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Summary. The point-symmetric linear coupled consolidation models, known from the theory 
of the oedometric testing and from dissipation testing, can be summarized into a single 
mathematical model in the function of the embedding space dimension m ([1]). When a set of 
boundary conditions is specified equally for the 1, 2 and 3 dimensional models (i.e. 
oedometric, cylindrical and spherical models) then a family of related model: a “model-
family” is obtained.  

Some inferences of the results of the qualitative analysis of two model-families are 
presented and discussed in this paper. These are (i) the similarity of the solution within a 
model-family, (ii) a direct proof that the uncoupled consolidation theories cannot be 
considered as a special case of the coupled consolidation theories and (iii) the interesting fact 
that an instantaneous dissipation may be predicted for the uniform initial pore water pressure 
distribution if the displacement is specified at both boundaries.  

1 INTRODUCTION 
Consolidation models are commonly employed in the theory of the oedometric testing and 
dissipation testing. These may differ in terms of the formulation of the constitutive equations 
and the assumed boundary conditions ([1]). In particular, models often differ in the nature of 
the condition specified at the outer boundary of the consolidating zone, which can be in terms 
of either a prescribed radial displacement (v) or a prescribed volumetric strain (ε). 

In this paper, a single point-symmetric, coupled, linear consolidation constitutive model is 
considered in a generalised form that can be expressed as a function of the embedding space 
dimension, m. When the same set of boundary conditions is adopted for the 1, 2 and 3 
dimensional models (i.e. oedometric, cylindrical and spherical models), then a family of 
related models, a “model-family”, is obtained. Two model families (referred to as coupled 1 
and coupled 2) are considered here, based on different boundary condition assumptions. A 
summary of existing consolidation models and their classification within this framework is 
given in Table 1. 
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Table 1 Summary and classification of existing consolidation models. 
V or   boundary 
condition  

1D point-symmetric 
(Oedometric models) 

2D point-symmetric 
(Cylindrical pile models) 

3D point-symmetric 
(Spherical pile models)

no (uncoupled) Terzaghi [2] Soderberg [5] Torstensson [8] 
v-v (coupled 1) Imre [3] Imre & Rózsa [6] Imre & Rózsa [9] 
v-  (coupled 2) Biot [4] Randolph at al [7] Imre & Rózsa [10] 

2 MODEL 
The basic units of the model-families (coupled 1 and 2), differing in one boundary condition, 
are presented in this section. The models are one dimensional with embedding space of 
various dimensions, m, as shown in Figure 1. 

 

2.1 System of differential equations 
Two equations are derived ([1]): one from the equilibrium condition and one from the 
continuity condition. Equation (1) combines the equilibrium condition, the effective stress 
equality, the geometrical conditions and the constitutive equations:  

 0 = 
r
u -  

r
εEoed 



  (1) 

 
Equation (2) compiles the continuity equation, Darcy’s law and the geometrical 

arrangement: 

 0 = 
t
ε +uΔ

γ
k -
v 

  (2) 

In equations (1) and (2), u is the pore water pressure (neglecting the gravitational 
component of the hydraulic head), ε is the volumetric strain, r and t are the space and the time 
co-ordinates respectively, k is the coefficient of permeability, w is the unit weight of water, Δ 
is the Laplacian operator and Eoed is the oedometric modulus, which is expressed as: 

rr 01

r

r

0

1

 a) b) c) 
Figure 1. The displacement domain for the point-symmetric models bounded by a (a) 0 dimensional sphere, 
(b) 1 dimensional sphere, (c) 2 dimensional sphere.
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In equation (3), G is the shear modulus, E is the is Young’s modulus,  is the Poisson’s 
ratio in terms of the effective stress ’ (’=-u where  is the total normal stress). The 
volumetric strain and the Laplacian operator, containing the dimension m of the embedding 
space, and expressed in terms of the radial displacement v, are as follows: 
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2.2 Boundary conditions  
The two model families considered here have three of their boundary conditions in common. 
These are (for m=2) 
 

(1) The (common) boundary condition #1: zero pore pressure at distance r1. 

 
0 =| r)t u( rr 1,

 (6) 

(2) The (common) boundary condition #2: zero gradient in the pore pressure at distance r0. 

