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Abstract: In this study, three different biological methods—a conventional activated sludge (CAS)
system, membrane bioreactor (MBR), and moving bed biofilm reactor (MBBR)—were investigated
to treat textile wastewater from a local industry. The results showed that technically, MBR was the
most efficient technology, of which the chemical oxygen demand (COD), total suspended solids (TSS),
and color removal efficiency were 91%, 99.4%, and 80%, respectively, with a hydraulic retention time
(HRT) of 1.3 days. MBBR, on the other hand, had a similar COD removal performance compared
with CAS (82% vs. 83%) with halved HRT (1 day vs. 2 days) and 73% of TSS removed, while CAS
had 66%. Economically, MBBR was a more attractive option for an industrial-scale plant since it
saved 68.4% of the capital expenditures (CAPEX) and had the same operational expenditures (OPEX)
as MBR. The MBBR system also had lower environmental impacts compared with CAS and MBR
processes in the life cycle assessment (LCA) study, since it reduced the consumption of electricity
and decolorizing agent with respect to CAS. According to the results of economic and LCA analyses,
the water treated by the MBBR system was reused to make new dyeings because water reuse in the
textile industry, which is a large water consumer, could achieve environmental and economic benefits.
The quality of new dyed fabrics was within the acceptable limits of the textile industry.

Keywords: membrane bioreactor (MBR); moving bed biofilm reactor (MBBR); conventional activated
sludge system (CAS); textile wastewater; economic feasibility; life cycle assessment (LCA); water reuse

1. Introduction

As one of the largest industries worldwide, the textile industry produces significant amounts of
wastewater. Textile wastewater is generated in different steps during production, such as destarching,
mercerization, dyeing, and washing [1], and is known to contain considerable amounts of organic
compounds which provide color to the effluent [2]. In recent years, more strict regulations of effluent
discharge have been applied in the textile industry, in order to reduce dye residues in the effluent before
discharge into natural streams [3]. Consequently, finding suitable technologies to obtain an effective
treatment of textile wastewater and to reuse its effluent in new production processes is essential for the
industry’s sustainable development.

One of the most applied biological methods in treating textile wastewater is the conventional
activated sludge (CAS) process [4,5]. The main objective of the CAS process is to remove organic
compounds [6]. The CAS system has disadvantages such as high hydraulic retention time (HRT),
problems with sludge settling, requirement of large space [7], and poor color removal efficiency due
to the low biodegradability of dyes which can only be partially adsorbed on biomass [8-10]. Hence,
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a tertiary physicochemical method is usually required to give a better treatment performance [3,11],
which will increase the cost of the process.

In the past two decades, noticeable progress has been achieved with membrane bioreactor (MBR)
technology in industrial wastewater treatment. MBRs separate the sludge by filtration, which differs
from conventional CAS treatment [12]. MBRs can reduce land space and sludge production with
a high biomass concentration in the reactor and are able to treat influent with wide fluctuations of
quality [13-16]. In the case study of MBR applied in textile wastewater treatment in Bangladesh,
the performance of the MBR system was better than that of the CAS [17]. Another study reported
that high removal efficiencies were achieved for chemical oxygen demand (COD), color, and total
suspended solids (TSS), and the cytotoxicity was significantly reduced by MBR when operating at
an HRT of 2 days [18].

Recently, biofilm systems have drawn much attention in treating different types of industrial
wastewater due to their several advantages compared with conventional biological treatment, including
saving space [19,20]. Among them, the moving bed biofilm reactor (MBBR) also has been applied in
textile wastewater treatment in the last few years. One of the highlights of MBBR is a smaller volume
of the biological plant or a larger treating capacity in the same reactor volume due to the biofilm being
attached to carriers. Besides the great amount of biomass fixed on carriers, the concentration of biomass
in suspension could be higher than that in the CAS process. In a previous study of textile effluent
treatment [21], the pilot-scale plant of MBBR removed 86% of COD and 50% of color, respectively.

In addition to the selection of suitable wastewater treatment from a technical point of view,
the increased demand for sustainability of industries has led to the use of life cycle assessment (LCA) as
a tool to evaluate the feasibility of technologies [22]. Previous studies have estimated the environmental
impacts generated by one or combined units of treatment plants for textile wastewater. Nakhate et al.
evaluated the environmental footprints of a textile wastewater treatment plant and found out that
consumption of electricity dominated in most of the environmental burden [23]. Cetinkaya and
Bilgili compared, in another study, the environmental impacts caused by two desalination systems,
and they found that using LCA could assess the environmentally friendlier treatment system for textile
wastewater [24].

The aim of the current experimental study was to compare the efficiency of the CAS system,
MBR process, and MBBR system in treating real textile wastewater. CAS is the current treatment
process of the textile industry which provides the wastewater for our study. In order to improve the
treating efficiency based on the existing CAS treatment, we have chosen MBBR and MBR to compare
the technical, environmental, and economic feasibility. Parameters such as chemical oxygen demand
(COD), total suspended solids (TSS), and color were determined to verify that MBR and MBBR have
a better efficiency than CAS process. Special attention was paid to color removal, as color is one of the
main problems in textile wastewater treatment.

Based on the experimental results in the pilot plant, an economic study and LCA were carried out
to compare the economic and environmental feasibility of implementation of these technologies on an
industrial scale and also to select the method of textile wastewater treatment with lower investment,
operating costs, and environmental impact related to energy and materials consumption.

Water treated with the most viable method was reused to make new dyes because water reuse in the
textile industry, a large water consumer, is one of the main factors to achieve sustainable development.

2. Methodology

2.1. Pilot Plant Description and Analysis

Three pilot plants (flow diagram shown in Figure 1) were investigated for textile wastewater
treatment in this study. Among them, the plant for the CAS process and the plant for MBR were
operated in parallel. The pilot plant for MBBR was the same as for the CAS operation, but without the
recirculation of sludge. The three treatments were operated with a controlled temperature of 25 °C.
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The textile wastewater was obtained from a local textile industry, Acabats del Bages, S.A. (Monistrol
de Montserrat, Spain). The characteristics of the wastewater are shown in Table 1, including pH,
COD, color, biochemical oxygen demand (BOD), TSS, total nitrogen (TN), and total phosphorous (TP).
The duration of experiments for three pilot plants was 96 days.

