Filtres analògics i digitals (FEAD)

Conceptes bàsics sobre processat digital

Punt de partida

- Consideracions generals:
 - Els senyals contenen informació de l'activitat física que ens envolta (veu, imatge, dades del ambient, etc)
 - Analitzar aquesta informació implica realitzar un *processament* determinat.
 - El filtratge és un tipus de processament de senyal, ja sigui analògic o digital
 - El filtratge digital electrònic requereix:
 - L'ús de dispositius programables (FPGA, μP o DSP)
 - Conversió d'analògic a digital

Senyals: Temps continu vs. Temps discret

• Domini *analògic*

 $x = \{x(t)\}, \forall t \in [-\infty, \infty]$

- x està definit per qualsevol valor de t dintre del rang
- Domini digital

0

$$x = \{x(n)\} \quad , \forall n \in I[-\infty,\infty]$$
$$t \equiv n \cdot T$$

- x està definit només per a valors enters de n dintre del rang.
- Existeix un interval de mostreig *T*. No hi ha valor definit durant el interval

Representacions discretes

Funcional

 $x(n) = \begin{cases} 0, & \text{per } -3 \le n \le 0\\ 1, & \text{per } 1 \le n \le 3\\ |n|, & \text{per qualsevol altre cas} \end{cases}$

Tabulada

Seqüència

$$x(n) = \{\dots -4, 0, 0, 0, 0, 1, 1, 1, 4, 5\}$$

Senyals discrets. Exemples

Sinusoides discretes

$$x(n) = A \cdot \cos(2 \cdot \pi \cdot f \cdot n + \theta), \quad \forall n \in I[-\infty, \infty]$$

- Propietats:
 - Només són periòdiques si f és racional. Això implica que ha d'existir un enter k tal que f = k/N, on N és el nombre de mostres de x(n)
 - Totes les sinusoides de freqüència separades per múltiples enters de $2\cdot\pi$ són **idèntiques**. Les úniques freqüències diferents entre sí són les que estan dintre del rang: $-\frac{1}{2} \le f \le \frac{1}{2}$ ($-\pi \le \Omega \le \pi$). La resta estan repetides i són *alias* d'aquestes.
 - El grau d'oscil·lació més gran possible només es pot assolir quan $f = \frac{1}{2}$ (o bé $f = -\frac{1}{2}$) o, de manera equivalent, $\Omega = \pi (\Omega = -\pi)$

La conversió A/D

- A la pràctica, els senyals tenen *naturalesa analògica*. Per processarles amb eines digitals, prviament és necessari transformar-les a una seqüència de valors numèrics.
- El procès es realitza mitjançant conversors A/D (ADC.- Analog-to-Digital Converter)

Aquest, estableix una relació entre les variables de temps continu i discret $t = nT = n/F_s$ que té implicacions importants, sobretot, en senyals que tenen *components periòdiques* (o freqüencials)

Pèrdua d'ienformació en el mostreig

Com escollir F_s ?

Teorema del mostreig

Donat $x_a(t)$ que conté components freqüèncials on ($F_{max} = B$) és la component amb la freqüència més elevada, si la freqüència de mostreig F_s és tal que $F_s > 2 \cdot F_{max} \equiv 2 \cdot B$, llavors és possiblerecuperar el senyal mostrejat mitjançant la funció d'interpolació:

$$g(t) = \frac{\sin(2\pi \cdot B \cdot t)}{2\pi \cdot B \cdot t}$$

realitzant el càlcul:

$$x_a(t) = \sum_{n=-\infty}^{\infty} x_a\left(\frac{n}{F_s}\right) \cdot g\left(t - \frac{n}{F_s}\right) = \sum_{n=-\infty}^{\infty} x_a\left(\frac{n}{F_s}\right) \cdot \frac{\sin(2\pi \cdot B(t - n/2B))}{2\pi \cdot B(t - n/2B)}$$

- **Tasa de Nyquist**. $Fs \equiv F_N = 2B = 2F_{max}$
- No obstant, aquest procès només té una utilitat teòrica (N=∞). Normalment, s'utilitza un mostreig superior a la tasa de Nyquist i s'interpola *linealment*

La quantificació

A la pràctica, la *precisió* dels valors d'una seqüència està *limitada* al nombre de dígits (o bits) utilitzats en l'adquisició A/D.

Error de quantificació:

Si *Q* denota al procés utilitzat en la quantificació de x(n), $(x_q(n)=Q[x(n)]$, *truncament* o *arrodoniment*), l'error de quantificació s'espressa $e_q(n)=x_q(n)-x(n)$ x(n)

SQNR

- El SQNR (Signal Quantification Noise Ratio) s'utilitza per mesurar la relació entre el senyal i el nivell de soroll produït per la quantificació
- Exemple de càlcul amb un sinus Mostra quantificada Senyal conversor A/D Mostra no quantificada $x_n(nT)$ Senval original $x_n(nT)$ $x_a(nT)$ 4Δ 3Δ 2Δ Amplitut Δ 0 -τ τ 2A0 $e_{a}(t)$ -\Delta -2Δ $\Delta/2$ -3Δ -4Δ $-\Delta/2$ 7T 8T 9T 0 Т 2T 3T 4T5T 6T $\Delta = \frac{2A}{2^{b}}$ Temps Potència mitja del error i del senyal:

$$P_{q} = \frac{1}{\tau} \int_{-\tau}^{\tau} e_{q}^{2}(t) dt = \frac{1}{\tau} \int_{0}^{\tau} e_{q}^{2}(t) dt = \frac{A^{2}/3}{2^{2b}} \longrightarrow SQNR = \frac{P_{x}}{P_{q}} = \frac{3}{2} \cdot 2^{2b} \leftarrow P_{x} = \frac{1}{T_{p}} \int_{0}^{T_{p}} (A \cdot \cos \Omega_{0} t)^{2} dt = \frac{A^{2}}{2}$$

• $e_q(t) = (\Delta/2\tau) \cdot t$, $\forall t \in [-\tau, \tau]$ τ denota el temps en que $x_a(t)$ està dintre dels marges de quantificació

Més sobre senyals i sistemes

- Conceptes importants a conèixer
 - Energia i potència
 - Periodicitat
 - Simetria
- Transformacions bàsiques
 - Desplaçaments (shifting)
 - Reflexe
 - Compressió i Descompressió de dades
 - Operacions aritmètiques: escalat, suma i multiplicació punt a punt

Energia vs Potència

• Energia

$$E \equiv \sum_{n=-\infty}^{\infty} |x(n)|^2$$

• Potència

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

• N .- Nombre de mostres de x(n)

Consideracions:

- Si *E* és finit (0 < *E* < ∞), *P* = 0 i *x(n)* és un senyal d'energia.
 Aquest és el cas de tots els senyals que tenen un caràcter transitori
- Si *E* és infinit, *P* pot ser tant finit com infinit. En el cas que *P* tingui un valor finit *x(n)* és un senyal de potència
- Graons i exponencials i senyals periòdiques són exemples de senyals de potència. La rampa no és cap de les dues

Periodicitat

• Un senyal x(n) és periòdic N(N > 0) si compleix que:

$$x(n+N) = x(n), \forall n$$

en cas contrari, estarem parlant s'un senyal aperiòdic

14/33

Simetria

- Un senyal real x(n) és simètric (o parell) si x(n) = x(-n)
- Un senyal real x(n) és antisimètric (o senar) si x(-n) = -x(n)

 Qualsevol senyal arbitrari pot expressar-se com a una suma de dos components: un parell i l'altre senar

$$x_{e}(n) = \frac{1}{2} [x(n) + x(-n)] \rightarrow \begin{array}{c} Component \\ parell \\ x_{o}(n) = \frac{1}{2} [x(n) - x(-n)] \rightarrow \begin{array}{c} Component \\ senar \end{array}$$

$$x(n) = x_e(n) + x_o(n)$$

Filtres analògics i digitals (FEAD)

Sistemes en temps discret

Definició

Tècnicament

 Un sistema és un dispositiu (programable) que realitza operacions sobre un senyal discret d'entrada per generar un altre senyal discreta que s'anomena sortida

- Científicament
 - Consisteix una transformació de l'entrada x(n) per produir una sortida

$$\begin{array}{ccc} y(n) & & \\ x(n) & \xrightarrow{T} & y(n) & & \\ \end{array} \xrightarrow{x(n)} & & T[\cdot] & \xrightarrow{y(n)} & & \\ y(n) & & \\ \end{array} \xrightarrow{y(n)} & & \\ \end{array}$$

Exemples:

• Activitat:

 Determineu la resposta y(n) dels següents sistemes al senyal d'entrada x(n)

 $x(n) = \begin{cases} |n|, & \text{per } -3 \le n \le 3\\ 0, & \text{en qualsevol altre cas} \end{cases}$

a) y(n) = x(n)b) y(n) = x(n-1)c) y(n) = x(n+1)d) $y(n) = \frac{1}{3} \cdot [x(n+1) + x(n) + x(n-1)]$ e) $y(n) = \max \{x(n+1), x(n), x(n-1)\}$ f) $y(n) = \sum_{n=1}^{n} x(k) = x(n) + x(n-1) + x(n-2) + ...$

Primeres consideracions

- La sortida en un instant n = n₀ no pot sols dependre de l'entrada en aquest instant, x(n₀), si no pot dependre dels instants anteriors i posteriors tant de l'entrada com la sortida
- Exemple: L'acumulador

$$y(n) = \sum_{k=-\infty}^{n} x(k) = \sum_{k=-\infty}^{n-1} x(k) + x(n) = y(n-1) + x(n)$$

- De fet, són les condicions inicials, $\{y(n_0-1), y(n_0-2),...\}$ que juntament amb x(n) per $n \ge n_o$ determinen univocament la sortida y(n)
 - Si y(n₀-1) = y(n₀-2) = ... = y(n₀-N)= 0 es diu que les condicions inicials son nul·les o bé que el sistema està en repòs

Representació gràfica de sistemes discrets

- El mètode més estès consisteix en utilitzar diagrames de blocs
- Blocs bàsics:

Diagrama de blocs. Exemple

$$y(n) = \frac{1}{4}y(n-1) + \frac{1}{2}x(n) + \frac{1}{2}x(n-1)$$

Implementació:

2. Optimització de multiplicadors

Característiques generals dels sistemes discrets

- Serveixen per classificar sistemes discrets en base al comportament, tant de la variable de sortida com els seus paràmetres
- En molts casos, determinen l'ús de certes eines matemàtiques en l'anàlisi
- Característiques de comportament:
 - Segons les vairables d'entrada-sortida:
 - Estàtic o dinàmic
 - Estable o inestable
 - Causal o no causal
 - Segons els paràmetres del propi sitema:
 - Invariant o variant en el temps
 - Linealitat: Lineal o no lineal
 - Recursivitat: *Recursiu* o *no recursiu*
 - Resposta impulsional: *finita* (FIR) o *infinita* (IIR)
- Per cumplir amb la característica (o propietat), aquesta ha de donar-se per *qualsevol* senyal d'entrada x(n)

Sistemes estàtics i dinàmics

- Sistema estàtic (o sense memòria) és un sistema en que la sortida per a qualsevol instant *n* depèn de l'entrada, nomès en aquet instant
- En cas que també depengui de *mostres passades* o *futures* de l'entrada és un **sistema dinàmic** (o *amb memòria*)
- Exemple:

 $y(n) = a \cdot x(n)$ $y(n) = n \cdot x(n) + b \cdot x^{3}(n)$

Sistemes sense memòria

$$y(n) = x(n) + 3 \cdot x(n-1)$$
$$y(n) = \sum_{k=0}^{n} x(n-k)$$
$$y(n) = \sum_{k=0}^{\infty} x(n-k)$$

Sistemes amb memòria

Sistemes invariants i variants en el temps

- Un sistema és invariant en el temps si les seves característiques d'entrada-sortida no varien en el temps
- **Teorema:**
 - Un sistema en repòs $T[\cdot]$ és *invariant* en el temps (o al desplaçament) si, i només si:

$$x(n) \xrightarrow{T} y(n) \longrightarrow x(n-k) \xrightarrow{T} y(n-k)$$

per qualsevol x(n) amb $\forall [n,k] \in I[-\infty,\infty]$. En cas contrari, el sistema és considera que és variant en el temps.

y(n) = x(n) - x(n-1) Sistema invariant on al tamps

en el temps

$$y(n) = n \cdot x(n)$$
 Sistemes variants
 $y(n) = x(-n)$ en el temps

Linealitat

- Un sistema lineal és aquell compleix el principi de superposició
- Teorema:
 - Un sistema $T[\cdot]$ és *lineal* si, i només si:

 $T[a_1 \cdot x_1(n) + a_2 \cdot x_2(n)] = a_1 \cdot T[x_1(n)] + a_2 \cdot T[x_2(n)]$

per qualsevol $x_1(n)$ i $x_2(n)$, per $[a_1, a_2] \in \Re$

Exemples:

$$y(n) = n \cdot x(n)$$

$$y(n) = x(n^2)$$
 Sistemes lineals

$$\begin{array}{l} y(n) = x^{2}(n) \\ y(n) = e^{x(n)} \end{array}$$
 Sistemes no lineals

Causalitat

Teorema:

Un sistema $T[\cdot]$ és *causal* si per a qualsevol instant de temps, la sortida només de les entrades *actuals* i *passades* (no futures)

$$y(n) = F[x(n), x(n-1), x(n-2), \dots] \quad , \forall n \in I[0, \infty]$$

Exemples:

y(n) = x(n) - x(n-1) $y(n) = \sum_{k=-\infty}^{n} x(k)$ $y(n) = a \cdot x(n)$

Sistemes causals $y(n) = x(n) + 3 \cdot x(n+4)$ $y(n) = x(n^{2})$ y(n) = x(2n) y(n) = x(-n)

Sistemes no causals

En la pràctica, és impossible implementar sistemes no causals en temps real

Estabilitat

Teorema:

- Un sistema $T[\cdot]$ qualsevol té entrada i sortida acotada (BIBO.-Bounded Input- Bounded Output) si per una entrada acotada M_x : $|x(n)| \le M_x \le \infty$, produeix una sortida acotada M_y : $|y(n)| \le M_y \le \infty$ per $\forall n \in I[-\infty,\infty]$
- En la pràctica, sistemes inestables presenten comportaments erràtics i extrems que causen saturació i desbordament) de les aplicacions (overflow)
- Per aquest motiu, l'estabilitat és una de les característiques més considerades en el disseny d'aplicacions industrials

Recursivitat

 La sortida d'un sistema recursiu depèn de si mateixa, a més de l'entrada

y(n) = F[y(n-1), y(n-2), ..., y(n-N), x(n), x(n-1), x(n-2), ..., x(n-M)]

 En els sistemes no recursius la sortida només depèn de l'entrada

$$y(n) = F[x(n), x(n-1), x(n-2), ..., x(n-M)]$$

• Exemples:

$$y(n) = \frac{n}{n+1} y(n-1) + \frac{1}{n+1} x(n)$$

Mitja acumulativa

$$y(n) = \frac{1}{2} \left[y(n-1) + \frac{x(n)}{y(n-1)} \right]$$

per $x(n) = A \cdot u(n)$ i $y(-1) = \hat{J}$ i $J = \sqrt{K}$
Arrel quadrada (\sqrt{A})

Aplicació de la recursivitat

• El següent sistema:

$$y(n) = \frac{1}{n+1} \sum_{k=0}^{n} x(n), \qquad \forall n \in I[0,\infty]$$

requereix guardar x(k) per tot $0 \le k \le n$ per calcular y(n). Aquesta implementació no és eficient perquè requereix molta memòria (*n* creix).

