) have to be analyzed carefully
and under some doubt. As aforementioned, this study is just a first approach whose main
objective is reproducing the data to illustrate how a mathematical epidemiological model
works for a real and complex case.

• Finally, this study leaves an open way for future improvements, such as taking into account
more compartments (improvements that are already being made by the team B. Ivorra, M.
R. Ferrández, A. M. Ramos and M. Vela-Pérez), adding a vaccine, automatizing the fitting
processes, etc.

3.4.2 Estimating the parameters

In the following lines, we present some brief explanations on the estimations of the parameters
in order to obtain the presented numerical results. We have made the calibration by hand due to
the high computational cost supposed by an automatization, and using trial-and-error analyzing
the obtained figures.

• Proportion of detected infections θ(t): This is a very important parameter in order to
know the real magnitude of the pandemic, but is also very difficult to estimate since it is
based on unknown data. In our case, the results of the seroprevalence test exposed on May
13th have been specially helpful [17]. Using this, we have estimated θ(t) in the following way:
In Figure 7, we present an inference of the evolution of the prevalence in the AMB. Since
the increasing of these diseases is exponential, we have supposed an exponential growth of
the prevalence before the establishment of the first control measures on March 15th; in fact,
this exponential growth is kept some more days due to the initial disobedience to the alarm
state, until March 28th, when the workers of no-essential services were also obligated to stay
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Figure 7: Intuition of the evolution of the prevalence among the AMB population based on the
seroprevalence test carried out on May 13th.

Figure 8: Estimation of θ based on the prevalence and the recompiled data.

home. Then, it is supposed a huge decreasing on the growth due to this state, inferring the
prevalence will be maintained at ∼ 7.1%.
Given this, in Figure 8 we present the estimate for θ: since θ(t) = (cumulative detected
infected)(t)/(cumulative total infected)(t), we have estimated it as

θ(t) = detected(t)
N(prevalence(t)) ,

where “detected” refers to the daily accumulated values of the known detections communicated
by the Departament de Salut, t is counted in days, prevalence(t) ∈ [0, 1] and N is the total
population of the AMB - we have considered N = 3, 239, 337. Besides, we have added 0.05 to
our result, basing ourselves on the study for Madrid [21].
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Notice that, with this inference, no predictions can be made, given that we are using the
communicated data, unless we analyze the possible future behaviour of the pandemic and the
detections. For that, in Figure 9 we have supposed θ(t) as a linear function basing ourselves
on the previous data and taking into account the linear approximation made for China in [13].

Figure 9: On the left, a linear estimation for θ derived from the first procedure in Figure 8 and
based on the study for China in [13]. On the right, a comparison between both estimations.

This way,

θ(t) =


0.05, t ∈ [February 17th, March 15th),
linear continuous, t ∈ [March 15th, April 19th),
0.25, t ≥ April 19th.

It is also shown a comparison between the resulting estimations using both methods.

• Infection fatality rate ω(t): To obtain this value, we are going to use again our data and
the results for θ(t). In fact, only using the reported data for positive cases and deaths, we can
compute the CFR by dividing the daily cumulative positive cases times the daily cumulative
deaths, which would correspond to ω(t)/θ(t). However, this rate should consider a delay
on the deceases, since a positive case may not die until 2 or 3 weeks after the detection.
Consequently, we have supposed a delay of 15 days, which can be considered with our data,
since our computations are until May 31st and we have further reports. In Figure 10, we
present an intuition for ω, estimated as

ω(t) = deaths(t+ 15)
N(prevalence(t)).

Such as previously, we have added 0.001 to consider some initial mortality on the initial
unreported cases.
Observe that we are dealing with high values of ω, of the order of a 4%. Besides, we appreciate
an abrupt growth generating a first peak - this peak is close to March 15th and possibly
corresponds to a saturation of the sanitary system. In Figure 11, we suppose a smoother
inference correcting those two peaks and present a comparison between both estimations. In
Section 3.4.3, we will check the accuracy of these second interpolations for θ and ω.
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Figure 10: Estimation of ω based on the prevalence and the recompiled data, supposing a delay of
15 days before the decease.

Figure 11: On the left, a smooth estimation of ω based on the one in Figure 10. On the right, a
comparison between the estimations of both procedures.

Observe that, such as we asked in Section 3.1, θ fulfills the condition

θ(t) ≥ ω

in both estimations.

• Control measures mX : To estimate the functions of these measures, we consider [13]. To
do that, we revise again some important dates:

_ March 15th: First day of the alarm state in Spain, 28 days after February 17th.
_ March 28th: No-essential services are stopped for their workers to stay home, 41 days

after February 17th.
_ April 12th: Workers of no-essential services are allowed to go back to work, 56 days after

February 17th.