It should be noted that the pH of wastewater returned to 8.6 in the reactor due to the buffering
effect caused by the presence of carbonates, usual in textile wastewater. It was unnecessary and
unattainable on an industrial scale to adjust the pH. Therefore, in the economic and LCA study, we did
not take into account the amount of acid on the industrial scale.
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Figure 1. Flow diagrams of (a) conventional activated sludge (CAS); (b) membrane bioreactor (MBR);
(c) moving bed biofilm reactor (MBBR).
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Table 1. Characteristics of textile wastewater.

Parameters Average
pH 8.6 %
COD mg/L 2000
Color Pt-co /L 700
BOD mg/L 400
TSS mg/L 940
TN mg/L 54
TP mg/L 11

* The pH of the original textile wastewater was initially adjusted from 8.6 to 7.2 before the treatments.
COD: chemical oxygen demand; BOD: biochemical oxygen demand; TSS: total suspended solids; TN: total
nitrogen; TP: total phosphorous.

The CAS pilot plant was composed of an aerobic reactor (volume 4 L) connected to a decantation
tank. The flow rate in the CAS plant was 2 L/d, and the HRT was set to 2 days as the HRT of the current
CAS plant of the textile industry.

The MBR used in this study was a pilot plant, composed of an aerobic reactor with a submerged
ultrafiltration membrane. A Polyvinylidene fluoride (PVDF) hollow fiber membrane module ZeeWeed-1
(ZW-1) (GE Power & Water, Canada) was used. The membrane characteristics are shown in Table 2.
The aerobic reactor had a working volume of 20 L. The influent was pumped directly from a raw
wastewater tank, mixed completely with aeration in the reactor. There was an air inlet in the membrane
module to prevent membrane fouling. The period of filtration and backwashing was set at 15 min and
30 s for the laboratory-scale reactor according to previous study with the membrane module [25].

Table 2. ZeeWeed-1 (ZW-1) membrane characteristics.

Model ZW-1, submersible module
Configuration Outside/in hollow fiber
Membrane Surface 0.05 m?2
Pore Size 0.04 ym
Maximum Transmembrane Pressure (TMP) 0.62 bar
Typical Operating TMP 0.1-0.5 bar
Maximum TMP Backwash 0.55 bar
Operating pH Range 5-9

As mentioned before, the MBBR pilot plant was the same one as in the CAS process. The aerobic
reactor was filled with the carriers at a filling ratio of 30% (v/v). The plastic BIOFILL C-2 carriers used
in this study were provided by BIO-FIL (Barcelona, Spain). The main specifications and operation
characteristics of carriers are shown in Table 3. MBBR operation was inoculated with aerobic sludge
collected from the wastewater treatment plant of the same textile industry. The start-up period lasted
3 weeks so biofilm could grow on the carriers.

Table 3. BIOFILL type C-2 carrier characteristics.

Specific Surface 590 m?/m3
Piece Diameter 25 mm
Free Volume 90%

Weight per Piece 21g

Density <1 kg/m?
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In the initial phase, both MBR and MBBR were operated with 2 days of HRT, as was the CAS
system. In order to assess a larger treating capacity and efficiency, the flow rate was increased gradually
during the experiments. The flow rate in the MBR plant was fixed at 15 L/d and the HRT was 1.3 days,
whereas the flow rate in the MBBR plant was 4 L/d and the HRT was fixed at 1 day. In the phase after
the flow rates were stable, the concentration of dissolved oxygen (DO) in CAS was 2.1 mg/L, similar to
the DO level in the MBBR reactor of 2.2 mg/L. MBR had a lower DO concentration of 1.8 mg/L.

2.2. Economic Analysis

The economic assessment of capital expenditures (CAPEX) and operational expenditures (OPEX)
for three treatment schemes is determined in the results section.

2.3. Environmental Impact Analysis

To compare the environmental impact of three treatment processes, life cycle assessment (LCA) was
performed according to standard ISO 14040 [26]. Simapro was used as the LCA software. The database
used was Ecoinvent 3.1. ReCiPe, midpoint and endpoint approach, and Hierarchist perspective were
considered as the methodology to calculate environmental impact. The selected functional unit was
“1 m? of treated effluent”. The data used in this study were taken from the experimental results.

2.4. Dyeing Tests Using Treated Water

The dyeing tests using treated water were performed with a laboratory Ti-Color dyeing machine
(Prato, Italy) (Figure 2a) under the following conditions [27]: 10 g cotton fabric, dye concentration of 3%
o.w.f (overweight of fiber), liquor ratio 1:10 (1 g fiber/0.01 L dye bath). Three commercial reactive dyes
supplied by Dystar were used in the water reuse study: Yellow Procion HEXL, Crimson Procion HEXL,
and Navy Procion HEXL. Besides the amount of dye, 60 g/L. NaCl and 26 g/L. Na,CO3 were added.
The dyeing procedure is shown in Figure 2b. After the dyeing procedure, nine washing steps were
performed with softened tap water to remove the dye that was not fixed onto the fiber. This washing
process included nine steps:

e  1st-3rd: Washing bath with softened tap water at 50 °C for 10 min;
e  4th: Soaping bath with 2 g/LCOTEMOLL TLTR at 95 °C for 15 min;
e  5th: Rinsing bath with softened tap water at 50 °C for 10 min;

e  6th: Soaping bath with 2 g/ COTEMOLL TLTR at 95 °C for 15 min;
e  7th-9th: Rinsing bath with softened tap water at 50 °C for 10 min.
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Figure 2. (a) Ti-Color equipment (b) dyeing procedure.
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2.5. Analytical Methods

During this study, the control of the three pilot plants was carried out with analyses by
characterizing the water at the entrance, in the bioreactor, and at the exit to determine the working
efficiency. COD, TSS, TN, TP, color, pH, conductivity, and turbidity were determined following the
Standard Methods 23rd edition [20].