 
0 | 

r
r)u(t,

rr 0






 (7) 

(3) The (common) boundary condition # 3: constant, non-zero radial displacement at distance 
r0. 

 
0 > v  |r)t, v( 0rr 0

  (8) 

The coupled 1 and coupled 2 model families differ, however, in the nature of their fourth 
boundary condition. For the coupled 1 models, the condition is  

(4a) Boundary condition #4a for the coupled 1 models: zero radial displacement at distance r1 

 
0  |r)t, v( rr 1

  (9) 

(4b) Boundary condition #4b for the coupled 2 models: constant, non-zero volumetric strain at 
distance r1 

 
., 0 >  | r)(t 1rr 1

   (10) 
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3 QUALITATIVE ANALYSIS  
The transient part of the solutions, that is, the solution of the system of differential equations 
(1) and (2) with the homogeneous form of the boundary conditions, is qualitatively analysed 
in this section, without actually determining it.  

3.1 Analysis of Equation (1)  
Explicit expressions are derived for v and u by integrating the equilibrium equation (1) with 
respect to r subject to boundary condition #1: 

 
1r=roedoed |r)ε(t,E- r)ε(t,E = y)u(t,  (11) 

The boundary condition function can be determined by further integrating the Equation 
(11) with respect to r using boundary condition #3 and boundary condition #4a for the 
coupled 1 models:  

 
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Equation (11) can also be integrated with respect to r using boundary condition #3 and the 
homogeneous form of boundary condition # 4b for the coupled 2 models, which results in the 
zero function. 

Coupled 1 models 
Using Equation (11) and the boundary condition function:  

  )(1),( tr)u(t,
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 = rt umean
oed

   (14) 
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The initial condition functions for u and vt have the following relationships: 
 

 | (r)E- (r)E= r)u rr
t

oed
t

oed 1000 (   (16) 
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It is apparent that the vt
0(r) is the zero function when the initial pore water pressure 

function u0(r) is uniform.  

Coupled 2 models 
Using Equation (11) and the boundary condition function:  
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The initial condition functions for u and vt have the following relationships: 
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3.2 Analysis of Equation (2)  
By integrating Equation (2) twice with respect to r using the homogenous form of the 
boundary conditions #2 and #1, the following explicit expression is derived for the pore water 
pressure: 
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By further integration with respect to t between 0 and   to give A(r), the area of the 
subgraph of the dissipation curve u(t,r) can be expressed for any fixed r as follows, for the 
coupled 1 and 2 models, respectively:  
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It can be observed that the A(r) is equal to 0 for the coupled 1 models if the initial pore 
water pressure function u0(r) is uniform. It follows that dissipation must be instantaneous in 
this case.  
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4 DISCUSSION 

4.1   Constructing the analytical solution 
The analytical solution for the total and effective stress components can be constructed using 
the analytical solution of the pore water pressure and the displacement or volumetric strain, 
on the basis of the constitutive equations and the explicit expressions derived from Equation 
(1). As an example, we consider the cylindrical case here. The constitutive equations valid for 
embedding space dimension m=2 ([7]) are 
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For the coupled 1 model, the transient components of the effective stresses are 
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For the coupled 2 model, the transient components of the effective stresses are 
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4.2   Radial stress behavior  
For the coupled 1 models, the transient component of the radial effective stress is  
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For the coupled 2 models, the transient component of the radial effective stress is  
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During dissipation, the radial total stress at r0 decreases with time by the initial value of the 
mean pore water pressure for the coupled 1 models, but it is constant for the coupled 2 
models. The radial effective normal stress at r0 increases during dissipation, by the difference 
between the initial pore water pressure and the initial mean pore water pressure for the 
coupled 1 models, and by the initial pore water pressure for the coupled 2 models. 

4.3   A theoretical consequence of the analysis of Equation (1)  
For certain boundary conditions, a coupled model with irrotational displacement may have the 
same pore water pressure solutions as an uncoupled model (which can be derived under the 
assumption that the total stress state is constant: see e.g. [11]). The additional boundary 
condition constraint adopted by [3] can be summarized as follows. The equilibrium equation 
(1) is integrated to give 

 K(t)=u  -ε  Eoed  (38) 

Using this, equation (2) can be expressed in terms of u. 

 
tE

K(t)+
tE

u=u Δ
γ
k -

oedoedv 



  (39) 

Equation (2) reduces to Terzaghi’s uncoupled consolidation equation (except that instead of 
the bulk modulus the oedometric modulus occurs) if the term K(t) is constant for one value of 
the space coordinate: a condition that is met for the coupled 2 model-family.. However, 
despite this, the uncoupled model cannot be considered as a special case of the coupled 2 
model.   

