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Abstract. This paper reviews the methods for coupling the magnetic and mechanical 
problems in magnetic materials and their application to electrical machines. The reviewed 
methods include both the material models and the computing methods as well as the methods 
for computing the magnetic forces. The paper shows that there are different levels of coupling 
the magnetic system with the mechanical one and that the use of a method or another depends 
on the application and the level of accuracy aimed at. The paper also clarifies some terms and 
concepts related to the coupling terminology such as strong, weak, local, global, direct and 
indirect coupling and put these terms in a coherent context. Most of the examples are related 
to the two dimensional analysis but some three dimensional ones are also shown. 

1 INTRODUCTION 
Energy conversion devices refer to these devices that convert mechanical energy into 

electrical one or vice-versa by the media of a magnetic field. Such device could be an electric 
motor or generator but it could be also an actuator or in some cases even a sensor although 
there is very little energy conversion in this latter case. 

In the case of a motor or generator, the energy conversion occurs so that the current 
flowing in the windings of the machine, connected to a voltage source, generates, in 
accordance with the Ampere law, a magnetic field in the core and the air gap of the machine 
that exerts magnetic forces and torque on different parts of the machine and thus produces 
motion of the rotor or any other moving part. Thus the electrical energy in the form of 
voltages and currents at the terminal of the machines is converted into mechanical energy in 
the form of motion and torque at its shaft or vice-versa. In the case of actuators the electrical 
energy is converted into mechanical one either through a rigid motion of a plunger or through 
an elastic deformation of the actuating part under the effect of the magnetic field e.g. 
magnetostrictive deformation. Fig. 1 shows a cross-section of an electrical motor and 
illustrates the power flow from the electric supply to the mechanical load. Fig. 2 
schematically shows a simple electromagnet and illustrates the related power flow. Fig. 3 
shows a schematic view of a magnetostrictive actuator and illustrates its operation and power 
flow. The energy conversion is always accompanied with power losses in different parts of 
the devices and only part of the input power is converted to the output. 
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Figure 1: Illustration of the power 
flow in an electric motor. The 
electric power is converted into 
mechanical power through the 
magnetic field and the torque it 
produces. Part of this power is 
dissipated in the device.

Figure 2: A schematic view of an 
electromagnet. The input electric 
power, which depends on the 
position of the plunger, is 
converted into mechanical power in 
the form of motion and force on 
this later one.

Figure 3: Schematic representation 
of a magnetostrictive actuator. The 
magnetic field in the actuating part 
causes its deformation, which is 
transmitted as mechanical output to 
the surrounding

Besides their operation as energy converters, the above devices are prone to parasitic 
phenomena such as vibrations and acoustic noise as well as wearing. The vibrations and noise 
occur due to the magnetic forces and the magnetostriction. Indeed, the time dependent 
magnetic field in the core and the air gap of the machine produce time dependent magnetic 
forces and induce magnetostrictive strains under the effect of which the structure of the device 
starts vibrating and emits acoustic noise. The acoustic noise is also produced by fluid flow in 
the machine and its surrounding as well as by pure mechanical effects such as contacts 
between parts or rolling of the bearing balls. In some cases, the acoustic noise is not generated 
in the structure of the machine but rather in some surrounding of it as the vibrations of the 
machine are transmitted to the surroundings. 

On the other hand, the operation of the energy conversion device depends on the magnetic 
properties of the underlying material of its core, windings and permanent magnets. These 
properties such as the magnetization characteristics of the permanent magnets and the core 
material or the resistivity of the winding material or even the magnetostriction of the actuating 
parts strongly depend on the temperature or the mechanical stress level in the material or both. 
Fig. 4 shows e.g. the measured hysteretic magnetization curves of alloy steel under different 
levels of applied mechanical stresses at room temperature [1] and Fig. 5 the magnetostrictive 
strain of an electrical steel grade at different mechanical stresses and as function of the 
magnetic flux density [2]. Also, the rigid motion of different parts of an energy conversion 
device contributes and is a decisive factor in determining e.g. the current drawn from a 
voltage source by the device. This phenomenon can be appreciated when comparing the 
current of an electrical machine or an electromagnet in the case when the rotor or the plunger 
is under motion with the case of blocked rotor or plunger for example. 