• Però fent petits canvis:

$$(n+1)y(n) = \sum_{k=0}^{n-1} x(k) + x(n) \qquad \longrightarrow \qquad y(n) = \frac{n}{n+1} y(n-1) + \frac{1}{n+1} x(n)$$

es pot implementar la mateixa operació estalviant recursos de memòria

Per aquesta raó **sempre** és convenient descriure els sistemes des de el punt de vista **recursiu**

Interconnexió de sistemes discrets

• La connexió sèrie (cascada) i la connexió *paral·lel* s'utilitzen de manera combinada per formar sistemes discrets més complexos

Interconnexió sèrie

 $y_1(n) = T_1[x(n)]$ $y_s(n) = T_2\{T_1[x(n)]\} = T_c[x(n)] \longrightarrow T_c \equiv T_2 \cdot T_1$

 En la connexió sèrie, per a que es compleixi la propietat commutativa T₁ i T₂ han de ser *lineals* i invariants en el temps (Sistemes LTI)

$$y_{p}(n) = T_{1}[x(n)] + T_{2}[x(n)] =$$
$$= (T_{1} + T_{2})[x(n)] = T_{p}[x(n)]$$
$$\downarrow$$
$$T_{p} = T_{1} + T_{2}$$

Tècniques d'anàlisi dels sistemes LTI

- Hi han dos grups de tècniques considerades com a generals en l'àmbit de processament de senyals:
 - **1.-** Descomposició de components elementals de x(n)

- $x(n) = \sum_{k} c_{k} x_{k}(n) \qquad \begin{cases} k.-\text{ Nombre de components} \\ x_{k}.-\text{ Component elemental o descriptor } k-\text{èsim de } x(n) \\ c_{k}.-\text{ Coeficient de ponderació de } x_{k} \end{cases}$
- En la pràctica, hi ha dos criteris bàsics per escollir x_k segons el tipus de senyal x(n) a considerar.
 - Anàlisi impulsional (temporal).- no hi ha restriccions en x(n)
 - Anàlisi freqüencial.- Quan x(n) és periòdica ($x_k = e^{j\omega_k n}$. FFT)
- 2.- Equacions en diferències (Espai d'estats)

$$y(n) = -\sum_{k=1}^{N} a_k \cdot y(n-k) + \sum_{k=0}^{M} b_k \cdot x(n-k)$$

 a_k i b_k - Paràmetres constants

Descripció impulsional dels senyals

• Es basa en l'ús del *impuls unitari* com a descriptor del senyal. $x_k(n) = \delta(n-k)$

$$x(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot \delta(n-k)$$

- x(n) s'expressa com una suma ponderada d'impulsos unitaris desplaçats.
- El coeficient de cada mostra està fixada segons el valor de la mostra original en l'instant *k*

$$c_k = x(k)$$

Resposta impulsional d'un sistema LTI

$$x(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot \delta(n-k) \longrightarrow y(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot T[\delta(n-k)] \longleftarrow y(n) = T[x(n)]$$
Expressió d'un senyal
$$h(n-k) = T[\delta(n-k)]$$
Resposta impulsional
del sistema
$$\int (1-k) = \frac{1}{2} \int (1-k) \int$$

18/33

Càlcul de la convolució

• La sortida y(n) en l'instant $n=n_0$ té l'expressió:

$$y(n_0) = \sum_{k=-\infty}^{\infty} x(k) h(n_0 - k)$$

- Això equival a realitzar quatre operacions:
 - 1. Reflexió de h(k) respecte a k=0 per obtenir h(-k)
 - 2. Desplaçament de $h(-k) n_0$ posicions a la dreta/esquerra en cas de que n_0 sigui positiu/negatiu per obtenir $h(n_0-k)$
 - **3. Multiplicació** punt per punt per a tot *k* per obtenir $v_{n_0}(k) \equiv x(k) \cdot h(n_0 k)$
 - **4. Suma** de la sequència $v_{no}(k)$ per obtenir el resultat en n_0 , $(y(n_0))$ $y(n_0) = \sum_{k=-\infty}^{\infty} v_{n_0}(k)$
- El procés anterior s'ha de repetir per tots els instants de n (- $\infty < n < \infty$)

La convolució (Exemple)

Propietats de la convolució

Commutativa:

$$y(n) = x(n) * h(n) = h(n) * x(n)$$
$$\sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k) = \sum_{k=-\infty}^{\infty} h(k) \cdot x(n-k)$$

Distributiva

$$x(n)*[h_1(n)+h_2(n)] = x(n)*h_1(n)+x(n)*h_2(n)$$
$$h(n) = \sum_{j=1}^{L} h_j(n)$$

Associativa

 $[x(n)*h_1(n)]*h_2(n) = x(n)*[h_1(n)*h_2(n)]$ $h(n) = h_1(n)*h_2(n)*\dots*h_j(n)$

Propietats dels sistemes LTI

Causalitat

 Un sistema LTI es també *causal* si, i només si, la resposta impulsional és nul-la per tots els valors negatius de n

h(n) = 0, per n < 0

Estabilitat

 Un sistema LTI és *estable* si la resposta impulsional és absolutament sumable (convergeix a un valor finit)

$$S_h \equiv \sum_{k=-\infty}^{\infty} \left| h(k) \right| < \infty$$

- Duració (o llargaria) de la resposta impulsional
 - FIR (*Finite Impulse Response*).- Finita $\rightarrow \begin{array}{c} y(n) = \sum_{k=0}^{\infty} h(k) \cdot x(n-k) \\ h(n) = 0, \text{ per } n < 0 \text{ i } n \ge M \end{array}$
 - IIR (*Infinite Impuls Response*).- Infinita $\rightarrow y(n) = \sum_{k=1}^{\infty} h(k) \cdot x(n-k)$

Sistemes IIR

- Els sistemes FIR es poden implementar *directament* en base a la convolució amb un nombre finit de recursos computacionals (sumadors, multiplicadors i posicions de memòria), però no els sistemes IIR (nombre infinit)
- Aplicacions d'interès, com filtres digitals o el modelat de sistemes, s'implementen eficientment amb sistemes IIR
- Existeix algun mètode pràctic i eficient per implementar sistemes IIR? ... Afortunadament, Sí

Per mitjà de les equacions en diferències !!!!

Sistemes LTI expressats per les equacions en diferències

Notació general:

$$\sum_{k=0}^{N} a_k \cdot y(n-k) = \sum_{k=0}^{M} b_k \cdot x(n-k) \qquad \longrightarrow \qquad y(n) = -\sum_{k=1}^{N} a_k \cdot y(n-k) + \sum_{k=0}^{M} b_k \cdot x(n-k)$$

- N.- Ordre del sistema
- y_{zs}.- Resposta forzada (ó estat zero).- Part de la sortida deguda al senyal d'entrada x(n)

$$y_{zs}(n) = \sum_{k=0}^{M} b_k \cdot x(n-k)$$

 y_{zi} **Resposta natural** (ó entrada zero).- Part de la sortida deguda a condicions inicials, no nul·les, del sistema

$$y_{zi}(n) = -\sum_{k=0}^{N} a_k \cdot y(n-k)$$

Sistemes LTI expressats per les equacions en diferències (cont.)

La solució de les equacions en diferències

- Consisteix en resoldre l'equació diferencial (trobar y(n) = f(n))
 - *Mètode directe:* Per equacions diferencials
 - Mètode indirecte: Mitjançant la 'transformada z'
- Mètode directe.- y(n) es calcula mitjançant les seves dues components (resposta natural i forçada)
 - Solució *homogènia*: $y_h(n)$, quan x(n) = 0 —

$$\sum_{k=0}^{N} a_k \cdot y(n-k) = 0$$

Solució *particular*: $y_p(n)$, per a l'entrada x(n):

$$\sum_{k=0}^{N} a_k \cdot y(n-k) = \sum_{k=0}^{N} b_k \cdot x(n-k), \ a_0 = 1$$

Solució total: $y(n) = y_h(n) + y_p(n)$

La solució homogènia y_h(n)

Procediment:

• Es considera que la solució és de tipus **exponencial** ($y_h(n) = \lambda^n$) i s'obté les solucions de l'equació característica:

 $\sum_{k=0}^{N} a_{k} \cdot y(n-k) = \sum_{k=0}^{N} a_{k} \cdot \lambda^{n-k} = \lambda^{n-N} \left(\lambda^{N} + a_{1} \lambda^{N-1} + a_{2} \lambda^{N-2} + \dots + a_{N-1} \lambda + a_{N} \right) = 0$

• **N** arrels: $\lambda_1, \lambda_2, \dots, \lambda_N$

- Solució segons la naturalesa dels coeficients $a_1, a_2, ..., a_N$:
 - Enters i reals: $y_h(n) = C_1 \cdot \lambda_1^n + C_2 \cdot \lambda_2^n + \ldots + C_N \cdot \lambda_N^n$

 $+\ldots+C_{N}\lambda_{N}^{n}$

- Ordre múltiple: $y_h(n) = C_1 \cdot \lambda_1^n + C_2 n \lambda_1^n + C_3 n^2 \lambda_1^n + \dots + C_m n^{m-1} + C_{m+1} \lambda_{m+1}^n + \dots$
 - Complexes: ...

La solució particular $y_p(n)$

Procediment:

 Es la solució per a una entrada específica x(n) per (n ≥ 0) de l'equació en diferències:

$$\sum_{k=0}^{N} a_k \cdot y_p(n-k) = \sum_{k=0}^{N} b_k \cdot x(n-k) , a_0 = 0$$

• Forma de $y_p(n)$ depèn de la forma de l'entrada x(n)

K $K \cdot M^{n}$ $K_{0} \cdot n^{M} + K_{1} \cdot n^{M-1} + \dots + K_{M}$ $A^{n}(K_{0} \cdot n^{M} + K_{1} \cdot n^{M-1} + \dots + K_{M})$ $K_{1} \cdot \cos(\omega_{0} \cdot n) + K_{2} \cdot sen(\omega_{0} \cdot n)$

Solució particular $y_p(n)$

Solució i resposta 'h(n)' de sistemes LTI recursius

- La solució total (y(n)=y_h(n)+y_p(n)) serveix per determinar els seus paràmetres constants (C_i)
- Si $x(n) = \delta(n)$, la resposta impulsional d'un sistema recursiu coincideix amb la solució de l'equació homogènia $y_h(n)$
 - Demostració:

$$y_{zs}(n) = \sum_{k=0}^{n} b_k \cdot x(n-k) = \sum_{k=0}^{n} b_k \cdot \delta(n-k) = b_k \cdot u(n) = h(n)$$
$$y_{zs}(n) = \sum_{k=0}^{n} h(k) \cdot x(n-k) \quad , n \ge 0$$

 $h(n)=y_{zs}(n)$

Revisió de propietats dels sistemes LTI

• Linealitat:

 El principi de superposició s'aplica tant a la resposta forçada (y_{zs}) com natural (y_{zi})

Invariança temporal

 Si els coeficients {a_k, b_k} són constants o no depenen del temps, el sistema és invariant en el temps

Estabilitat

 Totes les arrels del polinomi característic en la solució homogènia (y_h(n)) ha de ser inferior a la unitat

$$y_h(n) = h(n) = \sum_{k=1}^N C_k \cdot \lambda_k^n \longrightarrow \sum_{k=1}^\infty |\lambda_k|^n < \infty$$

Equacions en diferències vs. H(z)

• Equivalència amb en el domini z

$$x(n-a) = x(z) \cdot z^{-a}$$

• Exemple: L'acumulador

$$y(n) = x(n) + y(n-1)$$

$$\downarrow$$

$$y(z) \cdot z^{0} = x(z) \cdot z^{0} + y(z) \cdot z^{-1}$$

$$\downarrow$$

$$y(z) = x(z) + y(z) \cdot z^{-1}$$

$$\downarrow$$

$$H(z) = \frac{y(z)}{x(z)} = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

31/33

H(z) vs. Equacions en diferències

X

- H(z) és útil en l'anàlisi de sistemes discrets però per implementar-lo en DSP s'utilitzen les equacions en diferències.
- Exemple:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2 \cdot z^2 + z}{z^2 + 3 \cdot z + 2} = \frac{2 + z^{-1}}{1 + 3 \cdot z^{-1} + 2 \cdot z^{-2}}$$

$$Y(z)(1+3\cdot z^{-1}+2\cdot z^{-2}) = X(z)(2+z^{-1}) \rightarrow Y(z)+3\cdot Y(z)\cdot z^{-1}+2\cdot Y(z)\cdot z^{-2} = 2\cdot X(z)+X(z)\cdot z^{-1}$$

$$y(n)+3\cdot y(n-1)+2\cdot y(n-2) = 2\cdot x(n)+x(n-1)$$

$$y(n)=2\cdot x(n)+x(n-1)-3\cdot y(n-1)-2\cdot y(n-2) \rightarrow Algorisme \ de \ calcul$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Implementació software

Exemple estructura directa I: Inici $H(z) = \frac{Y(z)}{X(z)} = \frac{2 + z^{-1}}{1 + 3 \cdot z^{-1} + 2 \cdot z^{-2}}$ $\rightarrow \begin{cases} y(n) \rightarrow YN \\ y(n-1) \rightarrow YN1 \\ y(n-2) \rightarrow YN2 \\ x(n) \rightarrow XN \\ x(n-1) \rightarrow XN1 \end{cases}$ Definició de les posicions de memòria $y(n) = -3 \cdot y(n-1) - 2 \cdot y(n-2) +$ $+x(n-1)+2 \cdot x(n)$ *Inicialitzacions* YN1 = 0, YN2 = 0, XN1 = 0Posicions de memòria: Lectura de XN = Inport (A/D)l'entrada Retards • *v*(*n*-1) \rightarrow YN = -3·YN1-2·YN2+XN1+2·XN Processament • y(n-2) • x(n-1)Resultat a sortida Outport (YN) Auxiliars Actualització de
dadesYN2 = YN1
YN1 = YN
XN1 = XN • y(n) t_{min} !!!! x(n)

