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The Lattice Boltzmann (LB) method has established itself as a tool with growing acceptance
for the numerical simulation of fluid flows. It is a novel numerical method for fluid dynamics that
relies on probability distribution functions for discrete particles moving on a lattice following simple
collision rules, recovering Navier-Stokes dynamics. Generally, fluids are grouped in Newtonian and
non-Newtonian, depending on the relation between viscosity and shear rate. The main goal in this
project is to make a detailed study of non-Newtonian fluids and compare them with Newtonian fluids
results. To this end, different simulations of fluids until the convergence to the stationary fluid in a
channel will be done. As well, the velocity profiles of a Newtonian fluid and a non-Newtonian one,
following the Carreau model, will be analyzed.

I. INTRODUCTION

When talking about fluid motion, one rapidly comes
across the Navier-Stokes equations. These equations de-
scribe how the mass, momentum, and energy of the fluid
change with position and time. Anyway, some advances
in the theory have made Lattice Boltzmann (LB) method
to be competitive when studying complicated fluid flows,
as it is the case of complex fluids, the appearance of tur-
bulence, etc. Thus, all this project will be developed
with the LB method in order to replicate the fluid flow
of recent experiments on complex fluids [1].

The LB method is a modern approach in Computa-
tional Fluid Dynamics, concretely it is a discrete com-
putational method based upon the Boltzmann equation,
an analogue to the Navier-Stokes equation at a molecular
level, where it describes the space-time dynamics of a sta-
tistical quantity called probability distribution function.
LB method finds its origin in a molecular description of a
fluid: it considers a typical volume element of fluid to be
composed of a collection of particles. The local flow at
each grid point is represented by a distribution function
for each possible velocity value. The time is counted in
discrete time steps and the fluid particles can collide with
one another as they move, possibly under applied forces.
The rules governing the collisions are designed such that
the time-average motion of the particles is consistent with
the Navier-Stokes equation [2].

Considering the discretization of the fluid, it is crucial
to explain the so called DnQm scheme: the molecular
description of the fluid will define certain nodes, where
particles can place, and different possible connections be-
tween them. Then, based on the dimensions of the lat-
tice involved and also on its corresponding nodes differ-
ent values to n and m shall be given in order to define
the desired model. For instance, D2Q9 would be a 2-
dimensional structure and each particle could either go
to the vertices or the center of the sides, as well as stay-
ing at the center of the square, having an overall of 9
movement possibilities (see Fig. 1).

Once the model that is going to be used along this
project has been introduced, it is necessary to explain

FIG. 1 Nodes and movement options of the lattice of
the molecular description used in 2D and 3D simulations
of LB method for the D2Q9 and D3Q19 lattices.

some theoretical differences between Newtonian and non-
Newtonian fluids. On the one hand Newtonian fluids are
the ones that viscosity remains constant, no matter the
amount of shear applied. However for non-Newtonian
fluids viscosity can have a dependence on the shear rate
[3]. As this varying behavior is not easy to fit many mod-
els have appeared trying to relate viscosity and shear rate
with experimental results. One of them is the Carreau
model, where viscosity and shear rate are related by the
following equation:

ν = νinf + (ν0 − νinf )(1 + (λγ̇)2)
N−1

2 (1)

where ν0 and νinf are the fluid viscosity at zero and infi-
nite shear rate, respectively. λ is the relaxation time, γ̇ is
the shear rate and N is the power. An example to prove
that this equation fits perfectly with experimental results
is shown in figure 2. Nevertheless, in the simulations νinf
was set to 0, as it was the only instance that had been
implemented for the velocity inlet boundary conditions.

As a consequence of these different behaviors, their
response to an applied force, or the introduction of a
Poiseuille flow in one boundary of the volume shall be
different, too. So the main goal in this project was to
compare simulations carried out by a specific software
to theoretical results. These simulations contained both
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FIG. 2 Non-Newtonian viscosity of three polymer
solutions as a function of the shear rate and a soap
solution fitted by the Carreau equation. Reproduced
from [3].

approaches: a Poiseuille flow in a Newtonian fluid and
the same flow for a fluid that obeys the Carreau model.

II. METHODS

As stated before, a software was needed to reproduce
the desired situation by coding. This way, two simi-
lar softwares could have been used to develop the whole
project: Palabos, which was finally the chosen one, and
OpenLB. These two softwares are, as its own developers
define them, open-source CFD (Computational Fluid Dy-
namics) solvers based on the Lattice Boltzmann method.
Even though the same final result should have been ob-
tained with both of them, it was mutually agreed to work
with Palabos. The main reason may be the higher level
of detail provided by its user’s guide, that included more
theoretical references and was in general more intuitive,
specially for people that are not used to working with
this kind of tools.