The design of efficient energy conversion devices and the prediction of their operation 
under different load and fault conditions as well as the minimization of the parasitic 
phenomena caused by these devices require not only simulation models from different fields 
of science vis. electromagnetism, mechanics etc. but also in most cases a coupling 
methodology between these models. In this paper we will focus on the magneto-mechanical 
or magneto-elastic models and the way they are coupled. In some examples the 
electromagnetic coupling is also handled. 
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Figure 4: Measured quasi-static BH-loops of alloy steel 
at different applied stresses. The stress state in the 
sample is different from the applied one due to the 
magnetostriction. The frequency is 0.01 Hz. 

Figure 5: Measured magnetostrictive elongation of 
electrical steel under different applied stresses. The 
stress and the magnetic field are in the same 
direction and the measurement frequency is 5 Hz. 

In Section 2 we will first establish a general context in which the coherent definition of 
different terms used to specify the nature of the coupling and its methodology is possible. In 
Section 3 we will review and explain the different levels of magneto-mechanical coupling and 
how they have been used in the recent literature. Section 4 clarifies the methods for magnetic 
force computation as well as the magnetostriction and the ways to deal with it. Last, in 
Section 5 we present some challenges and open issues in the magneto-mechanical modeling. 

2 CLARIFICATION OF TERMS AND CONCEPTS 
If one goes through the published literature dealing with the coupled problems in general 

and the electro-magneto-mechanical coupling in particular, he/she will find a multitude of 
terms used to specify the nature of the coupling methodology for solving a given problem. 
Such terms as direct or indirect coupling as well as strong and weak coupling are deliberately 
used and seldom explained. In this section we will first clarify these terms. 

We propose a separation between the physical or phenomenological aspect of the coupling 
and its computational methodology or implementation aspects. In this respect, the physical 
coupling could be either strong or weak depending on the level of interaction between the 
fields or in other words how the change in one field say the magnetic field e.g. affects the 
change in the other field say displacement field e.g. It is obvious that this definition is a 
subjective one and depends on the accuracy at which we are aiming. Yet another terminology 
related to the phenomenological aspect is the concept of global and local coupling. By global 
coupling we mean an interaction between the field quantities without effects on the 
constitutive relations of the underlying materials, whereas the local coupling means the 
participation of the materials constitutive relations to this interaction. These concepts of weak 
vs. strong and local vs. global can be combined in pairs to specify the level of coupling both 
from its strength and its nature point of views. E.g. a problem can present strong global 
coupling and weak local coupling as is the case when modeling the operation of an electrical 
machine without interest in its vibrations. The strong global coupling here describes the 
coupling between the rotor motion and the magnetic field and the weak coupling describes the 
fact that in these conditions single-valued stress-independent magnetization properties are 
used to model the magnetic material and that the magnetostriction can be ignored. 
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The terms implicit, explicit, direct and indirect coupling should be reserved for the 
computational or implementation level. One speaks about explicit coupling when the 
governing equations for the quantities from different fields are written in a closed form, 
whereas the implicit coupling relates to governing equations that are written for each set of 
quantities separately but with the awareness that each set of equations includes parameters 
that have to be solved or updated from the other set. In both cases the equations can be 
formulated and solved either simultaneously and one speaks about a direct method or 
sequentially and we are speaking about an indirect method. Fig. 6 illustrates the intended use 
of these terms with some examples. It should be noted here that the explicit coupling is 
possible only in very special cases where some assumptions on the geometry of the problem 
or the properties of the materials are to be made. The explicit coupling also results in large 
system matrices with lower level of sparseness, which usually makes the solution of such 
problems slow. It is also to be noted that in most cases the solution of a coupled problem 
requires an iterative procedure regardless of the computational methodology used. 
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Figure 6: Proposed terminology for coupling 
methodology. x and y are hypothetic fields. f, g, h,
and k are functions or operators defining the 
governing equations of the fields. A, B, C and D are 
matrices or sub-matrices, which in conjunction with 
the load vectors a and b define the algebraic 
equations to be solved. These vectors and matrices 
are in general depending on the fields and the 
problem is generally nonlinear and requires an 
iterative solution procedure.

Figure 7: The Flow charts of the unidirectional and 
bidirectional magneto-mechanical coupling. B and H are 
the magnetic flux density and the Magnetic field 
strength. F and T are the magnetic forces and the torque. 
In some cases the magnetic vector potential A and the 
scalar electrical potential Ф are used instead of B and H.
The unidirectional coupling takes only the effect of 
electromagnetic system on the mechanical one whereas 
the bidirectional coupling is simultaneous and all the 
phenomena happen at the same time in both systems.