The quality of dyed fabrics with reused water was determined according to Standard UNE-EN ISO
105-J03 by color differences with respect to reference dyeings performed with softened tap water [28].
Total color differences (DEcnc(2:1)) were calculated from lightness (DL¥), chroma (DC¥), and Hue (DH¥)
using the following equation:

2 . 2 . 211/2
DEcuc(e) = | (DLSL)? + (DC/Sc) + (DH',/8n)'| M)

where S, Sc, and Sy were calculated from the chromatic coordinates corresponding to reference
dyeings (Lg, Cg, and hg) as follows:

Sy = 0.040975Lg/(1 + 0.01765Lg) @)

If Lg < 16,S.= 0.511 3)

Sc =1[0.0638CRr/(1 + 0.0131CR)] + 0.638 4)

Sy =Sc(Tf+1-1) )

f = {(Cr)*/I(Cr)* + 1900]}"/* (6)

T =0.36 + |0.4-cos(35 + hg)| if hg > 345° or hg < 164° (7)
T = 0.56 + [0.2-cos(168 + hg)| if 164° < hyg < 345° ®)

A spectrophotometer, MINOLTA CM 3600d (Osaka, Japan), was used for these measurements
according to Standard illuminant D65/10°.

Generally, the color difference of one unit (DEcymc 2.1y < 1) is the acceptable limit in the
textile industry.

3. Results and Discussion

3.1. Treating Efficiency

During the experiments, the average biomass concentrations in the reactor of CAS, MBR, and MBBR
were 3 g/L, 2.3 g/L, and 3.5 g/L, respectively. As the textile wastewater had rather low contents of TN
(54 mg/L) and TP (11 mg/L), over 90% removal of TN and TP was obtained after MBR and MBBR
treatment, whereas CAS eliminated 88% of TN and TP.

As mentioned in Section 2.1, the initial HRT for CAS, MBR, and MBBR was 2 days, whereas the
initial organic loading rate (OLR) was the same for the three treatments at 1 kg COD/ (m3 d). The HRT
of MBR and MBBR was gradually reduced to evaluate if the treating efficiency could be maintained
while the treating capacity was increased.

Color in the influent varied between 400 and 1500 mg Pt-co/L. The removal rates of color obtained
by the three treatment systems are shown in Figure 3a. The average color removal efficiency was 55% in
the CAS process and was 80% in the MBR system, while in the MBBR system the color removal achieved
61%. MBR was significantly more efficient at removing color than the CAS process under the same
operating conditions. MBBR had a higher color-removing performance than the CAS process, while
the HRT (2 days) of CAS was twice the HRT (1 day) of MBBR. In order to meet discharge standards,
decolorizing agent was added to the effluent from the CAS and MBBR processes. After adding
200 ppm of decolorizing agent, the color content reached the discharge standard in CAS, while the
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amount of decolorizing agent needed for MBBR was 100 ppm. In conventional biological treatment,
the addition of various adsorbents and chemicals into the activated sludge system to improve the color
removal efficiency is a common method, which will increase the cost and will generate secondary
contaminates [29,30].
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Figure 3. Removal rates of color (a), COD (b), and TSS (c) in activated sludge system, MBR, and MBBR.

COD of the influent remained at about 2000 mg/L. The average COD effluent of the CAS process
was 350 mg/L, and the average efficiency of COD removal was 83%. The average COD value of the
effluent from MBR was 170 mg/L, and the COD removal rate was 91%. The removal rates of COD
in the three pilot plants are illustrated in Figure 3b. Furthermore, the CAS process worked with an
HRT of 2 days, while the HRT of MBR worked only within 1.3 days. This demonstrated the efficiency
and stability of the biological process of MBR. Similar results of COD removal in the MBR system and
CAS process were also observed previously [17,31], indicating that after MBR treatment, a better COD
removal efficiency can be obtained from the conventional AS process. The average COD value of the
effluent from MBBR was 179 mg/L, and the COD removal rate was 82%. Although the removal rates of
COD of the CAS and MBBR processes were similar, HRT of MBBR was half of the HRT of the CAS
process. The average OLRs for the CAS system, MBR, and MBBR were 1 kg COD/ (m? d), 1.5 kg COD/
(m3 d), and 2 kg COD/ (m? d), respectively.

The TSS removal rates in the CAS system, MBR, and MBBRs are shown in Figure 3c. During the
parallel experiments of CAS and MBR systems, the average value of TSS in the influent was 940 mg/L.
The average TSS removal efficiency in the CAS process was 66%, while in MBR system the TSS removal
achieved 99.6%. From the perspective of TSS removal, membrane filtration is an attractive method
because of the total retention of suspended matter and significant retention of colloidal matter [32].
The results showed the advantage of the MBR process in TSS reduction with respect to the CAS process.
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The MBR process reached high TSS elimination without the necessity to add a tertiary treatment.
MBBR achieved an average TSS removal rate of 78%, which was better than that of the CAS system.

3.2. Economic Study of the Three Treatment Processes

The local textile industry produced 222,700 m® of wastewater per year with 11 months under
operation. The wastewater treatment method of the industry is conventional activated sludge (CAS).
The daily treatment flow is 920 m3/d. The current HRT of the CAS plant is 2 days.

3.2.1. Capital Expenditures (CAPEX)

The CAPEX of the CAS system was considered to be the reference (0) in the economic study.
The CAPEX of MBR and MBBR treatments were added directly to the CAPEX of the CAS system.

For the MBR full-scale system, the membrane and the installation of the membrane (366,153 €)
have been considered for the CAPEX estimation according to the CAPEX calculation from a study of
the cost of a small MBR (100-2500 m3/d flow capacity) [33].

For the MBBR full-scale system, the cost of carrier medias (115,500 €) has been considered for the
CAPEX estimation according to the suppliers” information.

3.2.2. Operational Expenditures (OPEX)

Consumption of energy, decolorizing agent data, and environmental tax of sludge production
and wastewater discharge were gathered in order to estimate operational expenditures (OPEX) of the
three treatment plants.

Additionally, the cost of membrane replacement represented 2.4% of the energy cost [34], and the
average lifetime of the UF membrane was taken as 10 years. The maintenance and repair costs
represented 19.5% of the energy cost [34]. MBR could withstand higher concentrations of biomass
with much longer sludge retention time (SRT) than in conventional AS, which allows much less sludge
production in the MBR system and consequently, lowers the frequency of sludge disposal [13,35].
During the experimental study of MBR, sludge concentration did not exceed the withstanding limit
of the membrane. The sludge generation of MBR was estimated according the increasing rate of the
biomass concentration and the concentration limit for the membrane.

The detailed OPEX calculation of each treatment plant is demonstrated in the following tables.
(Table 4 AS, Table 5 MBR, Table 6 MBBR).

Table 4. CAS operational cost for treating 1 m® wastewater.