We can derive an explicit expression for the first invariant of the transient part of the total 
stress tensor for the coupled 2 models using Hooke’s law, the effective stress equality and the 
explicit expression derived for the volumetric strain on the basis of Equation (1) in terms of 
the pore water pressure. It is 
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This term is constant if  (the Poisson’s ratio in terms of the effective stress) is equal to 0.5 
which is physically impossible in case of consolidation (it implies the soil is incompressible). 

4.4   A theoretical consequence of the analysis of Equation (2)  
Although the time for consolidation is infinite, using Equation (2), a finite-valued function 
can be derived in terms of the initial condition for each model-family to characterize the rate 
of the dissipation at any point r (i.e. as the area of the subgraph of the dissipation curve u(t,r) 
for fixed r). 

According to these expressions, for the coupled 1 models the dissipation time depends on 
the difference between the initial pore water pressure and the initial mean pore water pressure 
and it has two zeros. For the coupled 2 models, the dissipation time depends on the initial 
mean pore water pressure and it has one zero. It follows from the derived expression for the 
coupled 1 models that the consolidation from a uniform initial pore water pressure 
distribution is instantaneous since the initial transient volumetric strain is identically equal to 
zero in this case. By contrast, for the coupled 2 models, the greatest possible dissipation times 
are predicted for donsolidation from a uniform initial pore water pressure distribution.  

According to the Zeroth law of Thermodynamics ([12]) The transport of any extensive 
quantity implies the existence of an intensive quantity, the homogeneous distribution of which 
is a precondition for equilibrium, and according to the Second law, the movement of an 
extensive quantity is caused by the inhomogeneous distribution of the intensive quantity, 
which is tends to be eliminated (Theorem 2 of Thermodynamics). In consolidation 
phenomena, the extensive variable for seepage is the water mass or volume. The intensive 
variable for seepage is the total hydraulic head of the water phase. These are related through 

 
wγ
u+z=h  (41) 

where z is the vertical distance from an arbitrary datum. In the models presented here, the 
effect of z was neglected assuming that h=u/w.  

The instantaneous dissipation phenomenon indicates that the intensive variable of seepage 
cannot be the hydraulic head alone. The initial transient effective stress determined from the 
equilibrium equation gives a precise answer whether a seepage occurs or whether dissipation 
is instantaneous.  

4.5   The stress drop phenomenon in some experimental tests 
These results can be considered in the contexts of two types of experimental tests with 
(basically) constant displacement boundary conditions. One is the oedometric relaxation test 
where the total stress and the pore water pressure are measured after a fast load imposition. The 
second is the simple rheological-type cone penetrometer test where the local side friction and 
cone resistance are measured after the steady penetration ceases. In the latter case the effect of 
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a stress release, which occurs as the elastic deformation of the rod is recovered when steady 
penetration is stopped, makes the boundary condition approximate, as the rod diameter 
slightly decreases and the rod length slightly increases. 
 Some typical oedometric relaxation test results showing ‘instantaneous stress drop’ can be 
seen in Figure 2, where t’ is a modified time variable indicating the time elapsed since loading 
ceased ([13]). The rate of the stress decrease is constant, and about equal to the rate of the 
load imposition, with both being limited by the mechanical characteristics of the constant 
power servo-system used in the test (which may allow some partial unloading, also). 
Figure 3shows some rheological-type cone penetrometer test results, sampled over a large 
area and averaged for the various soil types. These also display some instantaneous drop in 
stress ([14]).  
 According to the theoretical results, instantaneous dissipation may occur in the tests with 
constant displacement boundary conditions, (irrespective of the space dimension m) if the 
initial pore water pressure distribution is constant. The initial pore water pressure distribution 
may be considered to contain a constant component on the condition that the load imposition 
is very fast. However, very fast loading rates may invoke a slightly different, more 
pronounced time dependency in the rheological response that is not described by the 
constitutive laws derived for well-known models ([15], [16]). Rapid loading may induce a 
discontinuity when load imposition ceases (i.e. stress drop phenomenon), also. For example, 
fast initial stress drop during soil relaxation tests with fast, partly-drained load imposition was 
reported by Whitman [15].   
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Figure 2. Oedometric relaxation data for a soft clay soil indicating the initial stress drop. (a) Measured total stress, 
(b) measured pore water pressure, (c) computed effective stress, (d) measured displacement [3] 
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The instantaneous dissipation response is not easily measured, since pore water pressure 
measurement is prone to error and the data measured during the stress drop cannot be 
considered as reliable for the oedometric relaxation test. The measured values are 
underestimated and there is delay in the measuring system ([17], [18]). 