3 THE DIFERENT LEVELS OF MAGNETO-MECHANICAL COUPLING 
Now that the terminology is explained we will proceed with the different levels of coupling 

starting from the simplest one and in a bottom-up fashion evolving to the most general case 
and concentrating on the magneto-mechanical phenomena only.  

3.1 Unidirectional coupling 
The flow chart of the unidirectional magneto-mechanical coupling is shown in Fig. 7. 

From the phenomenological point of view such a coupling method suites a weak coupling, 
where there is no effect of the mechanical displacements on the magnetic field or the 
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underlying magnetic materials. In such a methodology the nonlinear Maxwell equations 
governing the magnetic field in the device are solved assuming that the magnetic material 
properties such as the permeability of iron or the relation between H and B, are not depending 
on the mechanical state of the material i.e. the mechanical stress. Such an assumption is 
usually possible due to the low level of stresses in the core of the machine and also due to the 
fact that the mechanical displacements are very small, except when a rigid motion is involved. 
The rigid motion is possible to handle separately. The one directional coupling is the most 
popular way of calculating the vibrations and noise from rotating electrical machines [3]-[6]. 
It allows for a complex and accurate electromagnetic modeling such as coupling the circuit 
equations of the machine windings and the electrical supply e.g. the frequency converter with 
the magnetic problem in the machine either in a 2D or 3D approach as well as for complex 
and accurate material modeling e.g. magnetic hysteresis [7]. It also allows for a complex 
modeling of the mechanical problem by the use of a detailed 3D geometry and updated FE 
model parameters [3], [5]. The coupling quantities in this approach are the magnetic forces 
that may or may not include the magnetostriction [2], [6], [8], [9]. The different methods for 
computing the magnetic forces and magnetostriction are explained later in Section 4. 
However, the most common ways to transfer the forces from the magnetic problem to the 
mechanical problem in this kind of coupling are either the so called teeth forces or the rotating 
stress waves in the air gap of the machine [2], [10]-[12]. Both methods are based on the 
Maxwell stress tensor as will be seen in Section 4. Fig. 8 shows a plot of the teeth forces for 
the stator of a 37 kW induction motor at a given time and Fig. 9 shows a spectral plot of the 
2D Fourier decomposition of the Maxwell stress in the air gap of the same machine. Both 
forces are calculated from the 2D time stepping solution of the magnetic field in the cross 
section of the machine. The generalized nodal forces can also be used to couple the magnetic 
problem with the mechanical problem. The computation of these forces will be explained in 
Section 4. 
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Figure 8: Normalized teeth forces of a 4 
poles 37 kW induction machine at a given 
time. The direction and amplitude of the 
force vectors are time dependent. 

Figure 9: 2D spectral decomposition of the radial Maxwell stress 
in the air gap of the 37 kW machine. Each line corresponds to a 
spatial harmonic. Negative frequencies mean that the wave is 
rotating in opposite direction to that of the rotor. 

3.2 Two directional coupling 
In a two directional coupling it is possible to model both the effect of mechanics on 

magnetism and that of magnetism on mechanics. Such kind of coupling, suites best for 
phenomenological strongly coupled problems. This is the kind of coupling at which, most of 
the recent papers on the subject are aiming. Indeed, the solution of the magnetic problem 
requires knowledge of the material magnetic properties, which are stress dependent (see Fig. 
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4). On the other hand the solution of the elastic or mechanical problem requires knowledge of 
the load forces and the magnetostrictive strains, which depend on both the magnetic field and 
the stress of the material (see Fig. 5). Further, any change in the computed stresses and 
displacements will reflect on the computed magnetic forces through a change in the magnetic 
field and any change in the computed stresses and displacements or strains will reflect on the 
magnetic field through either the material properties or the geometry of the problem. These 
considerations are better understood from the flow chart presented in Fig. 7 above. 

It should be understood that the coupling between the different phenomena is simultaneous 
and occurs in a continuous process rather than in a discrete or sequential one. This also means 
that the separation between the causes and consequences is rather artificial and should be used 
only for visualization purposes in view of a better understanding of the phenomena considered 
so that it could be used for the derivation of possible simplifications when needed. 

In addition, the magneto-mechanical coupling is affected by the electric system, which is 
usually the source of the magnetic field. A load torque e.g. at the shaft of a machine 
connected to a voltage source will result in increased current withdrawn by the machine, 
which in turn will change the magnetic field configuration and further the force and the 
mechanical strains and displacements. Here again, the separation between the causes and the 
consequences is rather artificial and all these phenomena occur simultaneously. Reference 
[13] presents an example of this electro-magneto-mechanical coupling, where the coupling 
methodology seems to have some effect on the results of the computations. In the study, the 
motion of the plunger of an actuator, like the one in Fig. 2, has been modeled with time 
stepping and with its terminals connected to a voltage source. It was noticed that the current 
of the actuator was depending on whether the coupling was implement as direct or indirect. 