Concept Total Price €/m®  Reference
(a) Consumption Unit Amount Unit Unit price  Convert to €/m? 0.55
Electricity kW/m?3 0.96 €/kw 0.187 0.17952 [36]
Decolorizing agent kg/m3 0.2 €/kg 1.85 0.37 [37]
(b) Environmental tax Unit Amount Unit Unit price 0.86
Sludge generation kg/m?3 0.83 €/kg 0.158 0.013114 [38]
Wastewater discharge [39]
om! kg/m3 0.23 €/kg 1.0023 0.230529
TSS kg/m3 0.32 €/kg 0.5011 0.160352
N kg/m3 0.008 €/kg 0.761 0.006088
P kg/m?® 0.003 €/kg 1.5222 0.0045666
Conductivity S/cm 0.00598  €/Sm3/cm 8.0198 0.0479584
summation 0.449494
ST2 =15 xSUM 0.67424101
GT3 0.163
Total price 141

L oM: organic material; 2GT: specific tax; 3GT: general tax.
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Table 5. MBR operational cost for treating 1 m> wastewater.

Concept Total Price €/m®  Reference
(a) Consumption Unit Amount Unit Unit price  Convert to €/m? 0.51
Electricity kW/m?3 2.72 €/kw 0.187 0.50864 [36]
Decolorizing agent kg/m3 0 €/kg 1.85 0 [37]
(b) Environmental tax Unit Amount Unit Unit price 0.43
Sludge generation kg/m?3 0.023 €/kg 0.0158 0.0003634 [38]
Wastewater discharge [39]
oM kg/m3 0.11 €/kg 1.0023 0.110253
TSS kg/m3 0.04 €/kg 0.5011 0.020044
N kg/m?3 0.004 €/kg 0.761 0.003044
P kg/m?® 0.002 €/kg 1.5222 0.0030444
Conductivity S/cm 0.00533  €/Sm3/cm 8.0198 0.04274553
summation 0.17913093
ST =1.5x SUM 0.2686964
GT 0.163
(c) Membrane 0.01 [34]
replacement
(d) Maintenfxnce and 0.10 [34]
repair
Total price 1.05

Table 6. MBBR operational cost for treating 1 m® wastewater.

Concept Total Price €/m®  Reference
(a) Consumption Unit Amount Unit Unit price  Convert to€/m? 0.27
Electricity kW/m? 0.48 €/kw 0.187 0.08976 [36]
Decolorizing agent kg/m3 0.1 €/kg 1.85 0.185 [37]
(b) Environmental tax Unit Amount Unit Unit price 0.78
Sludge generation kg/m3 0.29 €/kg 0.158 0.004582 [38]
Wastewater discharge [39]
OM kg/m3 0.23 €/kg 1.0023 0.230529
TSS kg/m3 0.24 €/kg 0.5011 0.120264
N kg/m?® 0.009 €/kg 0.761 0.006849
P kg/m3 0.002 €/kg 1.5222 0.0030444
Conductivity S/cm 0.00595  €/Sm3/cm 8.0198 0.04771781
summation 0.40840421
ST =15 xSUM 0.61260632
GT 0.163
Total price 1.05

In terms of the consumption part, MBR had the highest cost (0.51 €/m?) of electricity consumption
because it required more electricity to operate and to maintain the membrane filtration. However,
AS had the highest cost in the total consumption, with a value of 0.55 €/m3, among the three treatments
due to the larger amount of decolorizing agent used. This was not necessary for MBR because MBR
achieved the color removal requirement and was used less in MBBR since MBBR had a better color
removal performance. The reason that MBBR consumed half the electricity of the CAS system is that
the HRT of MBBR was 1 day while in CAS it was 2 days, which means that MBBR with doubled
treating capacity could save 50% of the electricity expense.

In regard to environmental tax, it can be observed that MBR had the lowest expense (0.43 €/m?)
since it had a better performance with organic compounds and TSS. MBBR, with half the HRT and
more efficient treatment behavior, would pay a lower environmental tax (0.78 €/m3) than the CAS
system (0.85 €/m3).

As mentioned in Section 3.3.1, the CAPEX for MBR was 366,153 €, and for MBBR it was 115,500 €,
in order to improve the existing AS treatment of the studied textile industry. The only investment of
MBBR in CAPEX is the carriers, and the maintenance of carriers is more convenient and economical
than maintaining the membrane. Even though the OPEX of MBR and MBBR are at the same value,
MBBR had the advantage of low energy consumption and competitive treatment performance.
Taken together, the results of CAPEX and OPEX show that MBBR is a more attractive option for the
textile industry economically.
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3.3. LCA Study Results

3.3.1. Inventory Results

The inventory results of each treating process are shown in Table 7. All data are related to the
functional unit (1 m® treated water). The impact of sludge generation was not taken into account in
Simapro software; therefore, the impact of sludge generation could not be quantified in the LCA study.
Nevertheless, sludge generated in the three treatments was quantified and is presented in Table 7.

Table 7. Inventory analysis of three processes.

Amount Unit/FU Ecoinvent Unit Process
Processes AS MBR MBBR
Included in LCA Input  Output Input Output Input Output

COD 2 0.35 2 0.17 2 0.34 Kg
TSS 0.94 0.32 0.94 0.04 0.94 0.24 Kg
N 0.055 0.008 0.055 0.004 0.055 0.009 Kg
P 0.008 0.003 0.008 0.002 0.008 0.002 Kg

Color 700 315 700 140 700 267 g Pt-co

Conductivity 6.46 5.98 6.46 533 6.46 5.95 mS/cm
Wastewater 1 0.959 1 1 1 0.959 m?3
Sludge 0.83 0.023 0.29 Kg

DTPA,
decolorizing agent 0.2 0 0.1 Kg diethylenetriaminepentaacetic

acid, at plant/RER U
. Electricity, medium voltage,
Electricity 0.96 2.72 0.48 Kwh production ES, at grid/ES U

3.3.2. Environmental Impact Assessment

The environmental impact of each treatment process according to the LCA results using endpoint

approach is discussed, and then the three studied treatments are compared with respect to their total
environmental impact.

CAS System

The results of the environmental impact assessment are presented in points (mPt) so that different
categories could be compared. Firstly, the impact of the CAS treatment process was evaluated. Asshown
in Table 8, the CAS process had the lowest impact on Ecosystems, while it had a major impact on
Resources, followed by Human health.

Table 8. Environmental impact of CAS.