36



_ April 26th: Kids are allowed to go out with their parents, respecting the social distancing,
70 days after February 17th. Besides, on May 2nd people are allowed to exercise on their
own and during some determined hours.

_ May 19th: It becomes compulsory wearing a mask outside, 93 days after February 17th.

From here, we define our control measure functions as follows:

mX(t) =



1, t ∈ [February 17th,March 15th),
(1−mX,1) exp(−κ1(t− 28)) +mX,1, t ∈ [March 15th,March 28th),

(mX,1 −mX,2) exp(−κ2(t− 41)) +mX,2, t ∈ [March 28th,April 12th),
(mX,2 −mX,3) exp(−κ3(t− 56)) +mX,3, t ∈ [April 12th,April 26th),
(mX,3 −mX,4) exp(−κ4(t− 70)) +mX,4, t ∈ [April 26th,May 19th),
(mX,4 −mX,5) exp(−κ5(t− 93)) +mX,5, t ≥ May 19th,

where mX,i ∈ [0, 1] represent the maximum effectiveness of each control measure and κi ∈
[0, 0.2] is a fitting parameter. For China, the results were fit with the greatest κ = 0.2 and
the smallest m = 0, i.e., the most effective measures for the given interval. However, China is
a country that has suffered from many epidemics and both the Government and its citizens
were more prepared to confront such a situation; on the contrary, in Spain did not exist
such protocols and, therefore, we cannot assume such effective measures. Besides, in [13],
the authors consider the same m for each compartment; nevertheless, we have divided it in
two groups: same control measures for (I,HR, HD) and another different for (E, Iu), due
to the false sensation of security these last compartments may perceive when presenting no
symptoms.
After studying the implemented measures, their effectiveness (such as the reduction of infection
due to masks) and doing some numerical tests, we have supposed the following:

_ mI,1 = 0.28, mE,1 = mI,1 + 0.05, κ1 = 0.1,
_ mI,2 = 0.11, mE,2 = mI,2 + 0.05, κ2 = 0.2,
_ mI,3 = 0.115, mE,3 = mI,3 + 0.05, κ3 = 0.2,
_ mI,4 = 0.11, mE,4 = mI,4 + 0.05, κ4 = 0.2,
_ mI,5 = 0.08, mE,5 = mI,5 + 0.05, κ5 = 0.2.

Observe that we have considered a little growth from mI,2 to mI,3, given that the permission
for going back to work initially supposed some relaxation of the control measures.

• Contact rates βX : Again, basing ourselves on [13], we define

βE = CEβI , βHD
(t) = βHR

(t) = CH(t)βI , βIu(θ) = CuβI + βI(1− Cu)
1− ω(t) (1− θ),

where CE , Cu are some constants in [0, 1] and CH(t) ∈ [0, 1]. for all t ≥ 0, The expression for
βIu(θ) comes from the following linear relation:

βIu = βI
1− θ
1− ω + βIu

θ − ω
1− ω ,

where βIu = CuβI is the minimum transmission rate for this compartment. This is, the more
cases are detected (θ ≥ ω), the smaller this rate is.
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On the other hand, from the aforementioned paper and performing many numerical tests, we
have calibrated βI = 0.1925, CE = 0.25 and Cu = 0.4. Besides, it is estimated that ∼ 10, 000
healthcare workers had been infected in Catalunya until May 21st [23]. On May 20th, there
were reported 63, 259 positive cases in Catalunya by the Departament de Salut, which means
over a 16% of these cases were healthcare workers. Then, from some point advanced in time,
we ask the next relation to be fulfilled between the expected hospital cases and the expected
total cases:

CH(t)βI ((θ − ω)mHR
/γHR

+ ωmHD
/γHD

)
CH(t)βI ((θ − ω)mHR

/γHR
+ ωmHD

/γHD
) +mEµE +mIµI + (1− θ)mIuµIu(θ) ≈ 0.16,

recalling that we defined µX = βX/γX . The expected cases for each compartment may be
computed as in our explanation of the estimation of R0 in Section 2.2. Hence, we estimate

CH(t) = 0.1905 (mIµI +mEµE + (1− θ)mIuµIu(θ))
βIθ ((1− ω/θ)mHR

/γHR
+ (ω/θ)mHD

/γHD
) .

Nevertheless, if CH(t) > 1, for some t, we naturally set CH(t) = 1.