33/33

De 'Directa I' a 'Directa II'

• Sistema de primer ordre:

 Segons l'estructura adoptada es poden estalviar recursos en determinades aplicacions

Directa II

• Una de les més adoptades, ja que minimitza posicions de memòria

$$H(z) = H_{1}(z) \cdot H_{2}(z) = \frac{Y(z)}{W(z)} \cdot \frac{W(z)}{X(z)}$$

$$H_{1}(z) = \sum_{k=0}^{M} b_{k} \cdot z^{-k} \qquad H_{2}(z) = \frac{1}{1 + \sum_{k=0}^{M} a_{k} \cdot z^{-k}}$$

$$\omega(n) = -\sum_{k=1}^{N} a_{k} \cdot \omega(n-k) + x(n) = x(n) - a_{1} \cdot \omega(n-1)$$

$$-a_{2} \cdot \omega(n-2) - \dots - a_{N} \cdot \omega(n-N)$$

$$y(n) = \sum_{k=0}^{M} b_{k} \cdot \omega(n-k) = b_{0} \cdot \omega(n) + b_{1} \cdot \omega(n-1) + \dots$$

$$\dots + b_{M} \cdot \omega(n-M)$$

- Recursos necessaris:
 - Posicions de memòria: *max*{M,N}
 - Sumadors: *M*+*N*
 - Multiplicadors: *M*+*N*+1
 - Equacions a calcular: 2

Correlació encreuada i auto-correlació

 S'utilitza per extreure informació en funció del grau de similitud entre dues seqüències x(n) i y(n) (Semblant a la convolució):

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n) \cdot y(n-l) =$$
$$= \sum_{n=-\infty}^{\infty} x(n+l) \cdot y(n) = r_{yx}(-l)$$

Autocorrelació:

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n) \cdot x(n-l)$$

• Exemple:

 $x(n) = \{ \dots, 0, 0, 2, -1, 3, 7, 1, 2, -3, 0, 0, \dots \}$ $y(n) = \{ \dots, 0, 0, 1, -1, 2, -2, 4, 1, -2, 5, 0, 0, \dots \}$ Per seqüències de duració finita

Solució:

 $r_{xy}(l) = \{ 10, -9, 19, 36, -14, 33, 0, 7, 13, -18, 16, -7, 5, 3 \}$

Propietats de la correlació i auto-correlació

• Si dues sequències x(n) i y(n) presenten energia finita E_x i E_y respectivament, la correlació encreuada verifica que:

$$\left|r_{xy}(l)\right| \leq \sqrt{r_{xx}(0)} \cdot r_{yy}(0) = \sqrt{E_x \cdot E_y}$$

- En el cas de que x(n) = y(n), $|r_{xx}(l)| \le r_{xx}(0) = E_x$
- Normalitzant la correlació, s'eviten problemes d'escalat a les seqüències d'entrada, doncs manté la integritat de les formes d'ona.
 - Correlació encreuada i auto-correlació normalitzada

$$\rho_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} \qquad \qquad \rho_{xy}(l) = \frac{r_{xy}(l)}{\sqrt{r_{xx}(0)r_{yy}(0)}}$$

Exemple - Determineu la següent auto-correlació:

$$l = \frac{1}{1 - a^2} \cdot a^{|l|}, \quad -\infty < l < \infty$$

$$a_{\alpha}(0) = \frac{1}{1-a^2}$$

 $\rho_{xx}(l) = a^{|l|}$

 $\begin{cases} x(n) = a^n \cdot u(n) \\ 0 < a < 1 \end{cases}$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

 $r_{xx}($

Correlació en senyals periòdics

- Donat y(n)=x(n)+ω(n), on x(n) és una seqüència N-periòdica i ω(n) representa una interferencia aditiva.
- Es consideren *M* mostres de *y*(*n*): *y*(*n*) = 0 per *n* < 0 i per *n* ≥ *M*, i es normalitza per un factor 1/*M*.

$$r_{yy}(l) = \frac{1}{M} \sum_{n=0}^{M-1} y(n) \cdot y(n-l) = \frac{1}{M} \sum_{n=0}^{M-1} [x(n) + \omega(n)] \cdot [x(n-l) + \omega(n-l)] =$$

- Pic en l = 0 que s'esvaeix molt ràpidament

- Correlacions creuades pràcticament nul·les tenint en compte que no hi ha relació entre senyal i soroll

- Presenta pics periòdics en l = 0, 2N, 4N, ...; que decreixen a mesura que $l \approx M$.

Selecció de *l*: l < M/2

 La correlació permet detectar senyals periòdics x(n) immersos en soroll ω(n) i identificar el període

 $= r_{xx}(l) + r_{xa}(l) + r_{ax}$

Correlació i sistemes LTI

 Hem vist que amb la resposta impulsional, la sortida d'un sistema LTI es determina mitjançant la convolució:

$$y(n) = h(n) * x(n) = \sum_{k=-\infty}^{\infty} x(k) \cdot h(n-k)$$

 De la mateixa manera, es pot determinar la correlació entrada-sortida mitjançant l'autocorrelació d'entrada:

$$r_{yx}(l) = h(l) * r_{xx}(l)$$

$$r_{xy}(l) = h(-l) * r_{xx}(l)$$

• Si el sistema de la resposta impulsional h(n) és estable, llavors existeix $r_{hh}(l)$ i, per tant, es pot determinar l'autocorrelació de sortida

$$r_{yy}(l) = r_{hh}(l) * r_{xx}(l)$$
$$r_{yy}(0) = \sum_{k=-\infty}^{\infty} r_{hh}(k) * r_{xx}(k)$$

Filtres analògics i digitals (FEAD)

Anàlisi Freqüencial dels senyals i sistemes digitals

Convencions utilitzades

- Minúscules: Funcions dels dominis analògic i/o digital. •
- **Majúscules:** Funcions transformades •

F(x,d)

Constants i Paràmetres:

 \mathcal{W}_{k} → Valor k-ésim de ω

 $H_{a}(n)$

Informació complementària

Principi bàsic del anàlisi freqüencial

Analògic (Continu)

 $x(t) = \sum_{k=0}^{\infty} c_k \cdot e^{j2\cdot \pi \cdot F_0 \cdot t}$

 $k = -\infty$

• Senyals periòdiques: Sèrie de Fourier

Síntesi

Anàlisi

T. Inversa

T. Directa

Síntesi de senvals

Anàlisi de senvals

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j \cdot 2 \cdot \pi \cdot k \cdot F_0 \cdot t} dt$$

Digital (Discret)

$$x(n) = \sum_{k=0}^{N-1} c_k \cdot e^{j2 \cdot \pi \cdot k \cdot n/N}$$

$$c_k = \frac{1}{N} \sum_{k=0}^{N-1} x(n) \cdot e^{-j \cdot 2 \cdot \pi \cdot k \cdot n/N}$$

-- 14 - 1 /D:-

Senyals aperiòdiques: Transformada de Fourier

Analògic (Continu)

 $x(t) = \int_{-\infty}^{\infty} X(F) \cdot e^{j \cdot 2 \cdot \pi \cdot F \cdot t} dF$ $X(F) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot F \cdot t} dt$

Digital (Discret)

 $N_{n=0}$

$$x(n) = \frac{1}{2 \cdot \pi} \int_{2\pi} X(\omega) e^{j \cdot \omega \cdot n} d\omega$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j \cdot \omega \cdot n}$$

Consideracions sobre Fourier

• Analògic:

2)

- F_0 correspon a la freqüència d'oscil·lació (1/ T_0), i $k \in I[-\infty,\infty]$
- Existeixen altres formes de representació per senyals reals:

1)
$$x(t) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cdot \cos\left(2 \cdot \pi \cdot k \cdot F_0 \cdot t\right) - b_k \sin\left(2 \cdot \pi \cdot k \cdot F_0 \cdot t\right) \right)$$

$$\begin{aligned} a_0 &= c_0 \\ a_k &= 2 \cdot |c_k| \cdot \cos \theta_k \\ b_k &= 2 \cdot |c_k| \cdot \sin \theta_k \end{aligned} \qquad \begin{aligned} |c_k| &= \sqrt{(\operatorname{Re}(c_k))^2 + (\operatorname{Im}(c_k))^2} \\ \theta_k &= \tan^{-1} \left(\frac{\operatorname{Im}(c_k)}{\operatorname{Re}(c_k)} \right) \end{aligned}$$

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot \cos(n \cdot t) + b_n \sin(n \cdot t) \right)$$
$$a_n = \frac{2}{T_p} \int_{T_p} x(t) \cdot \cos\left(\frac{2 \cdot n \cdot \pi \cdot t}{T_p}\right) \qquad b_n = \frac{2}{T_p} \int_{T_p} x(t) \cdot \sin\left(\frac{2 \cdot n \cdot \pi \cdot t}{T_p}\right)$$

$n \in I[0,\infty]$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Consideracions sobre Fourier (Cont)

• Digital:

- $n \in I[1, N]$. *N* és el nombre d'elements de x(n)
- L'equivalent a F al domini digital és k/N = f
- Existeix un altra representació de la transformada de Fourier discreta mitjançant la freqüència angular: $\omega = 2 \cdot \pi \cdot f$

• **T. Inversa** *Reconstrucció* de senyals

$$x(n) = \frac{1}{2 \cdot \pi} \int_{2\pi} X(\omega) e^{j \cdot \omega \cdot n} d\omega$$

• T. Directa Dexcomposició de senyals

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) \cdot e^{-\lambda}$$

• Comuns als dos dominis:

- Les condicions de *Dirichlet* garanteixen l'existència de la transformada i la convergència de la sèrie de Fourier a x(t)
 - Discontinuitat, màxims/mínims, integrabilitat

Relació de Parseval. Densitat Espectral

• Senyals periòdics són senyals de potència

Relació de Parseval

Densitat espectral de potència

Analògic (Continu)

$$P_{x} = \sum_{k=-\infty}^{\infty} |c_{k}|^{2}$$

$$|c_{k}|^{2} = \frac{|x(t)|^{2}}{T_{0}}$$

Digital (Discret)
$$P_{x} = \sum_{k=0}^{N-1} |c_{k}|^{2} = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^{2}$$
$$|c_{k}|^{2} = \frac{|x(n)|^{2}}{N}$$

Senyals aperiòdics són senyals d'energia

Relació de Parseval

Densitat espectral d'energia

analògic (Continu)

$$E_x = \int_{-\infty}^{\infty} |X(F)|^2 dF$$
 $E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 dF$
 $|X(F)|^2$
 $|X(\omega)|^2$

Espectre de senyals en temps continu

Espectre de senyals en temps discret

Dualitats sobre l'espectre

- Senyals en temps continu presenten un espectre en freqüència aperiòdic (Mai es donarà aquest cas. Tot senyal analògic s'ha de convertir a digital per ser processat amb un ordinador)
- Senyals discretes* presenten un espectre en freqüència periòdic (L'espectre sempre serà periòdic)
- Senyals periòdiques presenten espectres freqüencials discrets (Mai es pot donar aquest cas. Això requeriria tenir memòria infinita per l'adquisició ja que n → ∞)
- Senyals aperiòdiques * d'energia finita presenten espectres freqüencials continus (L'espectre només es pot determinar en temps discret → Pèrdua de resolució freqüencial en el càlcul !!)

*Casos que es donen a la pràctica

Fourier vs. Transformada 'z'

• Transfomada z de x(n)

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n} \quad \text{ROC: } r_2 < |z| < r_1$$

• Com que,
$$z = r \cdot e^{j \cdot \omega} (|z| = r, \omega \neq z)$$

$$X(z)|_{z=r\cdot e^{j\cdot\omega}} = \sum_{n=-\infty}^{\infty} [x(n)\cdot r^{-n}] e^{-j\cdot\omega\cdot n}$$

• Si |z|=1, X(z) també és la Transformada de Fourier

$$X(z)|_{z=e^{j\cdot\omega}} \equiv X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\cdot\omega\cdot n}$$

• Si la regió de convergència de la transformada 'z' conté el cercle unitari, existeix la transformada de Fourier

- Altres conceptes qualitatius sobre la freqüència:
 - Ample de banda: Rang de l'espectre on es concentra el 95% de la potència (energia) del senyal ($F_1 < F < F_2$). $B = F_2 F_1$
 - Banda estreta: Quan l'ample de banda es molt petit. $B \approx 10\% F_c$. $F_c = (F_2 + F_1)/2$
 - **Banda limitada:** Quan l'espectre és nul fora del rang de freqüències. $|F| \ge B$.

Els rangs d'alguns senyals d'interès

• A la pràctica, aquestes tècniques s'utilitzen per extreure i processar informació segons l'àmbit d'aplicació

Tipus de senyal	Rang de Freq. (Hz)	
Senyals biològics	Merchand and the	
- Electroretinograma	0-20	
- Electronistagnograma	0-20	
- Neumograma	0-40	1. 、新田井、三田二、三日
- Electrocardiograma (ECG)	0-100	and the second states
- Electroencefalograma (EEG)	10-200	
- Veu	100-4000	
Senyals Electromagnètics		Longitud d'ona (λ)
- Radiodifusió	3.104-3.106	10 ⁴ - 10 ²
- Longitud d'ona curta	3.106-3.1010	10 ² -3·10 ⁻²
- Radar, comunicacions per satèl·lit o espeacials		
Enllaços microones	$3.10^{8} - 3.10^{10}$	1-10-2
- Infraroig	3.1011-3.1014	10 ⁻³ -3·10 ⁻⁶
- Llum visible	3.7.1014-7.7.1014	3.9.10-7-8.1.10-7
- Ultravioleta	3·10 ¹⁵ -3·10 ¹⁶	10-7-10-8
- Rajos Gamma i rajos X	3.1017-3.1018	10 ⁻⁹ -10 ⁻¹⁰
Senyals sísmiques		
Vent	100-1000	
Exploració sísmica	10-100	
Terratrèmols i explosions nuclears	0.01-10	Name and the second
Soroll sísmic	0.1-1	Solo Barresser.