Human Health (mPt) Ecosystems (mPt) Resources (mPt)

Electricity (KWh/m?) 22.8 1.9 31.8
Decolorizing agent
(k g/m3) 344 34 81.2
TOTAL 57.2 5.3 113.0

The decolorizing agent represents 60%-70% of the environmental impact of the CAS system,
having the most significant impact for all the categories.

The impact of the decolorizing agent on the detailed categories with relation to Human health,
Ecosystem, and Resources is shown in Figure 4. The decolorizing agent had an impact on Human
health mainly because of the effect on Climate change human health as well as Particulate matter
formation categories, while Terrestrial ecotoxicity and Climate change ecosystems categories had major
impacts on Ecosystems. Apart from that, the Fossil depletion category had the major responsibility for
impacting Resources, while the Metal depletion category had almost no impact.
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In the MBR treatment, as can be seen in Table 9, there was no consumption of decolorizing agent
since the system removed most of the color in the effluents. The consumption of electricity during
treatment represents the total environmental impact. The results show that the impact on Ecosystem
was much lower, while the major impacts were on Resources and Human Health.

Figure 5 shows the impact of electricity consumption for MBR treatment on the detailed categories
related to Human Health, Ecosystem, and Resources. Climate change human health and Particulate
matter formation categories were the main factors that had an impact on Human health of electricity
consumption. In the meantime, the impact on Ecosystems mainly was due to Agricultural land
occupation and Climate change ecosystem, while Terrestrial ecotoxicity, Natural land transformation,
Urban land occupation, and Terrestrial acidification had minor impacts on the Ecosystem category.
Furthermore, the major impact on Resources came from Fossil depletion category, while the Metal
depletion category had almost no impact.
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Table 9. Environmental impact of MBR.

Human Health (mPt) Ecosystems (mPt) Resources (mPt)

Electricity (kWh/m?) 64.6 5.4 90.1
Decolorizing agent(kg/m?) 0 0 0
TOTAL 64.6 54 90.1
3.50 ® Jonising radiation
3.00
B Particulate matter formation
2.50 -+
M Photochemical oxidant
e 2.00 - .
= formation
z 1.50 - B Human toxicity
2
A 1.00 + ® Ozone depletion
0.50 -
B Climate change Human
0.00 - Health
Human Health
1.16 ) o
Terrestrial ecotoxicity
115 1 Natural land transformation
114 - # Urban land occupation
o 113 4 m Agricultural land occupation
2 . .
X 1.12 B Marine ecotoxicity
E, 111 - B Freshwater ecotoxicity
'i 110 - B Freshwater eutrophication
® W Terrestrial acidification
1.09 -
Ecosystem H Climate change Ecosystems
7.00
6.00 -
5.00
4.00 - m Fossil depletion
e 3.00 - B Metal depletion
2.00 -
1.00 -
0.00 -

Resources

Figure 5. Analysis of the effect of electricity consumption on the impacted MBR categories.

MBBR Treatment

As shown in Table 10, MBBR treatment, like AS and MBR treatments, also had a major impact
on Resources, while the impact on Ecosystem was the lowest. The environmental impact of the
consumption of decolorizing agent was mainly presented in Resources.
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Table 10. Environmental impact of MBBR.

Human Health (mPt) Ecosystems (mPt) Resources (mPt)

Electricity (kWh/m?) 11.4 0.9 15.9
Decolorizing agent(kg/m?) 17.2 1.7 40.6
TOTAL 28.6 2.6 56.5

Comparison of the Three Treatments

The environmental impacts of three treatments are compared in Table 11 to evaluate which
treatment had lower environmental impacts.

Table 11. Environmental impacts of the three processes.

Human Health (mPt) Ecosystems (mPt) Resources (mPt)

AS 57.2 5.3 113.0
MBR 64.6 5.4 90.1
MBBR 28.6 2.6 56.5

As shown, the MBBR system had the lowest impact on all three categories. Although decolorizing
agent was used in the final step of AS and MBBR to obtain a well-clarified effluent and due to the
filtration, decolorizing agent was not needed for MBR, the consumption of electricity had more
significant environmental impacts on Human Health and Ecosystems.

In addition to the endpoint methods, which are helpful for decision-making because results
can be compared in points, midpoint analysis was also performed to help identify issues of specific
environmental concerns [40]. The results of midpoint assessment are shown in Table 12. It can be
observed clearly that MBBR was environmentally advantageous since most of its impacts were the
lowest in most of the categories, except in Climate change Human Health, Marine eutrophication, and
Freshwater ecotoxicity, which were the three impact categories associated with the use of decolorizing
agent. In MBBR operation, impacts on several categories could be reduced more than 70% more
than those generated in MBR, and these categories were Particulate matter formation, Terrestrial
acidification, Agricultural land occupation, Urban land occupation, Natural land transformation, and
Urban land occupation. The CAS system had high environmental impacts, especially on Climate
change Human Health, Marine eutrophication, and Freshwater ecotoxicity, due to the amount of
decolorizing agent used in the treatment.

Table 12. Comparison of three processes: midpoint analysis.

Impact Category Unit AS MBR MBBR

Climate change Human Health kg COz-eq 1.29 0.19 0.65
Ozone depletion kg CFC-11 eq 1.39 x 1077 7.03 x 1078 6.94 x 1078
Human toxicity kg 1.4-DB eq 0.12 6.10 x 1072 6.06 x 1072
Photochemical oxidant formation kg NMVOC 3.89 x 1073 5.58 x 1073 1.95x 1073
Particulate matter formation kg PM10 eq 1.95 % 1073 341x1073 9.73x 1074

Ionising radiation kg U235 eq 0.16 0.26 0.08
Terrestrial acidification kg SOy-eq 6.46 x 1073 1.17 x 1072 3.23x 1073
Freshwater eutrophication kg P-eq 7.84 %1072 6.77 x 1075 3.92 x 1075
Marine eutrophication kg N-eq 224 x1073 4.27 x 1074 1.12x 1073
Terrestrial ecotoxicity kg 1.4-DB eq 2.96 x 1074 1.69 x 1074 1.48 x 107
Freshwater ecotoxicity kg 1.4-DB eq 7.40 x 1073 248 x 1074 3.70x 1073
Marine ecotoxicity kg 1.4-DB eq 1.04 x 1073 519 x 107* 5.18 x 1074
Agricultural land occupation m? year 551 x 1073 1.27 x 1072 2.75 x 1073
Urban land occupation m? year 216 x 1073 4.34x 1073 1.08 x 1073
Natural land transformation m? year 1.25 x 1072 2.67 x 1072 6.27 x 1076
Water depletion m?3 1.12x 1072 8.10x 1073 5.60 x 1073
Metal depletion kg 1 Feeq 2.02x 1073 2.08 x 1073 1.01 x 1073