The magneto-mechanical coupling can be modeled in different manners depending on the 
nature of the coupling and the aim of the investigation. The vibrations of an electrical 
machine can be computed with reasonable accuracy with a unidirectional approach and 
without accounting for the effect of mechanical stresses or any other mechanical quantity on 
the material magnetic properties and the geometry of the machines. However, the 
computation of the hysteresis energy losses e.g. in the iron core of the machine requires 
knowledge of the stresses in the core of the machine as the losses are very much affected by 
these stresses [14]-[16]. The additional losses due to the stress affect the current withdrawn by 
the machine and the torque it produces and thus affects the stress state. The methodology to 
carry out such an analysis as well as the results of its application to an electrical machine has 
been presented in [17]. The methodology consists of presenting the reluctivity of electrical 
steel as a function of the magnetic flux density and the mechanical stress and solving the 
magneto-mechanical problem with an implicit approach and in an iterative fashion. In such 
analysis the magnetostriction of iron was ignored and the iron losses were computed in a 
posteriori manner which result in their effect on the current being ignored. 

The magnetostriction of iron has been also modeled with equivalent magnetic forces acting 
on the structure of the machine [6], [9]. The computation method of these forces are presented 
later in section 4.3 and discussed altogether with other methods. It is worth notice that the 
approach adopted in the implementation of the problem is again implicit although the 
algebraic systems of equations have been solved simultaneously. 

After time and space discretisation, the equations to be solved has the form 
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With P the Jacobian matrix for the coupled magneto-elastic system,
1

n
k+

DA  the vector 

potential increment,
1

r n

k+
Du  the rotor bar voltage increment,

1

s n

k+
Di the stator current increment, 

1
n
k+

Du the displacement increment and 
1

n
k+
R the residual at time step k+1 and iteration n [2]. As 

far as the phenomenological coupling is not very strong, the off-diagonal sub-matrices 
associated with the magneto-elastic coupling can be set to zero resulting in a sparse matrix but 
a lower convergence rate of the solution. When the coupling is strong due to material 
properties, the coupling terms could not be avoided. 

3.3 Coupling through the material 
The coupling procedures and methodologies presented in the previous section were 

implicit coupling in the sense that the equations for the magnetic and mechanical systems are 
written separately and the coupling is implemented through the magnetic and magnetostrictive 
forces. The equations of each system are then discretised and the solution is achieved through 
an iteration process that updates the material properties according to some rules or equations. 

In [18], the coupling methodology is quite different. Here, the constitutive equations of the 
material are written in a coupled form, which is derived from energy considerations. Thus the 
coupling procedure is explicit and does not require separate modeling of the magnetostriction 
e.g. as a set of equivalent forces as will be discussed later. The explicit coupling, which 
requires coupled constitutive equation for the material, is the correct way to model 
magnetostrictive materials used in actuators. The explicit coupling presents also the 
possibility of modeling the so-called delta-E effect if the constitutive equations are well 
elaborated. However the explicit coupling required the energy functional to be parameterized 
and even though resulted in large system matrix with low level of sparseness as explained 
above. This is a natural property of the explicit coupling that requires coupling terms in the 
Jacobian matrix for the solution to converge. 

The constitutive equations in [18] are written in terms of the stress tensort and the 
magnetic field strength vectorH as functions of the strain tensore and the magnetic flux 
density vectorB . Additional parameters

i
a are used to write the energy functionaly of the 

magneto-mechanical system in terms of six invariants
i
I , from which the constitutive 

equations are derived. Further, in defining the stress tensor it was assumed that the stress is 
the sum of the electromagnetic stress and an elastic stress 

elastic m
t s t= + where the 

electromagnetic stress tensor is defined in terms of the magnetic flux densityB and the 
magnetizationM vectors as 

( ) ( )1
0

1
2m

t -
æ ö÷ç ÷= Ä - ⋅ + ⋅ - Äç ÷ç ÷çè ø
B B B B M B B Mm I I  (2) 

The space and time discretisation of the governing equations follows similar approach as in 
the implicit coupling and results in similar matrix equations.  
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4 METHODS FOR MAGNETIC FORCE COMPUTATION 
The computation of magnetic forces from the solution of the magnetic field in a given 

geometry has been a subject of many discussions and publications. The main problem, was 
the fact that different computation methods ware giving exactly the same total magnetic 
forces but the force distribution were different from one method to the other [19]. These 
differences were mainly present in magnetized media such as the iron core of an electrical 
machine. Lately, methods based on the principle of virtual work seem to gain confidence 
among the researchers and the application of these methods is somehow established especially 
in conjunction with the FEM. 