Revisió del teorema de mostreig

Revisió del teorema de mostreig (cont)

Teorema

- Un senyal analògic de banda limitada B es pot recuperar a partir de la seva versió digital sempre que $F_s \ge 2B$
- Procediment de recuperació

$$X_{a}(F) = \begin{cases} \frac{1}{F_{s}} X\left(\frac{F}{F_{s}}\right), & |F| \le F_{s}/2 \\ 0, & |F| > F_{s}/2 \end{cases} \text{ on: } X\left(\frac{F}{F_{s}}\right) = \sum_{n=-\infty}^{\infty} x(n) e^{-j \cdot 2 \cdot \pi \cdot F \cdot n/F_{s}} \\ \frac{1}{F_{s}} \sum_{n=-\infty}^{\infty} x(n) = \sum_{n=-\infty}^{\infty} x(n) e^{-j \cdot 2 \cdot \pi \cdot F \cdot n/F_{s}} \\ \frac{1}{F_{s}} \sum_{n=-\infty}^{\infty} x_{n}(n) = \sum_{n=-\infty}^{\infty} x_{n}(n) \frac{1}{(\pi/T)(t-n)} \end{cases}$$

Consideracions addicionals

- En la pràctica, es sol *filtrar* el senyal analògic prèviament a la conversió A/D per prevenir l'*aliasing*
- Teòricament, el mètode de reconstrucció requereix processar infinites mostres (n=∞). No obstant, la majoria de senyals pràctics tenen duració finita.

Resum general

Transformada de Fourier. Propietats

- Aplicat als senyals digitals: Propietats de simetria
 - Senyals reals, parell, imparell i complexes
- Aplicat als sistemes digitals
 - Linealitat
 - Reflexió i desplaçament temporal
 - Desplaçament i diferenciació freqüencial
 - Convolució
 - Correlació
 - Wiener-Khintchine
 - Modulació
 - Parseval
 - Enfinestrat

Simetria

Secuencia 🔶	> Transf. Fourier	Ν	lotació:
En general			$x(n) = x_R$
$\mathbf{x}(n)$	X(m)	Reality	$x^*(n) = x_R(n)$
$x^{*}(n)$	X*(-m)		$X(\omega) = X_R(\omega)$
$x_{p}(n)$	$X_{\alpha}(\omega) = \frac{1}{2} [X(\omega) + X^{*}(\omega)]$		$X^*(\omega) = X_R(\omega)$
$j \cdot x_I(n)$	$X_{o}(\omega) = \frac{1}{2} [X(\omega) - X^{*}(\omega)]$	a start	$X(\omega) = \sqrt{X}$
$x_e(n) = \frac{1}{2} [x(n) + x^*(-n)]$	$X_{R}(\omega)$	*	$M(\omega) = \sqrt{M}$
$x_o(n) = \frac{1}{2} [x(n) - x^*(-n)]$	$j \cdot \overline{X_{I}}(\omega)$		$\angle X(\omega) = ta$
Nomès sen	yals reals	Margaret.	
Qualsevol senyal real	$X(\omega) = X^*(-\omega)$	Domini temporal	
	$X_R(\omega) = X_R(-\omega)$		
<i>x(n)</i>	$X_{I}(\omega) = -X_{I}(-\omega)$	Real	Parell
	$ X(\omega) = X(-\omega) $		Senar
	$\underline{/}X(\omega) = \underline{-/}X(\omega)$		
$x_{n}(n) = \frac{1}{2} [x(n) + x(-n)]$	$X_R(\omega)$		
(real i parell)	(Real i parell)		
$r(n) = \frac{1}{2} [r(n) - r(-n)]$	i·X ₁ (ω)	Imaginari	Parell
(real i imparell)	(Imaginari i imparell)		Senar

$$x(n) = x_{R}(n) + j \cdot x_{I}(n)$$

$$x^{*}(n) = x_{R}(n) - j \cdot x_{I}(n)$$

$$X(\omega) = X_{R}(\omega) + j \cdot X_{I}(\omega)$$

$$X^{*}(\omega) = X_{R}(\omega) - j \cdot X_{I}(\omega)$$

$$X(\omega) = \sqrt{X_{R}^{2}(\omega) + X_{I}^{2}(\omega)}$$

$$\angle X(\omega) = \tan^{-1}\left(\frac{X_{I}(\omega)}{X_{R}(\omega)}\right)$$

Domini freqüencial

Teoremes importants

Propietat/Teorema	Domini temporal	Domini freqüencial		
Notació	x(n)	X(w)		
	$x_1(n)$	$X_{l}(\omega)$		
	$x_2(n)$	$X_2(\omega)$		
Linealitat	$a_1 \cdot x_1(n) + a_2 \cdot x_2(n)$	$a_1 \cdot X_1(\omega) + a_2 \cdot X_2(\omega)$		
Desplaçament temporal	x(n-k)	$e^{-j\cdot\omega\cdot k} X(\omega)$		
Reflexió temporal	x(-n)	Χ(-ω)		
Convolució	$x_1(n) * x_2(n)$	$X_1(\omega) \cdot X_2(\omega)$		
Correlació	$r_{xlx2}(l) = x_1(l) \cdot x_2(-l)$	$S_{x1\cdot x2}(\omega) = X_1(\omega) \cdot X_2(-\omega) =$		
		$=X_1(\omega)\cdot X_2^*(\omega)$ si $x_2(n)$ es rea		
Wiener-Khintchine	$r_{xx}(l)$	$S_{xx}(\omega)$		
Desplaçament freqüencial	$e^{j\cdot\omega_0\cdot n}\cdot x(n)$	$X(\omega - \omega_0)$		
Modulació	$x(n) \cdot \cos(\omega_0 \cdot n)$	$\frac{1}{2} \cdot X(\omega + \omega_0) + \frac{1}{2} \cdot X(\omega - \omega_0)$		
Multiplicació	$x_1(n) \cdot x_2(n)$	$\frac{1}{2\pi}\int_{-\pi}^{\pi}X_{1}(\lambda)X_{2}(\omega-\lambda)d\lambda$		
Dif. Domini freqüencial	$n \cdot x(n)$	$j \frac{dX(\omega)}{dX}$		
Conjugació	$_{\infty} x^{*}(n)$ 1	dω X*(-ω)		
Parseval	$\sum_{n=-\infty} x_1(n) \cdot x_2^*(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\omega) \cdot X_2^*(\omega) d\omega$			

Transformades aperiòdiques útils

Senyal x(n)

$$X(\omega) = \frac{1}{1 - a \cdot e^{-j \cdot \omega}}$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Universitat Politècnica de Catalunya

El terme e jon i la resposta en freqüència

- e^{jωn} es la autofunció (eigenfunction) de molts sistemes LTI i senyals que s'utilitzen a la pràctica:
 - Si $x(n) = A \cdot e^{j\omega n}$ per $\forall n \in I[-\infty, \infty]$, la resposta impulsional s'expressa:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k) \cdot x(n-k) = \sum_{k=-\infty}^{\infty} h(k) \cdot A \cdot e^{j\omega(n-k)}$$

$$H(\omega) = \sum_{k=-\infty}^{\infty} h(k) \cdot e^{-j\omega k}$$

$$y(n) = A \cdot H(\omega) \cdot e^{j\omega n}$$

- L'*autofunció* $e^{j\omega n}$ provoca una sortida igual a l'entrada que difereix en un *factor multiplicatiu* (*H*) "avaluat" en el domini de la freqüència ω
- Cada component freqüencial de x(n) és avaluada pel seu valor propi

$$x(n) = \sum_{k} \alpha_k \cdot e^{j\omega_k n}$$

 $H(\omega)$

$$y(n) = \sum_{k} \alpha_{k} \cdot H(\omega_{k}) \cdot e^{j\omega_{k}n}$$

Resposta en freqüència

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Exemple I. Bàsic

• Determinar la sequència de sortida y(n) del següent sistema:

$$x(n) = A \cdot e^{j\pi n/2} \qquad x(n)$$

-\infty < n < \infty
h(n) = $\left(\frac{1}{2}\right)^n u(n)$
y(n)

Solució

$$H(\omega) = \sum_{n = -\infty}^{\infty} h(n) e^{-j\omega n} = \frac{1}{1 - \frac{1}{2} e^{-j\omega}}$$

• Per
$$\omega = \pi/2$$

$$H\left(\frac{\pi}{2}\right) = \frac{1}{1 - j\frac{1}{2}} = \frac{2}{\sqrt{5}}e^{-j26.6^{\circ}}$$

$$y(n) = \frac{2}{\sqrt{5}} \cdot A \cdot e^{j(\pi n/2 - 26.6^{\circ})}$$

Besides

Escalat d'entrada: 2/5^{1/2} Desplaçament de fase: -26.6°

• Per
$$\omega = \pi$$

$$H(\pi) = \frac{1}{1 - e^{-j\pi}} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$v(n) = \frac{2}{3} \cdot A \cdot e^{j(\pi n/2)}$$

Escalat d'entrada: 2/3 Desplaçament de fase: 0°

Resposta a una x(n) de vàries components

 Exemple: Determineu la resposta y(n) del sistema anterior a la següent entrada

$$x(n) = 10 - 5 \cdot \sin\left(\frac{\pi}{2}n\right) + 20 \cdot \cos(\pi \cdot n) \qquad -\infty < n < \infty$$

• Solucio:

$$H(\omega) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$
• Per $\omega = 0$ \rightarrow $H(0) = \frac{1}{1 - \frac{1}{2}} = 2$

• Per
$$\omega = \pi/2$$
 \longrightarrow $H(\pi/2) = \frac{2}{\sqrt{5}} \cdot e^{-j26.6^{\circ}}$

• Per $\omega = \pi$ \rightarrow $H(\pi) = \frac{2}{3}$

$$y(n) = 10 \cdot H(0) - 5 \cdot \sin\left(\frac{\pi}{2}n\right) \cdot H(\frac{\pi}{2}) + 20 \cdot \cos(\pi \cdot n) \cdot H(\pi) = 20 - \frac{10}{\sqrt{5}} \sin\left(\frac{\pi}{2}n - 26.6^{\circ}\right) + \frac{40}{3} \cos(\pi \cdot n)$$

.

Relacions pràctiques importants

H(ω) correspon a la transformada de Fourier de la resposta impulsional *h*(*n*)

T. Directa
$$\longrightarrow H(\omega) = \sum_{n=-\infty}^{\infty} h(n) e^{-j\omega n}$$

T. Inversa
$$\rightarrow h(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} H(\omega) e^{j\omega k} d\omega$$

 En termes de freqüència, sovint, resulta més còmode parlar d'amplificació - atenuació (|H(ω)| > 1, (|H(ω)| < 1) i fase

$$H(\omega) = \sum_{n=-\infty}^{\infty} h(n) \cdot e^{-j\omega n} = H_R(\omega) + j \cdot H_I(\omega) = |H(\omega)| \cdot e^{j\Theta(\omega)}$$

Representació cartesiana

Representació polar

$$H_{R}(\omega) = \sum_{k=-\infty}^{\infty} h(k) \cdot \cos(\omega k) \longrightarrow \begin{array}{c} \text{Part real} \\ \text{de } H(\omega) \end{array} \qquad \left| H(\omega) \right| = \sqrt{H_{R}^{2}(\omega) + H_{I}^{2}(\omega)} \longrightarrow \begin{array}{c} \text{Modul} \\ \text{Modul} \end{array}$$
$$H_{I}(\omega) = -\sum_{k=-\infty}^{\infty} h(k) \cdot \sin(\omega k) \longrightarrow \begin{array}{c} \text{Part imaginaria} \\ \text{de } H(\omega) \end{array} \qquad \Theta(\omega) = \tan^{-1} \left(\frac{H_{I}(\omega)}{H_{R}(\omega)} \right) \longrightarrow \begin{array}{c} \text{Fase} \end{array}$$

Relacions pràctiques importants (cont.)

• Si x(n) està formada per una combinació arbitrària i lineal de sinusoides:

$$x(n) = \sum_{i=1}^{L} A_i \cdot \cos(\omega_i \cdot n + \phi_i)$$
 $-\infty < n < \infty$

on { A_i } i { ϕ_i } corresponen a la magnitud i fase, respectivament, de la component *i*èsima de les sinusoides d'entrada, llavors, tenim que la sortida és:

$$y(n) = \sum_{i=1}^{L} A_i \cdot |H_i(\omega_i)| \cos[\omega_i \cdot n + \phi_i + \Theta(\omega_i)]$$

on $H(\omega_i)$ i $\{\Theta_i\}$ pertanyen a la resposta en magnitud i fase de cada component *i*èsima sinusoïdal d'entrada

- La relació estableix el principi bàsic de funcionament dels *filtres*, on certes components sinusoïdals s'anul·len ($H(\omega_i) = 0$), mentre que d'altres es deixen passar (o s'amplifiquen) a la sortida ($H(\omega_i) \ge 1$).
- Aquest problema de disseny consisteix en trobar els paràmetres) de *l'equació en diferències* (a₀, ..., a_N; b₀, ..., b_M) que, precisament, estableixen aquestes característiques de H(ω_i)

Disseny de sistemes LTI

Donat el següent sistema LTI:

$$y(n) = a \cdot y(n-1) + b \cdot x(n) \qquad \qquad 0 < a <$$

- Determineu:
 - 1.- El Mòdul i la fase del sistema $H(\omega)$.
 - 2.- El paràmetre *b* per tal de que el valor màxim de $H(\omega)$ sigui la unitat. Dibuixeu $|H(\omega)|$ i $\Theta(\omega)$ per a = 0.9
 - 3.- La sortida del sistema per la següent entrada

$$x(n) = 5 + 12 \cdot \sin\left(\frac{\pi}{2}n\right) - 20 \cdot \cos\left(\pi \cdot n + \frac{\pi}{4}\right)$$

Disseny de sistemes LTI (cont.)