Fossil depletion kg oil eq 517 x 1077 414 x 1077 2.59 x 1077




Water 2020, 12, 1306 14 of 17

3.4. Reuse of the Treated Effluent

Taking into account the previous results of economic and LCA analyses, MBBR treatment was
selected as the most feasible method to be applied at industrial scale. At this point, the possibility of
reusing the treated wastewater in a new dyeing processes was determined. MBBR was selected to
check if the removal results of COD, SST, and color were sufficient to make new dyes without their
quality being affected by the presence of organic matter residues, suspended solids, and residual dyes.

One hundred percent of the treated water from the MBBR process was reused for a new dyeing
process. Three reactive dyes—Yellow Procion HEXL, Crimson Procion HEXL, and Navy Procion
HEXL—were used in the water reuse study. The color differences with respect to a reference dyeing
are shown in Table 13. DEcpc(2:1) values of all three dyes were lower than 1, which is the acceptable
limit for the textile industry. The results imply the feasibility of MBBR treatment to obtain a water
reuse proportion up to 100% in the new dye baths. It should be considered that in practical textile
production, there is 30% water loss due to evaporation or water fixed into the textile products. Therefore,
the wastewater generated accounts for 70% of freshwater consumed by the industry. Although all
the treated water was reused, it is not equal to 100% of the total water consumed by the industry.
If we wanted to reuse all treated water, this would be 70% of the water consumed.

Table 13. Color differences between fabrics dyed with the treated effluent and a reference dyeing.

Reactive Dyes 100% Effluent Reused

DEcmce:)

Yellow Procion HEXL 0.55 + 0.08
Crimson Procion HEXL 0.76 + 0.07
Navy Procion HEXL 0.42 +0.01

A comparison of the cotton fabrics dyed with the three dyes studied is shown in Figure 6.

Yellow Crimson Navy

Reference

100% effluent reused

Figure 6. Comparison of cotton dyeings made with the three dyes studied.
4. Conclusions

After carrying out the comparative study in three pilot plants with CAS, MBR, and MBBR
technologies, MBBR showed that it was a better alternative than CAS, with a comparable COD removal
rate to CAS and a more efficient color reduction, while the treating capacity was doubled. Although
the MBR was the most efficient technology for organic compounds and color removal, the economic
and LCA study suggested that MBBR is a more attractive option for textile wastewater treatment at
an industrial-scale plant. MBBR had the same OPEX as MBR, both lower than that of the CAS system,
but MBBR had lower investment costs and lower CAPEX, which was 68% less than the CAPEX of MBR.
MBBR also largely reduced the environmental impacts on different categories with respect to CAS
and MBR processes in general. MBBR reduces the environmental impact as compared with the AS,
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since it reduced the consumption of electricity and decolorizing agent with respect to AS. MBR had
a higher electrical consumption but avoided the consumption of decolorizing agent.

Finally, new dyes made with treated water from MBBR met the quality standard for the textile
industry (DEcmc(:1y < 1). The presence of organic matter residues, suspended solids, and residual
dyes in the effluent of MBBR did not affect the dyeing quality. Reuse of wastewater up to 100% is very
promising in the textile industry as it is a considerable water-consuming industry worldwide.

Author Contributions: Investigation, X.Y.; Methodology, X.Y.; Project administration, V.L.-G. and M.C.; Resources,
X.Y.; Supervision, V.L.-G., M.V. and M.C.; Writing—original draft, X.Y.; Writing—review & editing, V.L.-G.
All authors have read and agreed to the published version of the manuscript

Funding: This research was co-funded by ACCIO (Generalitat de Catalunya) within the REGIREU Project
(COMRDI16-1-0062).

Acknowledgments: BIO-FIL (Barcelona, Spain) is gratefully acknowledged for providing plastic carriers BIOFILL
C-2 in the MBBR study. Authors express their gratitude to Acabats del Bages, S.A. (Monistrol de Montserrat,
Spain) for providing textile wastewater during the operation.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kumar, P; Prasad, B.; Mishra, LM.; Chand, S. Treatment of composite wastewater of a cotton textile mill by
thermolysis and coagulation. J. Hazard. Mater. 2008, 151, 770-779. [CrossRef]

2. Baéta, B.E.L.; Ramos, R.L.; Lima, D.R.S.; Aquino, S.F. Use of submerged anaerobic membrane bioreactor
(SAMBR) containing powdered activated carbon (PAC) for the treatment of textile effluents. Water Sci. Technol.
2012, 65, 1540-1547. [CrossRef]

3.  Vilaseca, M.; Gutiérrez, M.-C.; Lépez-Grimau, V.; Lopez-Mesas, M.; Crespi, M. Biological Treatment of
a Textile Effluent After Electrochemical Oxidation of Reactive Dyes. Water Environ. Res. 2010, 82, 176-182.
[CrossRef] [PubMed]

4.  Salazar, L.; Crespi, M. Evaluation of kinetic coefficients using membrane bioreactor and active sludge process
treating textile wastewater. Desalin. Water Treat. 2010, 13, 471-478.