In this section we present the main methods for force computation and explain how they 
can be used in coupling a magnetic system with a mechanical one. 

4.1 Lorentz force 

Consider a current carrying conductor with a constant permeability 0μ . The force density 
within the coil is given by the classical Lorentz formula 

j
f = J×B  (3) 

Where = ´J H is the current density in the conductor and 0B = Hm is the magnetic flux 
density in the conductor.H is the magnetic field strength. This formula can be used whenever 
the conductor has a constant permeability and is currying a current. The resultant force acting 
on the conductor is naturally the integral of the force density over the volume of the 
conductor.

In magnetized media, the conduction current is usually zero and the Lorentz force equation 
results in null force density. However, the magnetized media can be represented at least in 
three different manners; surface magnetic pole distribution, surface current density, or a 
combination of both. In all cases, a local use of the Lorentz force distribution combined with 
the definition of magnetic moments, will result in a given force distribution either on the 
surface of the iron or inside it. A summary of these distributions is given all together with 
their discussion and consequences in [19]. 

4.2 Maxwell stress tensor 
Starting from the Lorentz force formula, Maxwell derived a general purpose stress tensor 

that can be used to compute the force on any part on a device either magnetized or not 

0

1 1
2

     
 
B B B BI

μ
 (4) 

The force on any volumeV bounded with the surfaceS is then calculated as 
dV dV d

V V S

Ss s= = ⋅ = ⋅ò ò òF f n  (5) 

Wheren is the normal vector to the surface elementdS directed outwards of the volume 
elementdV and s=  ⋅f is interpreted as a force density, which result into 

2 2
n t n t

0 0

1 1
( ) d

2
S

B B B B S
æ ö÷ç ÷ç= - + ÷ç ÷÷çè ø

òF n t
m m  (6) 

Although no mathematical or theoretical evidence is given, the terms under the integral are 
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interpreted as a normal and tangential surface stresses or surface force densities. Such an 
interpretation has been the subject of a large number of publications. 

If we accept this assumption (see Fig. 10 and 11), and in conjunction with rotating 
electrical machines, the stress can be developed into two dimensional Fourier series (space 
and time) and used as input or load for the mechanical system in the unidirectional coupling 
approach. A spectral plot of the radial component of the Maxwell stress in a 37 kW induction 
machine has been shown in Fig. 9. The usefulness of such a method is that even without 
making any mechanical analysis one can already “guess” what are the expected noise and 
vibration frequencies and modes that can be generated in the machine. Of course, all the 
frequencies and modes are not likely to be excited. The Maxwell stress or in general the 
electromagnetic stress tensor can also be used in the more general coupling method as 
explained in [18].

4.3 Method of virtual work 
The method of virtual work for force calculation is not only one of the oldest methods to 

compute the magnetic forces but also is the one that have seen many developments is the last 
decades. The conventional virtual work method consisted of computing the magnetic field at 
two positions of a given moving part while the current or the flux are kept unchanged, 
computing the magnetic energy or co-energy at these positions and calculating the magnetic 
force as the ratio of the change in the magnetic energy or co-energy and the displacement of 
the part under investigation. Such a method is very heavy as it required two computations of 
the magnetic field and the displacement needed to be of adequate size for accuracy aspects. 
Reference [20] came with a method that best fits the FE computation and needs only one field 
solution. In this method the forces are computed from the derivative of the magnetic energy 
too but the derivation is made using the numerical and analytical properties of the FEM. 
However, the method was intended for the computation of total forces and torque of electrical 
machines and did not answer the critical question of force distribution. Reference [21] used 
the concept presented by [20] and applied it to the nodes of an FE mesh. In this way the 
author could resolve what he called “generalized nodal forces”. These forces do not represent 
the force distribution in the material. They rather give a combined method to transform the 
force distribution into a local total forces acting each on a given node of the mesh and 
representing the force on a volume around that node. The volume itself cannot be defined 
with this method neither the force distribution. However, the advantage of the generalized 
nodal force concept it that it allows for a coupling between the magnetic and the mechanical 
systems when they are treated with finite element method. They also allow for the use of the 
same FE mesh for the magnetic and elastic system and avoid the problem of projection from 
one mesh to the other. The computation routine for the nodal forces although originally 
present in terms of the magnetic vector potential has been extended to the general case of 
magnetic flux density and also could be derived from the Maxwell stress tensor as in [22]. 
These methods were using linear finite elements. Methods using higher order elements and 
methods to reconstruct the force distribution from the generalized nodal force have been 
presented in [23], [24]. Other projection methods related to the generalized nodal forces have 
been presented in [25]. A plot of the generalized nodal force in the stator of a 3 MVA 
synchronous machine is shown in Fig. 10. For comparison purpose a plot of the surface forces 
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from the Maxwell stress tensor is shown in Fig. 11. In both figures the field solution and the 
force computation have been carried out with linear triangular finite elements. Note that the 
scaling of the force vectors is not the same in the two figures but the shapes of the force 
distributions are similar and the absolute values are close to each other. This is due to the fact 
that the iron is saturated and the forces are concentrated on the surface of the iron [26]. 