Thus, to take a step forward it was first needed to
get introduced into the programming world. First of all,
many tutorials from the Palabos website had to be fol-
lowed in order to understand as much as possible of the
software itself and how to make use of it. All this process
was vital to get into the simulation world and especially,
into the Palabos world. Then, finding out what changes
in the code had to be made in order to obtain the condi-
tions for the desired experiment was the next step.

After some research and a lot of acquired coding knowl-
edge, it was decided to simulate how two different type of
fluids, Newtonian and non-Newtonian (Carreau model)
behaved when a Poiseuille profile entered a 2D channel.
Although many of the used parameters were dimension-

less, the main idea was to simulate both experiments in a
channel. Basically, this channel was build up by defining
the parameter n (typically 60) controlling the number of
cells. After that, there were another two dimensionless
parameters (lx and ly) that were used to define the size
of the simulation. This way, any value given to these
two parameters, for instance lx, would mean that the
size of the channel on this direction would be lx · n in
the x-direction, equivalent to the number of cells. Fi-
nally, it was decided to take lx = 3 and ly = 1, thus
the channel had a length of 180 cells and a height of
60 cells, so it would look alike a rectangle. The real
system size, and thus the physical width of each cell, is
implicitly determined by the Reynolds number and the
specific physical parameters of the problem. This case
was really interesting since an accurate theoretical solu-
tion could be obtained in the laminar (i.e. small Re)
regime and compared to the simulated results. This case
was really interesting since an accurate theoretical solu-
tion could be obtained and compared to the simulated
results. Moreover, this comparison between both fluids
would lead to the obtaining of two completely different
behaviors with these conditions, confirming the theoreti-
cal calculus. Many velocity profiles and center velocities
were studied in detail to fully understand the physical
principle that was behind this project.

It is noteworthy to know that in both scenarios the
walls were non-periodic, that is, they would not be con-
nected to each other to keep regular flux. In addition to
that, the top and bottom walls had no-slip conditions,
that is, the velocity on the highest and lowest points was
equal to zero. This boundary condition was implemented
by means of the bounce-back algorithm [4].

The main parameters of the simulation are as fol-
lows: Reynolds number Re = 10, n = 60 and the max-
imum velocity of the Poiseuille flow at the boundaries
Vmax = 0.05. For the non-Newtonian fluid: N = 0.5 and
λ = 12000 (which corresponds to a Weissenberg number
Wi = 10).

After the harsh procedure of modifying the mentioned
codes in order to get the wished numerical approach, the
data was treated with MATLAB to acquire visible re-
sults. It was also decided to have an insight into the
convergence of the codes depending on the size of the
channel and the divergence from the theoretical results.

III. RESULTS

A. Simulations convergence

First of all, a research on the computational efficiency
of the software was carried out changing the resolution
of the simulation. Apart from studying the change in
the center velocity of both fluids depending on the size of
the lattice, it was also examined the minimum dimension
needed to achieve an acceptable simulation error with re-
spect to the analytical prediction of the velocity profile.
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Surprisingly, both fluids showed a similar behavior if cen-
ter velocity and simulation error were analyzed for grow-
ing n. Nevertheless, the results obtained were not exactly
equal and some conclusions may be obtained from this
computational study.

Considering the center velocity of the fluid behavior
one can observe the same tendency to the same veloc-
ity as n gets higher. However, it reaches this final value
in a different way depending on the type of fluid. One
can check this discrepancy in figure 3. From the graph

FIG. 3 Center velocity of Newtonian and
non-Newtonian fluids as a function of n. In the case of
the latter, the minimum n was 6 due to simulation
issues.

it might seen a pretty reliable tendency to the definitive
velocity, not requiring a high value of n. In contrast,
not only the non-Newtonian fluid’s velocity for lower n
is much distinct from the tendency value than the New-
tonian one, but it also does not achieve a significant con-
vergence until n = 20. On the other hand, Newtonian
fluid reaches a difference of 0.05 from n = 10 to be seen
in an smoother graph. Finally, it’s worth mentioning the
convergence for very low values of n: in spite of getting
results with the Newtonian case, the Carreau adapted
model seemed to be divergent until n = 6, fact that
evinces the higher complexity of the model itself. The
fitting curves don’t suit any specific function type due
to the fact that their behavior isn’t a common structure.
Nevertheless, they were plotted just to observe an overall
tendency.