5. Muoio, R; Palli, L.; Ducci, I.; Coppini, E.; Bettazzi, E.; Daddi, D.; Fibbi, D.; Gori, R. Optimization of a large
industrial wastewater treatment plant using a modeling approach: A case study. J. Environ. Manag. 2019,
249, 109436. [CrossRef] [PubMed]

6. Lim, A.L,; Bai, R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater.
J. Memb. Sci. 2003, 216, 279-290. [CrossRef]

7. Lourenco, N.D.; Franca, R.D.G.; Moreira, M.A.; Gil, EN.; Viegas, C.A.; Pinheiro, H.M. Comparing aerobic
granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment.
Biochem. Eng. |. 2015, 104, 57-63. [CrossRef]

8. Lépez-Grimau, V.; Riera-Torres, M.; Lopez-Mesas, M.; Gutiérrez-Bouzan, C. Removal of aromatic amines and
decolourisation of azo dye baths by electrochemical treatment. Color. Technol. 2013, 129, 267-273. [CrossRef]

9. Lopez-Grimau, V.; Pepi6, M.; Gutiérrez-Bouzan, C.; Buscio, V. Kinetic models for the electrochemical
decolouration of two reactive azo dyes. Desalin. Water Treat. 2018, 136, 405-412. [CrossRef]

10. Lopez-Grimau, V.; Vilaseca, M.; Gutiérrez-Bouzan, C. Comparison of different wastewater treatments for
colour removal of reactive dye baths. Desalin. Water Treat. 2016, 57, 2685-2692. [CrossRef]

11. Lotito, A.M.; De Sanctis, M.; Rossetti, S.; Lopez, A.; Di Iaconi, C. On-site treatment of textile yarn dyeing
effluents using an integrated biological-chemical oxidation process. Int. J. Environ. Sci. Technol. 2014, 11,
623-632. [CrossRef]

12.  Yurtsever, A.; Cinar, 0. Sahinkaya, E. Treatment of textile wastewater using sequential sulfate-reducing
anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J. Memb. Sci. 2016, 511, 228-237. [CrossRef]

13. Ng, AN.L,; Kim, A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for
municipal wastewaters. Desalination 2007, 212, 261-281. [CrossRef]

14. Arévalo, J.; Garraldn, G.; Plaza, F.; Moreno, B.; Pérez, J.; Gomez, M.A. Wastewater reuse after treatment by
tertiary ultrafiltration and a membrane bioreactor (MBR): A comparative study. Desalination 2009, 243, 32-41.
[CrossRef]


http://dx.doi.org/10.1016/j.jhazmat.2007.06.052
http://dx.doi.org/10.2166/wst.2012.043
http://dx.doi.org/10.2175/106143009X447902
http://www.ncbi.nlm.nih.gov/pubmed/20183984
http://dx.doi.org/10.1016/j.jenvman.2019.109436
http://www.ncbi.nlm.nih.gov/pubmed/31454637
http://dx.doi.org/10.1016/S0376-7388(03)00083-8
http://dx.doi.org/10.1016/j.bej.2015.04.025
http://dx.doi.org/10.1111/cote.12021
http://dx.doi.org/10.5004/dwt.2018.22901
http://dx.doi.org/10.1080/19443994.2015.1031185
http://dx.doi.org/10.1007/s13762-013-0271-7
http://dx.doi.org/10.1016/j.memsci.2016.03.044
http://dx.doi.org/10.1016/j.desal.2006.10.013
http://dx.doi.org/10.1016/j.desal.2008.04.013

Water 2020, 12, 1306 16 of 17

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Wang, Z.; Wu, Z. Distribution and transformation of molecular weight of organic matters in membrane
bioreactor and conventional activated sludge process. Chem. Eng. J. 2009, 150, 396-402. [CrossRef]
Bernhard, M.; Miiller, J.; Knepper, T.P. Biodegradation of persistent polar pollutants in wastewater:
Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment. Water Res. 2006,
40, 3419-3428. [CrossRef] [PubMed]

Saha, P,; Hossain, M.Z.; Mozumder, M.S.I.; Uddin, M.T.; Islam, M.A.; Hoinkis, J.; Deowan, S.A.; Drioli, E.;
Figoli, A. MBR technology for textile wastewater treatment: First experience in Bangladesh. Membr. Water Treat.
2014, 5, 197-205. [CrossRef]

Friha, I.; Bradai, M.; Johnson, D.; Hilal, N.; Loukil, S.; Ben Amor, F; Feki, F; Han, J.; Isoda, H.; Sayadi, S.
Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of
stress response elicited by raw and reclaimed wastewater. J. Environ. Manag. 2015, 160, 184-192. [CrossRef]
Castro, ED.; Bassin, J.P,; Dezotti, M. Treatment of a simulated textile wastewater containing the Reactive
Orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: Evaluating the
performance, toxicity, and oxidation by-products. Environ. Sci. Pollut. Res. 2017, 24, 6307-6316. [CrossRef]
Yang, X.; Crespi, M.; Lopez-Grimau, V. A review on the present situation of wastewater treatment in textile
industry with membrane bioreactor and moving bed biofilm reactor. Desalin. Water Treat. 2018, 103, 315-322.
[CrossRef]

Park, H.O.; Oh, S.; Bade, R.; Shin, W.S. Application of A,O moving-bed biofilm reactors for textile dyeing
wastewater treatment. Korean J. Chem. Eng. 2010, 27, 893-899. [CrossRef]

Tarantini, M.; Scalbi, S.; Misceo, M.; Verita, S. Life Cycle Assessment as a Tool for Water Management Optimization
in Textile Finishing Industry; SPIE—The International Society for Optical Engineering, Society of Photo-optical
Instrumentation Engineers: Bellingham, WA, USA, 2004; Volume 5583, pp. 163-170.

Nakhate, PH.; Moradiya, K.K.; Patil, H.G.; Marathe, K.V.; Yadav, G.D. Case study on sustainability of
textile wastewater treatment plant based on lifecycle assessment approach. J. Clean. Prod. 2020, 245, 118929.
[CrossRef]

Cetinkaya, A.Y,; Bilgili, L. Life Cycle Comparison of Membrane Capacitive Deionization and Reverse Osmosis
Membrane for Textile Wastewater Treatment. Water. Air. Soil Pollut. 2019, 230, 149. [CrossRef]

Buscio, V.; Crespi, M.; Gutiérrez-Bouzan, C. Application of PVDF ultrafiltration membranes to treat and
reuse textile wastewater. Desalin. Water Treat. 2016, 57, 8090-8096. [CrossRef]

ISO 14040: 2006. Environmental Management-Life Cycle Assessment—Principles and Framework. Available
online: https://www.iso.org/standard/37456.html (accessed on 4 May 2020).