- Solució:
 - 1.- Mòdul i fase:

$$h(n) = b \cdot a^n \cdot u(n) \qquad \longrightarrow \qquad H(\omega) = \sum_{n = -\infty}^{\infty} h(n) \cdot e^{-j\omega \cdot n} = \frac{b}{1 - a \cdot e^{-j\omega \cdot n}}$$

donat que: $1 - a \cdot e^{-j\omega \cdot n} = (1 - a \cdot \cos(\omega)) + j \cdot a \cdot \sin(\omega)$,

$$\left|1 - a \cdot e^{-j\omega}\right| = \sqrt{\left[1 - a \cdot \cos(\omega)\right]^2 + \left[a \cdot \sin(\omega)\right]^2} = \sqrt{1 + a^2 - 2 \cdot a \cdot \cos(\omega)}$$
$$\angle \left(1 - a \cdot e^{-j\omega}\right) = \tan^{-1}\left(\frac{a \cdot \sin(\omega)}{1 - a \cdot \cos(\omega)}\right)$$

Per tant:

$$|H(\omega)| = \frac{|b|}{\sqrt{1 + a^2 - 2 \cdot a \cdot \cos(\omega)}} \qquad \qquad \angle H(\omega) = \Theta(\omega) = \angle \left[b - \tan^{-1}\left(\frac{a \cdot \sin(\omega)}{1 - a \cdot \cos(\omega)}\right)\right]$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Disseny de sistemes LTI (cont II)

- Solució (cont.):
 - 2.- Resposta de $|H(\omega)|$ i $\Theta(\omega)$

Com que *a* és positiu, $|H(\omega)|$ és màxim quan $\omega = 0$. Això implica que:

Disseny de sistemes LTI (cont III)

- Solució (cont.II):
 - 3.- Sortida del sistema *y*(*n*)

Per
$$\omega = 0$$
, \rightarrow $|H(0)| = 1$ $\Theta(0) = 0$

• Per
$$\omega = \pi/2$$
, $\rightarrow \left| H\left(\frac{\pi}{2}\right) \right| = \frac{1-a}{\sqrt{1+a^2}} = 0.074$ $\Theta\left(\frac{\pi}{2}\right) = -\tan^{-1}a = -42^{\circ}$

Per
$$\omega = \pi$$
, \rightarrow $|H(\pi)| = \frac{1-a}{1+a} = 0.053$ $\Theta(\pi) = 0$

$$y(n) = 5 \cdot \left| H(0) \right| + 12 \cdot \left| H\left(\frac{\pi}{2}\right) \right| \cdot \sin\left[\frac{\pi}{2}n + \Theta\left(\frac{\pi}{2}\right)\right] - 20 \cdot \left| H(\pi) \right| \cos\left[\pi \cdot n + \frac{\pi}{4} + \Theta(\pi)\right] =$$
$$= 5 + 0.888 \cdot \sin\left(\frac{\pi}{2}n - 42^{\circ}\right) - 1.06 \cos\left(\pi \cdot n + \frac{\pi}{4}\right)$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Resposta transitòria

- La resposta freqüencial H(ω) determina la sortida d'un sistema estable per entrades exponencials (sinusoïdals) en el rang: -∞ < n < ∞. (Teòricament, la sortida no conté component transitòria)
- A la pràctica, a més existeix un *transitori que s'esvaeix amb el temps*, ja que x(n) s'aplica al sistema a un temps determinat (n = n₀)

Si:
$$\begin{cases} y(n) = a \cdot y(n-1) + x(n) = a^{n+1}y(-1) + \sum_{k=0}^{n} a^{k}x(n-k), & |a| < 1, n \ge 0 \\ x(n) = A \cdot e^{j\omega \cdot n} & n \ge 0 \end{cases}$$
$$y_{tr}(n) = a^{n+1}y(-1) - \frac{A \cdot a^{n+1}e^{-j\omega \cdot (n+1)}}{1-a \cdot e^{-j\omega}} \cdot e^{-j\omega \cdot n} \longrightarrow \qquad \text{Resposta} \\ y_{ss}(n) = \frac{A}{1-a \cdot e^{-j\omega}} \cdot e^{-j\omega \cdot n} = A \cdot H(\omega) \cdot e^{j\omega \cdot n} \longrightarrow \qquad \text{Regim} \\ \text{permanent} \end{cases}$$

 Els transitoris només es consideren quan la *integritat* d'algun component del sistema pot quedar afectada

Resposta a entrades N-periòdiques

 Si la descomposició en sèrie de Fourier de senyals periòdics es representa com:

$$x(n) = \sum_{k=0}^{N-1} c_k \cdot e^{j \cdot 2 \cdot \pi \cdot k \cdot n/N}, \quad \begin{array}{c} k = 0, 1, \dots, N-1 \\ -\infty < n < \infty \end{array}$$

La sortida és:

$$y(n) = H(\omega) \cdot x(n)$$

$$\omega = \frac{2 \cdot \pi \cdot k}{N}$$

$$y(n) = \sum_{k=0}^{N-1} c_k \cdot H\left(\frac{2 \cdot \pi \cdot k}{N}\right) e^{j \cdot 2 \cdot \pi \cdot k \cdot n/N}, \quad k = 0, 1, \dots, N-1$$

 La sortida canvia respecte a la forma del senyal d'entrada però manté la seva periodicitat

$$d_k \equiv c_k \cdot H\left(\frac{2 \cdot \pi \cdot k}{N}\right) \quad ----$$

Escalat d'amplitud i **desplaçament** de fase en els coeficients

 d_k - Coeficients de Fourier de y(n)

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Resposta a entrades aperiòdiques

- Senyals d'entrada aperiòdiques d'energia finita presenten espectres freqüencials continus, on el mòdul i la fase de H(ω) determina com canvien les seves components:
 - Amplificació/atenuació
 - Desplaçament en el temps

$$\begin{array}{ccc} x(n) \\ X(\omega) \end{array} \longrightarrow \begin{array}{c} y(n) = h(n)^* x(n) \\ Y(\omega) = H(\omega)^* X(\omega) \\ \swarrow Y(\omega) = -\frac{1}{2} H(\omega) + \frac{1}{2} X(\omega) \\ \swarrow Y(\omega) = -\frac{1}{2} H(\omega) + \frac{1}{2} X(\omega) \\ H(\omega) = -\frac{1}{2} H(\omega) + \frac{1}{2} H(\omega) + \frac{1}{2} H(\omega) \\ H(\omega) = -\frac{1}{2} H$$

- A la sortida no existeixen components freqüencials *addicionals* respecte de l'entrada. En cas contrari, el sistema és no lineal o variant en el temps
- Distorsió.- Quan el canvi provocat pel sistema a la sortida de les components freqüencials d'entrada és no desitjat

H(z) vs H(ω). Algunes relacions útils

• Les igualtats són vàlides només si la circumferència de *radi unitat* està dintre de la zona de convergència de *H*(*z*)

Universitat Politècnica de Catalunya

32/33

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Càlcul freqüencial amb els 'pols' i 'zeros' de $H(\omega)$

• Funcions normalitzades:

$$H(\omega) = b_0 \frac{\prod_{k=1}^{M} (1 - z_k \cdot e^{-j\omega})}{\prod_{k=1}^{N} (1 - p_k \cdot e^{-j\omega})} = b_0 \cdot e^{j\omega \cdot (N-M)} \frac{\prod_{k=1}^{M} (e^{j\omega} - z_k)}{\prod_{k=1}^{M} (e^{j\omega} - p_k)} = b_0 \cdot z^{(N-M)} \frac{\prod_{k=1}^{M} (z - z_k)}{\prod_{k=1}^{M} (z - p_k)} \longrightarrow \text{ zeros}$$

$$e^{j\omega} - z_{k} = V_{k}(\omega) e^{j\Theta_{k}(\omega)} \longrightarrow V_{k}(\omega) \equiv |e^{j\omega} - z_{k}|, \quad \Theta_{k}(\omega) \equiv \angle (e^{j\omega} - z_{k})$$

$$e^{j\omega} - p_{k} = U_{k}(\omega) e^{j\Phi_{k}(\omega)} \longrightarrow U_{k}(\omega) \equiv |e^{j\omega} - p_{k}|, \quad \Phi_{k}(\omega) \equiv \angle (e^{j\omega} - p_{k})$$

Càlcul del mòdul i la fase

$$|H(\omega)| = |b_0| \frac{V_1(\omega) \cdots V_M(\omega)}{U_1(\omega) \cdot U_2(\omega) \cdots U_N(\omega)}$$

$$\angle H(\omega) = \angle b_0 + \omega (N - M) + \Theta_1(\omega) + \cdots + \Theta_M(\omega) - [\Phi_1(\omega) + \Phi_2(\omega) + \cdots + \Phi_N(\omega)]$$

Normalització en dB's

$$|H(\omega)|_{dB} = 20 \cdot \log_{10} |b_0| + 20 \cdot \sum_{k=1}^{M} \log_{10} V_k(\omega) - 20 \cdot \sum_{k=1}^{M} \log_{10} U_k(\omega)$$

Càlcul de $|H(\omega)|$ i $\angle H(\omega)$

 Determineu la resposta freqüencial descrita per la funció de transferència següent:

Solució:

$$H(\omega) = H(z)|_{z=e^{j\omega}} = \frac{e^{j\omega}}{e^{j\omega} - 0.8}$$

Estimació i determinació de sistemes LTI

- Correlacions entrada-sortida:
 - Si excitem un sistema LTI amb un senyal x(n) d'espectre d'energia constant (espectre pla: $S_{xx}(\omega) = E_x$ i constant, $-\pi \le \omega \le \pi$), es possible determinar la seva resposta impulsional amb la correlació d'entrada-sortida:

$$H(\omega) = \frac{1}{E_x} = S_{yx}(\omega) \qquad h(n) = \frac{1}{E_x} = r_{yx}(m)$$

• Correlació amb entrades aleatories:

• També és possible *identificar* la resposta freqüencial $H(\omega)$ amb una entrada de soroll blanc (Espectre de potència: $(\sigma_x)^2$) determinant la transformada de Fourier de la correlació entrada-sortida $\gamma_{yx}(m)$. El resultat és proporcional a $H(\omega)$

$$\Gamma_{yx}(\omega) = \sigma_x^2 \cdot H(\omega)$$

La correlació és molt útil en la identificació de sistemes desconeguts

Aplicacions de l'anàlisi freqüencial

• Filtres digitals selectius en freqüència

- Passa-baixes, Passa-alt, Passa-banda, Banda-eliminada, Passa-Tot, ranura, ...
- Sistemes resonants digitals
- Oscil·ladors digitals sinusoïdals
- Identificació de sistemes (Convolució inversa o deconvolució)
 - Sistemes de fase mínima, fase màxima i mixta
 - De-convolució homomòrfica

Filtres digitals. Introducció

Idealitat vs. Realitat

- El filtre digital 'ideal' presenta *un guany constant* en la banda de pas ($|H(\omega_0|=1)$, $|\omega_1| < |\omega_0| < |\omega_2|$) i *fase lineal*, però són **impossibles** d'implementar a la pràctica.
 - P.e.: Filtre ideal passa-baixes és inestable

$$h_{lp}(n) = \frac{\sin(\omega_c \pi \cdot n)}{\pi \cdot n}, \quad -\infty < n < \infty \longrightarrow$$
 Resposta impulsional *no causal* ni *sumable*

- En la realitat, és possible implementar d'altres que s'hi aproximen bastant
- Principi de disseny:
 - **1.-** *Pols dintre* de la circumferència unitària i *a prop* de la frontera (r=1) per als valors de ω que es desitgen 'accentuar'. Zeros en *punts del pla* per als valors de ω que es desitgen 'amortir'.
 - **2**.- Pols i zeros 'conjugats' han de tenir coeficients reals.
- Eines informàtiques comercials de disseny de filtres s'utilitzen per eliminar sorolls, detectar senyals, igualar canals o realitzar anàlisis espectrals en aplicacions de comunicacions, sonar o radar, entre d'altres.

'Passa-baixes' i 'Passa-alts'

- Passa-baixes (LP.- Low-Pass) : Els 'pols' han d'estar a prop de la circumferència unitària per freqüències baixes (ω → 0) i els zeros ho han d'estar per freqüències elevades (ω → π)
 - Passa-altes (HP.- High-Pass): És el cas anàleg dels filtres passa-baixes

Disseny de filtres senzills

 Determineu els valors de p i b₀ tal que el següent filtre 'passa-baixes' verifiqui la següent resposta freqüencial H(z):

$$H(z) = \frac{b_0}{(1 - p \cdot z^{-1})^2} \qquad \begin{cases} H(0) = 1 \\ \left| H\left(\frac{\pi}{4}\right) \right|^2 = \frac{1}{2} \end{cases}$$

• Solució:

- **Per:**
$$H(0) = 1 \longrightarrow H(0) = \frac{b_0}{(1-p)^2} = 1 \longrightarrow b_0 = (1-p)^2$$

$$-\operatorname{Per}|H(\pi/4)| \longrightarrow H\left(\frac{\pi}{4}\right) = \frac{(1-p)^2}{\left(1-p \cdot e^{-j \cdot \pi/4}\right)^2} = \frac{(1-p)^2}{\left(1-\frac{p(1-j)}{\sqrt{2}}\right)^2} \longrightarrow \left|H\left(\frac{\pi}{4}\right)\right|^2 = \frac{(1-p)^4}{\left(\left(1-\frac{p}{\sqrt{2}}\right)^2 + \frac{p^2}{2}\right)^2} = \frac{1}{2}$$

$$\left|H\left(\frac{\pi}{4}\right)\right|^2 = \frac{(1-p)^4}{\left(\left(1-\frac{p}{\sqrt{2}}\right)^2 + \frac{p^2}{2}\right)^2} = \frac{1}{2} \longrightarrow \frac{\sqrt{2}(1-p)^2 = 1+p^2 - \sqrt{2} \cdot p}{p=0.323} \longrightarrow H\left(z\right) = \frac{0.46}{\left(1-0.323 \cdot z^{-1}\right)^2}$$

'Passa-banda' (BP.- Band-Pass)

- Com a mínim, els filtres 'passa-banda' han de tenir un *parell de pols complexes* conjugats bastant a prop del cercle unitari per freqüències al voltant de la banda de pas (ω₁ <ω < ω₂) i dos zeros a freqüències inferiors i posteriors.
- Exemple:
 - Dissenyeu un filtre passa-banda amb centre de la banda de pas ($\omega_0 = \pi/2$), resposta freqüencial nul·la per ($\omega = \pi$ i $\omega = 0$) i magnitud $1/\sqrt{2}$ a ($\omega_0 = 4\pi/9$)
 - Solució:
 - Com que $\omega_0 = \pi/2$ els pols s'han de situar a: $p_{1,2} = r \cdot e^{\pm \pi/2}$ i els zeros a: z = -1 i z = 1. Així, la funció de transferència ha de quedar de la següent manera:

$$H(z) = G \frac{(z-1)(z+1)}{(z-j \cdot r)(z+j \cdot r)} = \frac{z^2 - 1}{z^2 + r^2}, \qquad H\left(\frac{\pi}{2}\right) = G \frac{z^2 - 1}{z^2 + r^2} = G \frac{2}{1 - r^2} \longrightarrow \quad G = \frac{1 - r^2}{2}$$

$$\left|H\left(\frac{4\pi}{9}\right)\right|^2 = \frac{(1 - r^2)^2}{4} \frac{2 - 2 \cdot \cos(8\pi/9)}{1 + r^4 + 2 \cdot r^2 \cdot \cos(8\pi/9)} = \frac{1}{2} \longrightarrow \quad 1.94(1 - r^2)^2 = 1 - 1.88 \cdot r^2 + r^4 \longrightarrow \quad \begin{cases} r^2 = 0.7 \\ G = 0.15 \end{cases}$$

$$H(z) = 0.15 \frac{1 - z^{-2}}{1 + 0.7 \cdot z^{-2}}$$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Universitat Politècnica de Catalunya

Sistemes ressonants digitals

- Pertanyen a una classe especial de 'passa-banda' molt selectiva en fregüència bastant utilitzada en nombroses aplicacions: generació de veu, filtres senzills, etc.
- Dues configuracions bàsiques amb els pols conjugats molt a prop del cercle unitari:

Pols:

 $(1-r\cdot e^{j\omega_0}\cdot z^{-1})(1-r\cdot e^{-j\omega_0}\cdot z^{-1})$ Magnitiuds del polinomi carácterístic: $|U_1(\omega)| = \sqrt{1 + r^2 - 2 \cdot r \cos(\omega_0 - \omega)}$ $|U_2(\omega)| = \sqrt{1 + r^2 - 2 \cdot r \cos(\omega_0 + \omega)}$

Freqüència de natural: ω_0

Normalització de guany: $|H(\omega_0)| = 1$

$$b_{0A} = (1-r)\sqrt{1+r^2 - 2 \cdot r \cdot \cos(2 \cdot \omega_0)}$$
$$b_{0B} = b_{0A} / |N(\omega)|$$

Freqüència de resonància:

$$\omega_r = \cos^{-1} \left(\frac{1 + r^2}{2 \cdot r} \cdot \cos(\omega_0) \right)$$

quan $|U_1(\omega)| \cdot |U_2(\omega)|$ és mír

quan
$$|U_1(\omega)| \cdot |U_2(\omega)|$$
 és mínim
 $\omega \approx 2 \cdot (1 - r)$

В

Sistemes ressonants digitals (Cont.)