Figure 10: Generalized nodal 
forces in the stator of a 3 MVA 
synchronous machine.

Figure 11: Maxwell force distri-
bution on the stator of a 3 MVA 
synchronous machine.

Figure 12: Magnetostrictive forces in 
the stator of a 3 MVA synchronous 
machine.

4.4 Magnetostriction  
The magnetostriction is the phenomenon by which a sample of magnetic materials deforms 

under the effect of a magnetic field. Such a deformation is not due to the existence of external 
magnetic forces, it is rather the result of the internal stresses and strains in the material, which 
are due to the rearrangement of the magnetic domains and their interactions with the material 
lattices. 

The magnetostriction has been traditionally accounted for through sets of equivalent 
forces, which are computed from either the magnetostrictive strain [6] or the magnetostrictive 
stress [8]. A plot of the magnetostrictive forces computed from the magnetostrictive stress in 
the stator of the 3 MVA synchronous machines is shown in Fig. 12. 

However, the magnetostrictive stresses or strains are themselves dependent on the total 
stress in the material as shown in Fig. 5. Such a behavior could be simulated with stress 
dependents magnetostrictive forces [2] but it does not reproduce the actual stress behavior in 
the material when the materials boundary conditions are taken into account [2]. In this 
respect, the magnetostriction is better modeled within the material coupling methodology 
presented above [18]. In this methodology the magnetostriction is included in the magneto-
elastic coupled constitutive equation through a relation between the stress, strain and magnetic 
flux density, which has been derived from energy considerations and measurements analysis. 
The fact that the magnetostriction is already in the constitutive equations makes it difficult to 
visualize it from complex computations which is the consequence of the fact that in real life 
the magnetic and mechanical coupling happen simultaneously and there is no way to separate 
them. Some attempts to find out how different phenomena in the magneto-mechanical 
coupling could be separated are still presented in [18]. 
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5 OTHER CHALLENGES 
In the previous sections, we handled the magneto-mechanical coupling as a separate 

problem from the electrical coupling and also from the mechanical load, which is usually 
connected to the shaft of electrical machines or the moving plunger of an actuator. We also 
assumed that the solution of the magneto-mechanical system is non-dissipative except for the 
dissipation in the resistive parts of the system. The other dissipations such as iron losses were 
estimated a posteriori. 

The mechanical dissipation can be added to the system by additive mechanical damping 
[27] and the magnetic dissipation in the iron parts due to hysteresis and eddy currents can also 
be added through dynamic vector hysteresis models [7]. However, such additions to the 
different parts of the system result in non-coherent description of the energy, resulting in 
mathematically (and also physically) incorrect models. One challenge in the magneto-
mechanical modeling is thus to include different dissipation phenomena at an early stage of 
the energy description, derive the dissipative constitutive equations for the material, and 
include these equations in the solution of complex systems such as electrical machines and 
actuators. 

Most of the problems presented above have been implemented in two-dimensional 
analysis. This is due to the fact that the computational cost of these models is high and at the 
limit of what nowadays computation resources allow for. The computational resources are 
however developing very fast and already now one can carry out three-dimensional analysis 
of very complex systems within a reasonably short time. The development of the previous 
models and their adequacy for three-dimensional computations is then another challenge that 
has to be dealt with in the near future. 

Last and not least, the characterization of the material and the identification of the models 
require experimental setups able to take measurements in three directions, whereas the 
existing setups are mainly designed for a single or at most two directional measurements. 
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