Buscio, V.; Garcia-Jiménez, M.; Vilaseca, M.; Lépez-Grimau, V.; Crespi, M.; Gutiérrez-Bouzan, C. Reuse of
Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes. Materials (Basel)
2016, 9, 490. [CrossRef]

AENOR Textiles—Tests for Colour Fastness—Part J03: Calculation of Colour Differences (ISO 105-J03:2009);
Spanish Association for the Standardization and Certification: Madrid, Spain, 2009. (In Spanish)

Pala, A.; Tokat, E. Activated Carbon Addition to an Activated Sludge Model Reactor for Color Removal from
a Cotton Textile Processing Wastewater. J. Environ. Eng. 2003, 129, 1064-1068. [CrossRef]
Sirianuntapiboon, S.; Sansak, J. Treatability studies with granular activated carbon (GAC) and sequencing
batch reactor (SBR) system for textile wastewater containing direct dyes. J. Hazard. Mater. 2008, 159, 404-411.
[CrossRef]

Salazar, L.; Crespi, M.; Roberto, S. Comparative study between activated sludge versus membrane bioreactor
for textile wastewater. Desalin. Water Treat. 2011, 35, 101-109.

Dong, B.; Chen, H.; Yang, Y.; He, Q.; Dai, X. Treatment of printing and dyeing wastewater using MBBR
followed by membrane separation process. Desalin. Water Treat. 2014, 52, 4562-4567. [CrossRef]

Lo, C.H.; McAdam, E.; Judd, S. The cost of a small membrane bioreactor. Water Sci. Technol. 2015, 72,
1739-1746. [CrossRef]

Iglesias, R.; Simoén, P.; Moragas, L.; Arce, A.; Rodriguez-Roda, I. Cost comparison of full-scale water
reclamation technologies with an emphasis on membrane bioreactors. Water Sci. Technol. 2017, 75, 2562-2570.
[CrossRef] [PubMed]

Radjenovi¢, J.; Matosi¢, M.; Mijatovi¢, I.; Petrovi¢, M.; Barcel6, D. Membrane Bioreactor (MBR) as an Advanced
Wastewater Treatment Technology. In Emerging Contaminants from Industrial and Municipal Waste; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 37-101.


http://dx.doi.org/10.1016/j.cej.2009.01.018
http://dx.doi.org/10.1016/j.watres.2006.07.011
http://www.ncbi.nlm.nih.gov/pubmed/16962630
http://dx.doi.org/10.12989/mwt.2014.5.3.197
http://dx.doi.org/10.1016/j.jenvman.2015.06.008
http://dx.doi.org/10.1007/s11356-016-7119-x
http://dx.doi.org/10.5004/dwt.2018.21962
http://dx.doi.org/10.1007/s11814-010-0143-5
http://dx.doi.org/10.1016/j.jclepro.2019.118929
http://dx.doi.org/10.1007/s11270-019-4203-0
http://dx.doi.org/10.1080/19443994.2015.1021854
https://www.iso.org/standard/37456.html
http://dx.doi.org/10.3390/ma9060490
http://dx.doi.org/10.1061/(ASCE)0733-9372(2003)129:11(1064)
http://dx.doi.org/10.1016/j.jhazmat.2008.02.031
http://dx.doi.org/10.1080/19443994.2013.803780
http://dx.doi.org/10.2166/wst.2015.394
http://dx.doi.org/10.2166/wst.2017.132
http://www.ncbi.nlm.nih.gov/pubmed/28617275

Water 2020, 12, 1306 17 of 17

36.

37.

38.

39.

40.

S.A., E.E. Endesa—Luz. Available online: https://www.endesatarifasluzygas.com/luz/?sem=sem-endesa-
google-tl-75&adgroupid=77440481986&gclid=CjwKCAiAy9jyBRA6Eiw AeclQOhG_kGGL-xchrpwXH50-
OM42n6Yx1KUOLsskbYiOKVgbKUWkKNwAa99BoC-zkQAvD_BwE (accessed on 26 February 2020).
Montornes del Vallés, B. Discoloration Agent. TIDE 2000 S.L. Available online: http://www.tide2000.net/
productos/coagulantes-y-decolorantes/ (accessed on 26 February 2020).

Ministry of Energy Ley 2/2014, de 27 de enero, de Medidas Fiscales, Administrativas, Financieras y del sector
publico. Boletin of del Estado, 30 January 2014; 61561-61567.

Oficial, D. LEY 4/2017, de 28 de marzo, de presupuestos de la Generalidad de Cataluna para 2017. 2017, pp. 4-7.
Available online: https://www.boe.es/ccaa/dogc/2017/7340/f00001-00134.pdf (accessed on 4 May 2020).
Kagi, T.; Dinkel, E; Frischknecht, R.; Humbert, S.; Lindberg, J.; De Mester, S.; Ponsioen, T.; Sala, S.;
Schenker, U.W. Session “Midpoint, endpoint or single score for decision-making?”—SETAC Europe
25th Annual Meeting, 5 May 2015. Int. |. Life Cycle Assess. 2016, 21, 129-132. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


https://www.endesatarifasluzygas.com/luz/?sem=sem-endesa-google-tl-75&adgroupid=77440481986&gclid=CjwKCAiAy9jyBRA6EiwAeclQhG_kGGL-xchrpwXH50-OM42n6Yx1KUOLsskbYiOKVgbKUWkNwAa99BoC-zkQAvD_BwE
https://www.endesatarifasluzygas.com/luz/?sem=sem-endesa-google-tl-75&adgroupid=77440481986&gclid=CjwKCAiAy9jyBRA6EiwAeclQhG_kGGL-xchrpwXH50-OM42n6Yx1KUOLsskbYiOKVgbKUWkNwAa99BoC-zkQAvD_BwE
https://www.endesatarifasluzygas.com/luz/?sem=sem-endesa-google-tl-75&adgroupid=77440481986&gclid=CjwKCAiAy9jyBRA6EiwAeclQhG_kGGL-xchrpwXH50-OM42n6Yx1KUOLsskbYiOKVgbKUWkNwAa99BoC-zkQAvD_BwE
http://www.tide2000.net/productos/coagulantes-y-decolorantes/
http://www.tide2000.net/productos/coagulantes-y-decolorantes/
https://www.boe.es/ccaa/dogc/2017/7340/f00001-00134.pdf
http://dx.doi.org/10.1007/s11367-015-0998-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Pilot Plant Description and Analysis 
	Economic Analysis 
	Environmental Impact Analysis 
	Dyeing Tests Using Treated Water 
	Analytical Methods 

	Results and Discussion 
	Treating Efficiency 
	Economic Study of the Three Treatment Processes 
	Capital Expenditures (CAPEX) 
	Operational Expenditures (OPEX) 

	LCA Study Results 
	Inventory Results 
	Environmental Impact Assessment 

	Reuse of the Treated Effluent 

	Conclusions 
	References