Another aspect concerning center velocity could be
how precisely it approaches a theoretical value. In order
to do that, the software included a command that allowed
to compute an RMS (Root Mean Square) error that pro-
vided a way to check the accuracy of the simulations. To
make this clear, the error compares the simulated val-
ues with those theoretically found and then calculates its
RMS.

From figure 4, one could notice that both models
are pretty accurate to their respective theoretical result,

FIG. 4 Error for a Newtonian fluid as a function of n,
chosen from 2 to 60 as well.

since the error becomes rapidly really small. Whereas
the error in the Newtonian case decreases faster, it takes
a slightly higher number of n for a non-Newtonian fluid
to be precise enough. Both fitting curves share a com-
mon element: they are rational functions that tend to 0
when n → ∞ but having different polynomial degrees.
Despite this tendency, there’s a tiny marginal increase of
the error by n = 40.

B. Velocity profiles

As explained in section II, the main objective is the
comparisons of Newtonian and non-Newtonian fluids re-
sponses to a Poiseuille profile. In principle, once the sim-
ulation is done, the velocity profile of these two type of
fluids should be quite different. Basically, the Newto-
nian fluid profile should be much peaked than the non-
Newtonian one due to different dependence of viscosity
on the local shear. The resulting profiles, obtained in the
center of the box (x = 90) and all along the y-axis, are
plotted in figure 5.

Once both simulations had been run, the second goal of
the work was to provide a clear vision of the response to
a Poiseuille flow by a non-Newtonian fluid changing the
λ parameter of the Carreau model. This parameter is a
microscopic relaxation time of the fluid, which affects the
tendency of the fluid to reach an stationary state after an
applied disturbance. As a result, in figure 5 is seen that
for a lower λ the fluid tends to resemble the behavior of
a Newtonian fluid.

C. Transient of the flow

Additionally, another difference between these two
types of fluids arises when speaking of convergence to
the final steady flow. Although in both cases there is a
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FIG. 5 Comparison of the velocity profiles between
Newtonian and non-Newtonian fluids simulations, and
between non-Newtonian profiles changing λ.

transient where velocity is not so stable, when some sta-
bility is reached it appears a difference since Newtonian
fluids tend to achieve a constant velocity after some itera-
tions whilst non-Newtonian ones keep oscillating during
a much longer transient around a more or less defined
velocity value, as seen in figure 6.

FIG. 6 Transient evolution of fluid’s center velocity
for Newtonian and non-Newtonian fluid.

Also, some outcomes of the simulations for the Newto-
nian fluid were recorded and can be observed in figure 7.
From the images one could hypothesize about the com-
pressibility of the fluid. Despite the fact that there is a
flow of velocity, it is not constant, what would mean that
the fluid itself is compressible. Instead, a non constant
flow may indicate that it actually is uncompressible. This
could also be related to figure 6, since their initial oscilla-
tions may be produced by stationary waves created at the
beginning. Finally, it’s worth mentioning that notwith-
standing the quick convergence of the Newtonian fluid,

the non-Newtonian one has a larger transient, probably
due to the factor λ introduced as a relaxation time.

FIG. 7 Simulated Newtonian fluid response to a
Poiseuille flow over time. As represented, the warmer
the color, the greater the modulus of velocity in that
point.

IV. CONCLUSIONS

As a result of all the insight into the Lattice Boltz-
mann method it is more than justified the reason why
this model is gaining an increasing interest for treating
fluid flows. As stated in section I, this method appeared
in order to simplify some fluids problems. Moreover, it
has been shown that it is very stable and that by fol-
lowing some simples procedures one can simulate many
situations as complex as desired.

As well as a great knowledge of Lattice Boltzmann
method, an incredible insight into fluids field has been
achieved. From all simulations the theoretical differ-
ences between Newtonian and non-Newtonian fluids were
demonstrated throughout this work.

Finally, in a more personal way, along this project a
lot of new knowledge has been acquired as it involved
many new aspects never treated before. One of the most
enriching parts for our hypothetical professional future
was when this project was first tackled, talking in terms
of getting used to the software field, so necessary in sim-
ulations environment. All this project was a discovering
process for both of us. As well as learning a lot about of
new parts of simulation, much more that we could imag-
ine, a completely new world in physics was opened for
us, as it is Physics of fluids.
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