• Transition rates γX : The quantities γ−1
X = dX correspond to the (mean) number of days

of an individual in state X. It has been analyzed (see [24]) that symptoms after exposure
are estimated to appear between the first 5 or 6 days. Besides, an individual with mild or
medium symptoms needs in average 14 days to recover, while an infected individual with a
severe infection needs from three to six weeks to completely recover. From here, and estimating
that an individual will be or not detected in 6.1 days in mean, we set

dE = 5.5, dI = 6.1, dIu = dHR
= 14− dI , dHD

= dHR
+ δD,

where δD ∈ [7, 28]. However, when improving the detection system of infected individuals,
these days may change since these individuals may be detected earlier. Hence, following [13],
the functions are estimated as

γI(t) = 1
dI − dg(1−mI(t))

, γIu(t) = γHR
(t) = 1

dHR
+ dg(1−mI(t))

, γHD
= 1
dHR

+ δD + dg(1−mI(t))
,

where dg is the maximum number of days that dI can be reduced (i.e., dg = 6). On the other
hand, γE = 0.1818 ≈ 1/dE remains constant. After many numerical tests, we set δD = 7.

• Initial condition: During the study of the behaviour of the numerical results, we observed
that, if we supposed a low number of infected people as initial condition, trying to suit the
reported data, our numerical cases started to grow over 10 days later than the known data.
Therefore, we needed to estimate some initial cases, although they do not correspond to what
has been reported. Hence, we calibrated

S0 = N−5000, E0 = 2480, I0 = 1960, Iu,0 = 360, HR,0 = 200, HD,0 = 0, Rd,0 = Ru,0 = D0 = 0.

3.4.3 Numerical results

In this last Section, we present the numerical results obtained for the model using the numerical
integrator Runge-Kutta 4 with time-step dt = 0.01 days, performing a trial-and-error method by
hand.
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Figure 12: Numerical approximation of the reported data of positive cumulative cases and deaths
during the pandemic of the coronavirus in the AMB using procedure 1.

In Figure 12, we show the results obtained using the calibrated parameters and the interpolation
of θ and ω based on the prevalence (procedure 1). The integration has been performed from
February 17th, ten days before the first report of a positive case, until May 31st, one day before the
AMB entered Phase One. We observe that the cumulative cases are well approximated, but there
is some error in the deaths cases; however, this could be due to an underreport of the exitus data.

Figure 13: Daily reported cases versus numerical daily cases, for both positive cases and deaths.

Besides, we have marked the day corresponding to the effective reproduction number equal to
1, which means that the disease should start to refer; in fact, in Figure 12, this day corresponds
(more or less) to the change of convexity of our numerical curves!

In Figure 13, we present the comparison between the daily reported cases and the ones obtained
numerically, and it is observed that there is a delay of one day for the positive cases and around
one week for the deaths to coincide with this critical Rt = 1, but it is still informative.

In Figure 14, we can see the evolution of the effective reproduction number Rt based on the
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formula (11), with the aforementioned critical day when Rt = 1. This critical day t = 41 corresponds
to March 28th, from which the disease is supposed to start referring.

Figure 14: Numerical result for the effective reproduction number Rt based on equation (11) and
procedure 1.

Figure 15: On the left, we present three curves: one for the estimated positive detected cases,
another for the estimated undetected cases and a third one for the total estimated cases. On the
right, the proportion of estimated detected cases.

Followingly, in Figure 15, we present the results of the uncertainty: our model estimates that,
after the alarm day, the proportion of detected cases starts to stabilize on a 15% of the estimated
total cases, over a 10% less than what estimated for θ in Figure 8. It is worth to notice that this
stabilization starts around the alarm day. As aforementioned, these results must be interpreted
carefully and keeping some doubt about them.

On the other hand, in Figure 16, we present the numerical results obtained by using the lin-
ear estimation for θ shown in Figure 9 and the smooth interpolation for ω shown in Figure 11
(procedure 2). Besides, all the other parameters are maintained the same. It is observed that the
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Figure 16: Numerical approximation of the reported data of positive cumulative cases and deaths
during the pandemic of the coronavirus in the AMB using procedure 2.

results are very similar to the ones obtained in Figure 12, although some more calibration could be
done in order to finish fitting them - in particular, the estimation of the positive cases is underrated.
Nevertheless, the goal of these results was testing the accuracy of the second estimations for θ and
ω in order to know if they are a good approach and we can make further predictions based on them.

Figure 17: Numerical result for the effective reproduction number Rt based on equation (11) and
procedure 2.