'Banda-eliminada' (Notch)

 Per suprimir components freqüencials de l'espectre. És el cas anàleg als 'passabanda': un parell de zeros conjugats sobre el cercle unitari (que formen un angle ω₀) i dos pol a freqüències inferiors i posteriors, com a mínim

'Passa-tot' (AP.- All-Pass)

• Magnitud constant per totes les freqüències de l'espectre

$$|H(\omega)| = 1, \quad 0 \le \omega \le \pi \quad \Rightarrow \quad H(z) = \frac{\sum_{k=0}^{N} a_k \cdot z^{-N+k}}{\sum_{k=0}^{N} a_k \cdot z^{-k}}, \quad \text{amb coeficients } \{a_k\} \text{ reals}$$

• Expressió general:
$$H_{ap}(z) = \prod_{k=1}^{N_R} \frac{z^{-1} - \alpha_k}{1 - \alpha_{\cdot_k} \cdot z^{-1}} \cdot \prod_{k=1}^{N_C} \frac{(z^{-1} - \beta_k)(z^{-1} - \beta_k^*)}{(1 - \beta_{\cdot_k} \cdot z^{-1})(1 - \beta_k^* \cdot z^{-1})}$$

- N_{R} Nombre de pols i zeros reals. N_{C} Nombre de pols i zeros conjugats
- Condició d'estabilitat: -1 < α_k < 1, $|\beta_k|$ < 1
- Fase no constant. El paràmetre de 'retard d'envolvent' (o 'de grup') serveix per determinar el desplaçament temporal que experimenta cada component freqüencial:

$$\int_{\Omega} (\omega) = -\frac{d\Theta_{ap}(\omega)}{d\omega}$$
 1er. Ordre: $H_{ap}(\omega) = \frac{e^{-j\omega} - r \cdot e^{-j\theta}}{1 - r \cdot e^{-j\theta} \cdot e^{-j\omega}}$
$$\Rightarrow \begin{cases} \Theta_{ap}(\omega) = -\omega - 2 \cdot \tan^{-1} \left(\frac{r \cdot \sin(\omega - \theta)}{1 - r \cdot \cos(\omega - \theta)} \right) \\ \tau_z = \frac{1 - r^2}{1 + r^2 - 2 \cdot r \cdot \cos(\omega - \theta)} \end{cases}$$

Aplicació: *Igualadors de fase* (per canviar una fase no desitjada de $H(\omega)$)

'Passa-tot' (Cont.)

Filtres 'Comb'

 S'obtenen repetint L vegades una determinada forma d'espectre (filtres FIR) dintre del rang (0 < ω < 2π):

$$H_L(\omega) = H(L \cdot \omega)$$

Filtres 'Comb' (Cont)

- El nom es deu a la forma peculiar de l'espectre ('pinta amb pues' = comb, en anglès)
- Expressió general: $H(z) = \sum_{k=0}^{M} h(k) z^{-k}$
- Només contenen zeros sobre el cercle unitari espaiats periòdicament:

• Zeros:
$$z = e^{j \cdot \frac{2 \cdot \pi \cdot k}{M+1}}$$
, $k = 1, 2, 3, ..., M$ Periodicitat: $\omega_k = \frac{2 \cdot \pi \cdot k}{M+1}$

- Utilitzats àmpliament en diverses aplicacions:
 - Supressió d'harmònics en sistemes de potència
 - Separació espectral de components solars i lunars
 - En aplicacionsde radar per eliminar 'clutter' provocat pels objectes fixes i detectar els objectes en moviment

Conversió de filtres

 La propietat de la *translació en freqüència*, permet convertir un filtre 'passa-baixes' en d'altres ('passa-alts', 'passa-banda', o 'bandaeliminada').

P.e: Canviant el signe de les mostres (o coeficients) imparells de h(n) (o H(ω)) es pot canviar de 'passa-baixes(altes)' a 'passa-altes(baixes)'

0

- LP a HP:
$$h_{hp}(n) = (-1)^n h_{hp}(n)$$

- HP a LP: $h_{lp}(n) = (-1)^n h_{hp}(n)$
- Resposta
freqüencial: $H(\omega) = \frac{\sum_{k=0}^{M} (-1)^k \cdot b_k \cdot e^{-j\omega \cdot k}}{1 + \sum_{k=1}^{N} (-1)^k \cdot a_k \cdot e^{-j\omega \cdot k}}$
 $y(n) = -\sum_{k=1}^{N} (-1)^k \cdot a_k \cdot y(n-k) + \sum_{k=1}^{M} (-1)^k \cdot b_k \cdot x(n-k)$
 $y_{lp}(n) = 0.9y(n-1) + 0.1 \cdot x(n)$
 $y_{hp}(n) = -0.9y(n-1) + 0.1 \cdot x(n) \longrightarrow H_{hp}(\omega) = \frac{0.1}{1 + 0.9 \cdot e^{-j \cdot \omega}}$

Oscil·ladors digitals

- És un sistema capaç de generar senyals periòdiques de sortida amb absència 'total' o 'parcial' de senyals d'entrada.
- Pols conjugats **sobre** el cercle unitari (Cas 'extrem' dels ressonadors digitals)

Oscil·lador acoblat

$\left[y_{c}(n) \right]_{}$	$\cos(\omega_0)$	$-\sin(\omega_0)$	$\left[y_c(n-1) \right]$
$\left[y_{s}(n) \right]^{-}$	$sin(\omega_0)$	$\cos(\omega_0)$	$\left\lfloor y_{s}(n-1) \right\rfloor$

El senyal es genera amb un impuls a l'entrada $(\delta(n))$ o unes condicions inicials no nul·les. Aquest és el mecanisme bàsic d'un *sintetitzador*

Sistemes inversos i De-convolució

• En moltes situacions pràctiques, resulta útil **esbrinar l'entrada** *x*(*n*) **d'un** *sistema desconegut*, coneixent a priori la seva sortida *y*(*n*)

P.e: 'Les línies de comunicació digital poden arribar a introduir distorsió'

- Interessa dissenyar un sistema que, connectat en sèrie amb el sistema distorsionant, produeixi una rèplica aproximada de l'entrada (Sistema invers)
- La *identificació de sistemes* és el procés que consisteix en determinar les característiques de sistemes desconeguts: h(n), o bé H(ω):
 - Es mesura y(n) amb una x(n) coneguda per determinar les característiques que serviran per al disseny del sistema invers
- La *deconvolució* s'utilitza generalitzadament en senyals sísmiques i geofísiques per separar l'entrada de les característiques del sistema a identificar

Invertibilitat en sistemes LTI

- Un sistema és invertible si existeix correspondència biunívoca entre entrada i sortida:
 - És possible determinar unívocament x(n) (-∞ < n < ∞) del sistema T si es coneix y(n)

Problemes de la invertibilitat

La solució no és única, si no s'especifica la regió de convergència

Com obtenir $h_I(n)$ **mitjançant** h(n)?

• Si h(n) i $h_I(n)$ són *causals*, $h_I(n)$ es pot obtenir mitjançant un algorisme de programació:

$$h_I(n) = -\sum_{k=1}^n \frac{h(k) \cdot h_I(n-k)}{h(0)}, \quad n \ge 1, \quad h_I(0) = \frac{1}{h(0)}$$

- Inconvenients:
 - 1. No funciona si h(0) = 0. Fàcil solució si s'adapta el sistema identitat convenientment amb retards $(h(n) * h_I(n) = \delta(n-L))$
 - 2. Genera errors de precisió degut a l'arrodoniment que són considerables si *n* és elevat
- Exemple: Trobeu el sistema invers de $h(n) = \delta(n) \alpha \cdot (n-1)$
 - $h(0) = 1, h(1) = -\alpha, h(n) = 0, \text{ per } n \ge \alpha$
 - $h_I(0) = 1/h(0) = 1$
 - $h_{I}(n) = \alpha \cdot h_{I}(n-1), n \ge 1$

$$h_I(1) = \alpha, \quad h_I(2) = \alpha^2, \quad \dots \quad h_I(n) = \alpha^n$$

Fase mínima, màxima i mixta

- Fase mínima.- Tots els zeros (i pols) es troben dintre del cercle unitari.
- Fase màxima.- Tots els zeros es troben fora del cercle unitari
- Fase mixta.- Hi ha zeros dintre i fora del cercle unitari

Només els sistemes de fase mínima tenen sistemes inversos estables

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Fase no mínima. Consideracions

 Qualsevol sistema de fase no mínima pot expressar-se com la unió d'un sistema de fase mínima i un filtre 'passa-tot'

$$H(z) = \frac{B(z)}{A(z)} = H_{\min}(z) \cdot H_{ap}(z) , \quad H_{\min}(z) = \frac{B_1(z) \cdot B_2(z^{-1})}{A(z)}, \quad H_{ap}(z) = \frac{B_2(z)}{B_2(z^{-1})}$$

- Aquesta propietat implica que per obtenir un sistema invers estable es pot realitzar una correcció de la fase 'no mínima' del sistema
- **Retard de grup** del sistema de fase no mínima: $\tau_g(\omega) = \tau_g^{\min}(\omega) + \tau_g^{ap}(\omega)$
- Dels dos, el sistema de fase mínima te menys retard de grup
- $\tau_g^{\min}(\omega) < \tau_g^{ap}(\omega)$ Energia parcial: $E(n) = \sum_{k=1}^{n} |x(k)|^2$
 - De tots els sistemes que tenen la mateixa magnitud i energia total $(E(\infty))$, els de fase mínima tenen major energia parcial $(E_{min}(n) > E(n))$

Identificació de sistemes. Mètodes

- Els següents mètodes es poden utilitzar per determinar h(n) o bé H(ω)) de sistemes causals on a priori y(n) i x(n) són conegudes
 - Divisió directa:

$$y(n) = \begin{cases} 1, & n = 0 \\ \frac{7}{10}, & n = 1 \\ 0 & n \ge 2 \end{cases} \quad x(n) = \begin{cases} 1 & n = 0 \\ -\frac{7}{10}, & n = 1 \\ \frac{1}{10}, & n = 2 \\ 0 & n \ge 3 \end{cases} \quad H(z) = \frac{Y(z)}{X(z)} = \frac{1 + (7/10)z^{-1}}{1 - (7/10)z^{-1} + (1/10)z^{-2}} \\ y(n) = (7/10)y(n-1) - (1/10)y(n-2) + x(n) + (7/10)x(n-1) \\ h(n) = \left[4\cdot\left(\frac{1}{2}\right)^n - 3\cdot\left(\frac{1}{5}\right)^n\right] \cdot u(n) \end{cases}$$

2. Algorisme recursiu:

$$h(n) = \frac{y(n) - \sum_{k=0}^{n-1} h(k) \cdot x(n-k)}{x(0)} \quad n \ge 1, \quad h(0) = \frac{y(0)}{x(0)}$$

3. Correlació encreuada

$$h(n) = \frac{r_{yx}(n) - \sum_{k=0}^{n-1} h(k) \cdot r_{xx}(n-k)}{r_{xx}(0)} \quad n \ge 1, \quad h(0) = \frac{r_{yx}(0)}{r_{xx}(0)}$$

3.2

 $H(\omega) = \frac{S_{yx}(\omega)}{S_{xx}(\omega)} = \frac{S_{yx}(\omega)}{|X(\omega)|^2}$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Mètodes d'identificació. Consideracions

- Com que y(n) sols tenir longitud infinita, el mètode de la divisió directa
 (1) no és pràctic i, per tant, no s'utilitza.
- En el mètode de l'algorisme recursiu (2) existeix el mateix problema però, de vegades, és possible truncar h(n).
- El mètode de la *correlació encreuada* (3) és més efectiu i permet diverses opcions per identificar els sistemes:
 - 3.1a.- Per mitjà de la correlació sortida-entrada r_{yx}(m), i obtenint h(n) recursivament
 - 3.1b.- Utilitzant un senyal d'entrada d'espectre pla i calculant la correlació r_{yx}(m)
 - 3.2.- Determinant la resposta en freqüència $H(\omega)$ per mitjà de la transformada de Fourier de la correlació $r_{yx}(m)$

El 'cepstrum' i la de-convolució homomòrfica

Definició de 'cepstrum'

$$c_x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \ln[X(\omega)] e^{j\omega \cdot n} d\omega$$
$$\ln[X(\omega)] = \ln|X(\omega)| + j \cdot \theta(\omega)$$

- De-convolució homomòrfica
 - Si $Y(z) = X(z) \cdot H(z)$, aleshores $c_y(n) = c_x(n) + c_h(n)$
 - Procés de de-convolució homomòrfica

Resposta impulsional h(n) i entrada x(n) són **estimades** fent servir **NOMÉS** el senyal de sortida y(n)

De-convolució homomòrfica. Consideracions

 La de-convolució homomòrfica no sempre funciona. Només es vàlida en aquelles aplicacions on els cepstrum c_h(n) i c_x(n) obtinguts són considerablement diferents com per poder realitzar el procés de separació ('passa-altes' i 'passa-baixes')

El 'cepstrum' i la de-convolució homomòrfica s'utilitza per estimar contingut espectral de *veu*, i *processat de senyals sísmiques* i *geo-físiques*, entre d'altres

Filtres analògics i digitals (FEAD)

Ampliació del anàlisi freqüencial: La 'DFT' i la 'IDFT'

Introducció

 Per realitzar un anàlisi freqüencial digital s'aplica una conversió de x(n) (en el domini del temps) a una forma equivalent en el domini de la freqüència X(ω) (Transformada de Fourier)

- Per situacions reals (senyals *discretes* i *aperiòdiques*) X(ω) hauria de ser contínua, però tècnicament és *impossible* ja que s'ha de 'discretitzar' l'espectre per al càlcul digital.
- En aquesta secció es considera la representació de senyals mitjançant mostres descrites de l'espectre: la *Transformada de Fourier Discreta* (ó DFT.- *Discrete Fourier Transform*)

Què succeeix al 'discretitzar' X(ω)?