Two time dependent constitutive models that do accommodate some initial stress drop 
upon relaxation condition are Kelvin's model [20] and Leroueil et al's experimental model 
[16]. The reason for the sudden stress drop in the case of Kelvin’s model is that the dashpot 
does not store energy, whereas in the case of Leroueil et al's model, it is because the strain 
rate of the sample changes discontinuously at the end of the loading period from a finite value 
to zero, while the mean strain is constant. These models fail to simulate the actual stress 
relaxation, since the stress is constant after the initial stress drop. 

The compression curve constructed on the basis of multistage oedometric relaxation test is 
not the virgin compression curve unless the load imposition is fully drained. If the load 
imposition consists of a drained and undrained component, it can be assumed that the stress 
response relates to the drained part. According to some experimental results, the deviation is 
generally small for clays and may be considerable for freshly deposited loose silts. Larger 
deviation of the compression curve for loose soils can be experienced probably due to the fact 
that the effective stress may be negative within the sample (and local hydraulic fracturing may 
take place) if the preconsolidation pressure of the soil is small [19].   

In the case of the rheological-type cone penetrometer test, it is very probable that an 
amount of stress drop also occurs due to the effect of stress release, as the elastic deformation 
of the rod is recovered and the rod diameter decreases when steady penetration ceases. 
However, this is not the case for the measured cone resistance.  

In the light of the foregoing comments, the stress drop phenomenon can be attributed to  
 the instantaneous dissipation of a constant component of the initial pore water pressure 

distribution if such component does exist,  
 the change in the time dependency of the constitutive law,  
 the fact that the soil may store a definite amount of energy,  
 the stress release of the rod which modifies the boundary condition (in the case of the 

rheological type cone penetrometer tests).  

5 CONCLUSIONS 
The solution of the linear, point-symmetric, coupled consolidation models for two different 
sets of boundary conditions was qualitatively characterized.  The same explicit expression 
could have been derived for the pore water pressure, strains or the displacements from 
Equation (1) for a given model-family.  
 From these, some explicit expressions can be derived for the total and effective stress 
components which are generally the same within a model family. It follows from this 
similarity that a point-symmetric problem with a specified embedding space dimension can be 
studied on the basis of a test related to different embedding space dimension. 



765

Emoke Imre and Stephen Fityus 

 1

 
There are two special theoretical inferences coming from the qualitative analysis which can 

be concluded as follows. The pore water pressure solutions of uncoupled models and, the 
coupled 2 models are basically the same. However, the former cannot be derived from the 
latter, in the sense that the assumption of a constant total stress state of the uncoupled models 
cannot be verified. 

In the case of the coupled 1 model-family, if the initial pore water pressure distribution is 
constant then the transient component of the initial volumetric strain is identically equal to 
zero, resulting in an instantaneous dissipation. This phenomenon indicates that the intensive 
variable of seepage,– which is a thermodynamic process - cannot be the total hydraulic head 
alone. If the distribution of the total hydraulic head is not uniform  then the initial transient 
effective stress function, which can be determined from the equilibrium differential equation, 
gives a precise answer to whether there is a seepage or whether an instantaneous dissipation 
takes place.  

 It follows that some stress drop may theoretically occur for the tests with a constant 
displacement boundary condition if the initial pore water pressure distribution has a constant 
component. In a large number of tests with constant displacement boundary conditions, some 
kind of stress drop has been detected at the beginning of the test, which probably cannot be 
attributed to measurement errors, and its rate of decrease seems to be limited by the control 
system. However, further research is needed on the components and the cause of these stress 
drops since the measured records may entail some measuring errors.  
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