Furthermore, in Figure 17 it is presented the evolution of the effective reproduction number
related to these results and it is observed that almost no change is appreciated with respect to
Figure 14.

In Figure 18, we present the results for the second procedure after having re-calibrated some of
the parameters in Section 3.4.2: in this case, mI,1 = 0.33, mI,2 = 0.1, mI,3 = 0.105, mI,5 = 0.1
and mE,i = mI,i + 0.05, i ∈ {1, . . . , 5}. This re-calibration has improved the approximation for the
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Figure 18: Numerical approximation of the reported data of positive cumulative cases and deaths
during the pandemic of the coronavirus in the AMB using procedure 2 and re-calibrating some of
the parameters.

positive cumulative cases in comparison with the results in Figure 16.

Let us now comment on the importance of the control measures by performing two different
tests:

• Late imposition of the control measures: In Figure 19, we present the numerical results
obtained when imposing the first control measures one week later (i.e., on March 22nd). It is
observed that our model’s predictions are that imposing the control measures one week later
could have supposed over 20, 000 more positive cases and 4, 000 more deaths with respect to
the results in Figure 12.

Figure 19: Numerical results using procedure 1 and supposing the control measures were applied
one week later, on March 22nd.
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• Rapid relaxation of the control measures: In Figure 20, we present a prediction of the
behaviour of the disease during 30 more days (i.e., until June 30th). However, to perform this
test, we have supposed a relaxation of the measure controls until a 40% less of effectiveness
(mI,6 = 0.48 and mE,6 = 0.52). In Figure 21, we appreciate that this has led to a new increase
on the effective reproduction number Rt, reaching Rt = 1 on the day 113, which corresponds
to June 8th. This corresponds to a regrowth of the disease in Figure 20. Notice that we have
added the data until June 20th and there is some correspondence until the regrowth.

Figure 20: Numerical results obtained after considering a rapid relaxation of the control measures
(a 40% less of effectiveness).

Figure 21: Numerical result for the effective reproduction number when relaxing rapidly the control
measures for 30 days.

With these two tests concerning the control measures, we are trying to illustrate the importance
of having appropriate protocols to fight the disease and having a collective social mind to attend the
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authorities’ commands in order to stop the spread. Furthermore, for our last test we have compared
with the data until June 20th and there was some accuracy at the beginning; however, we expect
that, considering the real behaviour, the relaxation has not been so abrupt, which we will be able
to check in the following days.
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4 Conclusion and perspectives

In this work, we have presented some basic theory on mathematical epidemiological models
and have tried to apply it on a θ-SEIHRD model adapted to the COVID-19. This model has
some interesting characteristics, such as considering a compartment for undetected cases to save
the uncertainty or the effect of the imposition of control measures. Besides, it works with a very
relevant parameter, θ, corresponding to the proportion of detected cases; this allows us to have an
intuition on the real magnitude of the pandemic.

Particularly, we have tried to fit the parameters of the model for the Metropolitan Area of
Barcelona. The most remarkable result may be the estimation of a 75% ∼ 85% of undetected
cases in the area, although, as previously commented, these results are first intuitions and must be
considered under some doubt. Besides, we have illustrated the importance of having appropriate
protocols to minimize the damage, this is, imposing effective control measures and being careful
when starting to relax them. Concretely, we have showed that (1) if we had applied these control
measures one week later, there could have been over ∼ 20, 000 more (detected) positive cases and
over ∼ 4, 000 more deaths, and (2) it is important to relax patiently these measures in order to
avoid another regrowth in the following days.

All this study presented on the COVID-19 is just the beginning of a long period of studies, tests
and predictions. It is worth to remark the importance of having consistent ways of reporting the
data for the scientists to be able to present some intuition on the further evolution of this disease -
the results here presented are attached to the data reported by the Departament de Salut and may
not be adjusted for other different protocols (for instance, the Ministerio de Sanidad of the Spanish
Government has been reporting different data for Catalunya with which θ and ω would have been
probably lower).

Concerning on what has been performed in this work, there is still a long way to go to keep on
performing these models; for instance:

• It is important to optimize the fitting algorithms in order to be able to work with and calibrate
so many parameters; the calibration in this work has been done by hand by trial-and-error
due to the computational cost that supposed an automatization, and the results may be very
improvable in a near future with the development of these algorithms.

• The recent end of the alarm state leads to the need of considering outgoing and incoming flux
in the cities to have a better control of the spread of the disease, which will add a greater
degree of uncertainty.

It is necessary that each component on the society (politicians, scientists, citizens, etc.) work
together and construct a solid strategy if we want to stop the spread and get rid of this pandemic.
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