 Discretitzar l'espectre equival a obtenir un senyal x_p(n) (amb la seva transformada inversa) que és una extensió periòdica del senyal original x(n)

En aquesta situació, x(n) (senyal original aperiòdic i de longitud L) i $X(\omega)$ només es poden recuperar si no existeix '*aliasing*' en el domini del temps $(N \ge L)$

Exemple pràctic

• Determinació del espectre: $x(n) = a^n \cdot u(n), \quad 0 \le a \le 1$

Transformada Discreta de Fourier

T. Directa: (DFT) T. Inversa: (IDFT) $X(k) = \sum_{n=1}^{N-1} x(n) e^{-j \cdot \frac{2\pi \cdot k}{N} \cdot n}$ $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2\pi \cdot k}{N} n} \qquad K = 0, 1, ..., N-1$ **Exemple:** $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & n \ge N \end{cases}$ $N \ge L \xrightarrow{\text{DFT}} X(k) = \frac{\sin(\omega L/2)}{\sin(\omega/2)} e^{-j\pi \cdot k(L-1)/N}$ $\theta\left(\frac{2\pi}{N}\cdot k\right)$ $\theta\left(\frac{2\pi}{N}\cdot k\right)$ $\left| X\left(\frac{2\pi}{N} \cdot k\right) \right|$ $\left| X\left(\frac{2\pi}{N} \cdot k\right) \right|$ N = 50N = 100

Altres representacions de la DFT i la IDFT

Transformació lineal.- Permet una representació de la DFT i IDFT matricial

$$DFT: X(k) = \sum_{n=0}^{N-1} x(n) W_N^{k \cdot n} \qquad W_N = e^{-j\frac{2\pi}{N}} \qquad IDFT: x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-k \cdot n} \\ x_N = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix} \qquad W_N = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W_N & W_N^2 & \cdots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & \cdots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \cdots & W_N^{N-1(N-1)} \end{bmatrix} \qquad X_N = \begin{bmatrix} X(0) \\ X(1) \\ \vdots \\ X(N-1) \end{bmatrix}$$
Serval original $X(n)$ Bases de Fourier (Matriu identitat ortogonal) Espectre: $X(k)$

• **DFT:**
$$X_N = W_N \cdot x_N$$

• **IDFT:** $x_N = W_N^{-1} \cdot X_N = \frac{1}{N} W_N^* \cdot X_N$
 $W_N \cdot W_N^{-1} = \frac{1}{N} W_N^*$

 I_N .- Matriu identitat

Relacions amb el domini freqüencial continu

- Coeficients de Fourier de seqüències periòdiques
 - La DFT proporciona les línies del espectre

 $X(k) = N \cdot c_k \rightarrow c_k$ - Coeficients de la seqüència periòdica

- Transformada de Fourier de seqüències aperiòdiques
 - La IDFT donarà com a resultat la seqüència original x(n), només quan aquesta tingui una longitud finita $L \le N$
- Transformada 'z' (versió amb l'espectre discret)

$$X(z) = \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{X(k)}{1 - e^{j2\pi k/N} \cdot z^{-1}} \longrightarrow X(\omega) = \frac{1 - e^{-j\omega \cdot N}}{N} \sum_{k=0}^{N-1} \frac{X(k)}{1 - e^{j(\omega - 2\pi k/N)} \cdot z^{-1}}$$

Propietats de periodicitat i linealitat

$$x(n+N) = x(n) \iff X(k+N) = X(k)$$

$$a_1 \cdot x_1(n) + a_2 \cdot x_2(n) \iff a_1 \cdot X_1(k) + a_2 \cdot x_2(k)$$

Simetria de la DFT

Propietats de la DFT

ema Domini tempora	Domini freqüencial
$x(n), x_1(n), x_2(n), y(n)$) $X(k), X_1(k), X_2(k), Y(k)$
x(n) = x(n+N)	X(k) = X(k+N)
t $a_1 \cdot x_1(n) + a_2 \cdot x_2(n)$	$a_1 \cdot X_1(k) + a_2 \cdot X_2(k)$
ooral $x(n-N)$	X(N-k)
$r en el temps \qquad x((n-l))_N$	$X(k) \cdot e^{-j \cdot 2\pi k l/N}$
en freqüència $x(n) \cdot e^{j \cdot 2\pi l n/N}$	$X((k-l))_N$
$mplexa x^*(n)$	$X^*(N-k)$
cular $x_1(n) \otimes x_2(n)$	$X_1(k) \cdot X_2(k)$
cular $x(n) \otimes y^*(-n)$	$X(k) \cdot Y^*(k)$
s seqüències $x_1(n) \cdot x_2(n)$	$\frac{1}{N}X_1(k)\otimes X_2(k)$
rseval $\sum_{n=-\infty}^{\infty} x_1(n) \cdot y^*(n)$	$\frac{1}{N}\sum_{k=0}^{N-1}X(k)Y^{*}(k)$
rseval $\sum_{n=-\infty}^{\infty} x_1(n) \cdot y^*(n)$ $x_1(n) = \sum_{n=0}^{N-1} x_1(n) \cdot x_2((m-n))$	$\frac{1}{N} \sum_{k=0}^{N-1} X(k) \cdot Y^{*}$ $))_{N}, m = 0, 1, \dots, N-1$

Càlcul de la convolució circular

•
$$x_1(n) = \{2, 1, 2, 1\}, x_2(n) = \{1, 2, 3, 4\}$$

Primeres conclusions sobre la DFT i IDFT

- Tot i la pèrdua de precisió vers al temps continu, la DFT és molt utilitzada en nombroses aplicacions de processat de senyal, anàlisi espectral o filtratge lineal, entre d'altres
- Estimacions més precises del temps continu (X(ω)) es poden aconseguir augmentant el nombre de mostres (N) o bé usant tècniques d'interpolació
- Aquests processos (DFT i IDFT), només es poden practicar sobre senyals *aperiòdiques* amb un nombre de mostres no superior al de la característica freqüencial (L ≤ N)
- L'operació H(k)·X(k) (convolució circular) NO serveix en aplicacions de filtrat lineal (convolució lineal) però com veurem hi ha solució
- Existeixen diversos algorismes de càlcul ràpid que es basen en la transformació lineal: FFT (Fast Fourier Transform), Goetzel, o 'z'-chirp

Filtrat lineal amb la DFT

- Adherir *zeros* a les seqüències *h*(*n*) *i x*(*n*), és la solució al problema de discretització i fa possible l'ús de la DFT/IDFT en operacions de filtratge lineal
- Com posar els zeros?
 - Modificant h(n) i x(n) (de longitud M i L respectivament) de manera que les noves seqüències h(n) i x(n) siguin de longitud N, on:

$$N \ge L + M - 1$$
, i
$$\begin{cases} \hat{x}(n) = 0, \quad L < n \le N \\ \hat{h}(n) = 0, \quad M < n \le N \end{cases}$$
$$\hat{x}(n) = \int_{\mathcal{X}(n)} \int_{\mathcal{X}(n)} \hat{y}(n) = y(n)$$
$$\hat{x}(n) \Leftrightarrow Y(k) = H(k) \cdot X(k)$$
Domini temporal Domini freqüencial Domini freqüencial

 Aquest mètode de filtratge lineal s'utilitza a la pràctica ja que, tot i ser indirecte (2DFT's + 1 IDFT), amb la FFT (molt més eficient) és una operació més ràpida que la convolució lineal

Filtrat lineal: Exemple

- Determineu la resposta y(n) del filtre $h(n) = \{1, 2, 3\}$ amb entrada $x(n) = \{1, 2, 2, 1\}$ utilitzant la DFT i la IDFT
 - Longitud mínima de la DFT ha de ser de 6 zeros (N=L+M-1)
 - Com que el càlcul de la DFT és més eficient amb un valor diàdic (potència de 2), agafen N = 8 $X(k) = \sum_{n=1}^{7} x(n) e^{-j \cdot \frac{2\pi \cdot k}{8} \cdot n} = 1 + 2 \cdot e^{-j\pi k/4} + 2 \cdot e^{-j\pi k/2} + 2 \cdot e^{-j\pi k/4}$

$$X(0) = 6 \qquad X(1) = \frac{2+\sqrt{2}}{2} - j\left(\frac{4+3\sqrt{2}}{2}\right) \\ X(2) = -1-j \qquad X(3) = \frac{2-\sqrt{2}}{2} + j\left(\frac{4-3\sqrt{2}}{2}\right) \\ X(4) = 0 \qquad X(5) = \frac{2-\sqrt{2}}{2} - j\left(\frac{4-3\sqrt{2}}{2}\right) \\ X(2) = -1+j \qquad X(7) = \frac{2+\sqrt{2}}{2} + j\left(\frac{4+3\sqrt{2}}{2}\right) \\ X(2) = -1+j \qquad X(7) = \frac{2+\sqrt{2}}{2} + j\left(\frac{4+3\sqrt{2}}{2}\right) \\ X(2) = -1+j \qquad X(7) = \frac{2+\sqrt{2}}{2} + j\left(\frac{4+3\sqrt{2}}{2}\right) \\ X(3) = -1+j \qquad X(7) = \frac{2+\sqrt{2}}{2} + j\left(\frac{4+3\sqrt{2}}{2}\right) \\ X(4) = 0 \qquad X(5) = 1-\sqrt{2} + j\left(3-\sqrt{2}\right) \\ X(4) = 2 \qquad H(5) = 1-\sqrt{2} - j\left(3-\sqrt{2}\right) \\ X(4) = 2 \qquad H(5) = 1-\sqrt{2} - j\left(3-\sqrt{2}\right) \\ Y(4) = 0 \qquad Y(5) = 0.07 - j0.515 \\ Y(6) = -j4 \qquad Y(7) = -14.07 + j17.48 \\ Y(5) = 0.07 - j0.515 \\ Y(6) = -j4 \qquad Y(7) = -14.07 + j17.48 \\ Y(5) = 0.07 - j0.515 \\ Y(6) = -j4 \qquad Y(7) = -14.07 + j17.48 \\ Y(5) = 0.07 - j0.515 \\ Y(6) = -j4 \qquad Y(7) = -14.07 + j17.48 \\ Y(5) = 0.07 - j0.515 \\ Y(6) = -j4 \qquad Y(7) = -14.07 + j17.48 \\ Y(5) = 0.07 + j1$$

• IDFT de 8 punts:
$$y(n) = \frac{1}{8} \sum_{k=0}^{N-1} Y(k) e^{j2\pi k \cdot n/8}$$
, $n = 0, 1, ..., 7 \rightarrow y(n) = \{1, 4, 9, 11, 8, 3, 0, 0\}$

El resultat és el mateix que amb la convolució lineal: y(n)=h(n)*x(n)

Filtrat lineal: Efecte del 'aliasing'

• Si en l'exemple anterior s'utilitza N = L = 4, la sortida y(n) queda distorsionada en les seves primeres mostres

$$X(k) = \sum_{n=0}^{3} x(n) e^{-j \cdot \frac{2\pi \cdot k}{4} \cdot n} = 1 + 2 \cdot e^{-j\pi k} + 2 \cdot e^{-j\pi k/2} + 2 \cdot e^{-j3\pi k/2}$$

$$H(k) = \sum_{n=0}^{4} H(n) \cdot e^{-j \cdot \frac{2\pi \cdot k}{4} \cdot n} = 1 + 2 \cdot e^{-j\pi k/2} + 3 \cdot e^{-j\pi k}$$

$$k = 0, 1, 2, 3$$

 $\begin{array}{cccc} X(0) = 6 & X(1) = -1 - j \\ X(2) = 0 & X(3) = -1 + j \\ \end{array} \begin{array}{cccc} X(0) = 6 & X(1) = -1 - j \\ X(2) = 0 & X(3) = -1 + j \\ \end{array} \begin{array}{ccccc} H(0) = 6 & H(1) = -2 - j2 \\ H(2) = 2 & H(3) = -2 + j2 \\ \end{array} \begin{array}{ccccc} \hat{Y}(0) = 36 & \hat{Y}(1) = j4 \\ \hat{Y}(2) = 0 & X(3) = -1 + j \\ \end{array} \right)$

 $y(n) = \frac{1}{4} \sum_{k=0}^{3} Y(k) e^{j2\pi k/4}, \quad n = 0, 1, ..., 3 \quad \longrightarrow \quad \hat{y}(n) = \{9, 7, 9, 11\}$

Mostres afectades per l'efecte de 'aliasing'

 Aquest problema dificulta el càlcul de la DFT i IDFT de seqüències llargues

Filtrat de seqüències llargues (I)

Filtrat de seqüències llargues (II)

• Mètode de solapament i suma

Anàlisi freqüencial amb la DFT

- Per calcular l'espectre d'un senyal, són necessaris els seus valors en tots els instants de temps.
- En un càlcul 'offline', és possible utilitzar totes les mostres del senyal original (k=N), si el nombre no és excessiu i el temps de mostreig és coherent.
- En aplicacions de 'temps real' resulta inviable utilitzar tots els instants de temps del senyal original i, per tant, l'espectre es determina només amb una part de les mostres d'entrada (finestres)
- Conseqüències del enfinestrament de senyals:
 - Pèrdua de resolució freqüencial
 - 'Leakage' (Pèrdues de l'espectre)

Augment de la resolució freqüencial

• Millora si s'amplia la finestra (w)

- Exemple: $x(n) = cos(\omega_{01} \cdot n) + cos(\omega_{02} \cdot n) + cos(\omega_{03} \cdot n)$
 - $\omega_{01} = 0.2 \cdot \pi, \, \omega_{02} = 0.22 \cdot \pi, \, \omega_{03} = 0.6 \cdot \pi, \, T=1, \, N=2048$

Reducció del 'Leakage'

• Es pot reduir utilitzant finestres més suavitzades (p.e: *Finestra de Hanning*)

$$P(n) = \begin{cases} \frac{1}{2} \left(1 - \cos\left(\frac{2\pi}{L-1}n\right) \right), & 0 \le n \le L-1 \\ 0, & L \le n \le N \end{cases}$$

• Exemple: $x(n) = cos(\omega_{01} \cdot n) + cos(\omega_{02} \cdot n) + cos(\omega_{03} \cdot n)$

•
$$\omega_{01} = 0.2 \cdot \pi$$
, $\omega_{02} = 0.22 \cdot \pi$, $\omega_{03} = 0.6 \cdot \pi$, T=1, N = 2048

Filtres analògics i digitals (FEAD)

Implementació de Sistemes Discrets

Introducció

• Objectiu:

 Implementació 'hardware/software', (per mitjà de PC, DSP o estructura μP/ μC) de l'equació en diferències del sistema

$$y(n) = -\sum_{k=1}^{N} a_k \cdot y(n-k) + \sum_{k=0}^{M} b_k \cdot x(n-k) \qquad H(z) = \frac{\sum_{k=0}^{N} b_k \cdot z^{-k}}{1 + \sum_{k=1}^{m} a_k \cdot z^{-k}} = \frac{b_0 + b_1 \cdot z^{-1} + \dots + b_n \cdot z^{-n}}{1 + a_1 \cdot z^{-1} + \dots + b_m \cdot z^{-m}} \prod_{IIR}$$

- Organització de recursos segons complexitat computacional
 - Estructura FIR/IIR (Diagrama de blocs) a utilitzar?
 - Nombre de multiplicadors, sumadors, posicions de memòria necessàries?
 - Longitud de paraula (Nombre de bits necessari)?
- Disseny dels coeficients (a_k, b_k) i nombre de valors (N, M) segons aplicació (No es considera en aquest capítol)

Contingut

- 1. Configuracions i estructures bàsiques (Diagrama de blocs)
 - FIR i IIR
- Representació sistemàtica en l'espai d'estats
 Representació numèrica de paraules digitals
 - Avantatges i inconvenients de l'aritmètica de punt fixe i punt flotant
 - Truncat i arrodoniment
- 4. Conseqüències en la quantificació dels coeficients en sistemes digitals

Estructures

- Formes directes:
 - FIR: Bàsica i Fase Lineal
 IIR: Tipus I, II i formes transposades
- Mostreig en freqüència (FIR)
- Connexió de blocs (2on. ordre)
 - Cascada (o sèrie)
 - Paral·lel
 - Estructura 'Lattice' (o en creu)
 - Configuració bàsica (FIR i IIR)
 Amb graons (IIR)

Estructures directes (FIR)

Obtinguda directament de l'expressió general

$$h(n) = \begin{cases} b_n, & 0 \le n \le M - 1\\ 0, & n \ge M \end{cases} \qquad \qquad y(n) = \sum_{k=0}^{M-1} h(k) \cdot x(n-k)$$

• Estructura bàsica (Filtre transversal):

Fase lineal (Si h(n) compleix condicions de simetria $h(n) = \pm h(M-1-n)$, amb M senar)

Estructures directes (IIR)

Tipus II (Forma canònica)

Posicions de memòria: M+N+1 *Multiplicacions: max{M,N}* Sumes: M+N

Grafs i estructures transposades

 Intercanviant sortida per entrada i invertint les direccions de totes les branques, la funció de transferència es manté inalterada. Així és possible aconseguir estructures transposades

Mòduls de 2on. ordre

- Les estructures presenten problemes de sensibilitat degut a limitacions en la quantificació dels coeficients (longitud de bits finit)
- (a_k) i (b_k) són valors petits i una petita variació provoquen un canvi considerable en els pols i zeros del sistema H(z), sobre tot si és d'ordre elevat
- Per evitar aquests problemes s'utilitzen mòduls d'ordre 2 (IIR, FIR) o ordre 4 (només FIR)
- Implementacions FIR:
 - Estructures en cascada (sèrie)
- Implementacions IIR:
 - Estructures en cascada o paral·lel

Connexió en cascada FIR

• Expressions generals 2on. i 4rt. ordre (fase lineal)

$$H(z) = \prod_{k=1}^{K} H_{k}(z) \quad \frac{2on.H_{k}(z) = b_{k0} + b_{k1} \cdot z^{-1} + b_{k2} \cdot z^{-2}, \quad k = 1, 2, \dots K}{4rt. H_{k}(z) = c_{k0} + c_{k1} \cdot z^{-1} + c_{k2} \cdot z^{-2} + c_{k1} \cdot z^{-3} + z^{-4} = c_{k0} (1 - z_{k} \cdot z^{-1}) (1 - z_{k}^{*} \cdot z^{-1}) (1 - z^{-1}/z_{k}) (1 - z^{-1}/z_{k}^{*})$$
Realització:

- $b_0 = b_{10} \cdot b_{20} \cdot \cdots \cdot b_{K0}$ o bé pot ser assignat a un dels blocs
- Sempre és millor utilitzar parells de complexes conjugats per a que b_{ki} siguin reals. (Agrupació arbitrària)

Connexió en cascada IIR

- Existeixen moltes combinacions de realització equivalents en cascada depenent de com s'agrupin pols i zeros en cada bloc
- No obstant, a la pràctica no són equivalents perquè *limitacions en la precisió* dels coeficients (finita) altera els pols i zeros de cada bloc

Connexió en paral·lel

• Requereix expandir la funció de transferència en *fraccions simples*

Com que A_k pot ser complexe, per evitar multiplicacions amb aquests es combinen parells de pols conjugats. D'aquí els dos pols de la funció de transferència

$$H_{k}(z) = \frac{A_{k}}{1 - p_{k} \cdot z^{-1}} = \frac{b_{k0} + b_{k1} \cdot z^{-1}}{1 + a_{k1} \cdot z^{-1} + a_{k2} \cdot z^{-2}}$$

Exemple

• Determineu la realització cascada i paral·lel del sistema caracteritzat per la següent expressió:

$$H(z) = \frac{10\left(1 - \frac{1}{2} \cdot z^{-1}\right)\left(1 - \frac{2}{3} \cdot z^{-1}\right)\left(1 + 2 \cdot z^{-1}\right)}{\left(1 - \frac{3}{4} \cdot z^{-1}\right)\left(1 - \frac{1}{8} \cdot z^{-1}\right)\left[1 - \left(\frac{1}{2} + j\frac{1}{2}\right) \cdot z^{-1}\right]\left[1 - \left(\frac{1}{2} - j\frac{1}{2} \cdot z^{-1}\right) \cdot z^{-1}\right]}$$

• Cascada. Una possible combinació de *H*(*z*) és:

$$H(z) = 10 \cdot H_1(z) \cdot H_2(z), \quad H_1(z) = \frac{1 - \frac{2}{3}z^{-1}}{1 - \frac{7}{8}z^{-1} + \frac{3}{32}z^{-2}}, \quad H_2(z) = \frac{1 + \frac{3}{2}z^{-1} - z^{-2}}{1 - z^{-1} + \frac{1}{2}z^{-2}}$$

Implementació:

.....

Exemple (Cont)

• En la realització *paral·lel*, s'ha d'expandir prèviament H(z) en *fraccions simples* $H(z) = \frac{-14.75 - 12.9}{7}$

 $A_2 = -17.68$

= 12.25 - j14.57= 12.25 + j14.57

$$H(z) = \frac{A_{1}}{1 - \frac{3}{4} \cdot z^{-1}} + \frac{A_{2}}{1 - \frac{1}{8} \cdot z^{-1}} + \frac{A_{3}}{1 - \left(\frac{1}{2} + j\frac{1}{2}\right) \cdot z^{-1}} + \frac{A_{3}^{*}}{1 - \left(\frac{1}{2} - j\frac{1}{2}\right) \cdot z^{-1}} \longrightarrow \begin{cases} A_{3} \\ A_{3} \\ A_{4} \\ A_{4} \end{cases}$$

$$H(z) = \frac{-14.75 - 12.9 \cdot z^{-1}}{1 - \frac{7}{8} z^{-1} + \frac{3}{32} z^{-2}} + \frac{24.5 + 26.82 z^{-1}}{1 - z^{-1} + \frac{1}{2} z^{-2}}$$

Realització

Mostreig en freqüència (FIR)

Paràmetres determinats per la resposta en freqüència discreta. Simplifica • el disseny de *filtres FIR* si H(k) conté pocs valors

Universitat Politècnica de Catalunya

Mostreig en freqüència (Cont)

- Amb les propietats de simetria dels filtres amb *fase lineal* és pot *simplificar* més l'estructura.
 - **Propietat de simetria:** $H(k+\alpha) = H^*(M-k-\alpha)$
 - Per $\alpha = 0$

$$A(k) = H(k) + H(M - k)$$
$$B(k) = H(k) \cdot e^{-j \cdot 2\pi \cdot k/M} + H(M - k) \cdot e^{j \cdot 2\pi \cdot k/M}$$

• Normalment α = 0, tot i que també existeixen expressions similars per $\alpha = \frac{1}{2}$.

Estructures 'Lattice'. FIR

Domini temporal discret

$$f_m(n) = \sum_{k=0}^m \alpha_m(k) \cdot x(n-k), \quad \alpha_m(0) = 1$$
$$g_m(n) = \sum_{k=0}^m \beta_m(k) \cdot x(n-k), \quad \beta_m(m) = 1$$
$$\beta_m(k) = \alpha_m(m-k), \ k = 0, 1, \dots, m \quad \longrightarrow \quad \frac{V\alpha_m}{M}$$

 $F_0(z) = G_0(z) = X(z)$ $\begin{array}{c} F_{0}(z) = G_{0}(z) = A(z) \\ F_{m}(z) = F_{m-1}(z) + K_{m} \cdot z^{-1} \cdot G_{m-1}(z) \end{array} \begin{array}{c} A_{0} \\ \longrightarrow \\ A_{0} \end{array}$ $G_m(z) = K_m \cdot F_{m-1}(z) + z^{-1} \cdot G_{m-1}(z)$

alors que depenen

dels paràmetres K_m

$$\begin{array}{c} & (z) = B_0(z) = 1 \\ & (z) = A_{m-1}(z) + K_m \cdot z^{-1} \cdot B_{m-1}(z) \\ & (z) = K_m \cdot A_{m-1}(z) + z^{-1} \cdot B_{m-1}(z) \end{array} \xrightarrow{\bullet} \begin{bmatrix} A_m(z) \\ B_m(z) \end{bmatrix} = \begin{bmatrix} 1 & K_m \\ K_m & 1 \end{bmatrix} \cdot \begin{bmatrix} A_{m-1}(z) \\ z^{-1} \cdot B_{m-1}(z) \end{bmatrix}$$

 $F_m(z) = A_m(z) \cdot X(z) \qquad A_m(z) = \sum_{k=0}^m \alpha_m(k) \cdot z^{-k}$ $G_m(z) = B_m(z) \cdot X(z) \qquad B_m(z) = \sum_{k=0}^m \beta_m(k) \cdot z^{-k}$

 $B_{m}(z) = \sum_{k=0}^{m} \alpha_{m}(m-k) \cdot z^{-k} = z^{-m} \cdot A_{m}(z^{-1})$

Domini 'z'

• $f_{M-1}(n)$ és la sortida del sistema i $g_{M-1}(n)$ és l'estimació (o 'predicció') de l'entrada

Etapa bàsica

 $f_m(n)$

 $g_m(n)$

Conversió 'Lattice' $(K_m) - F.$ directa $(\alpha_m(k))$

• Els coeficients $\alpha_m(k)$ s'obtenen amb un mètode *recursiu ascendent*:

$$\begin{array}{l} A_0(z) = B_0(z) = 1 \\ A_m(z) = A_{m-1}(z) + K_m \cdot z^{-1} \cdot B_{m-1}(z) \\ B_m(z) = z^{-m} \cdot A_m(z^{-1}) \end{array} \right\}, \quad m = 1, 2, \dots, M-1$$

Exemple: Estructura 'Latice' de **3** etapes ($K_1 = 1/4, K_2 = 1/4, K_1 = 1/3$)

$$m = 1$$

$$A_{1}(z) = A_{0}(z) + K_{1} \cdot z^{-1} \cdot B_{0}(z) = 1 + \frac{1}{4} \cdot z^{-1}$$

$$m = 2$$

$$\frac{\alpha_{1}(0) = 1, \quad \alpha_{1}(1) = \frac{1}{4} = K_{1}}{m = 3}$$

$$A_{3}(z) = A_{2}(z) + K_{3} \cdot z^{-1} \cdot B_{2}(z) = 1 + \frac{13}{24} \cdot z^{-1} + \frac{5}{8} \cdot z^{-2} + \frac{1}{3} \cdot z^{-3}$$

$$\alpha_{3}(0) = 1, \quad \alpha_{3}(1) = \frac{13}{24} = , \quad \alpha_{3}(2) = \frac{5}{8}, \quad \alpha_{3}(3) = \frac{1}{3}$$

$$m = 2$$

$$A_{2}(z) = A_{1}(z) + K_{2} \cdot z^{-1} \cdot B_{1}(z) = 1 + \frac{3}{8} \cdot z^{-1} + \frac{1}{2} \cdot z^{-2}$$

$$\frac{\alpha_{2}(0) = 1, \quad \alpha_{2}(1) = \frac{3}{8}, \quad \alpha_{2}(2) = \frac{1}{2}$$

Expressió per al mètode recursiu

$$\alpha_m(0) = 1, \quad \alpha_m(m) = K_m, \quad \alpha_m(k) = \alpha_{m-1}(k) + \alpha_m(m) \cdot \alpha_{m-1}(m-k) \qquad 1 \le k \le m - 1$$

Conversió F. directa $(\alpha_m(k)) -$ **'Lattice'** (K_m)

 Amb els coeficients α_m(k) (o equivalentment, A_m(z)) els paràmetres K_m es determinen amb la següent recursió descendent:

$$A_m(z) = A_{m-1}(z) + K_m \cdot [B_m(z) - K_m \cdot A_{m-1}(z)] \longrightarrow A_{m-1}(z) = \frac{A_m(z) + K_m \cdot B_m(z)}{1 - K_m^2}, \quad m = M - 1, M - 2, \dots, 1$$

- Exemple: $H(z) = A_3(z) = 1 + \frac{13}{24} \cdot z^{-1} + \frac{5}{8} \cdot z^{-2} + \frac{1}{3} \cdot z^{-3}$ • m = 3 $B_3(z) = \frac{1}{3} + \frac{5}{8} \cdot z^{-1} + \frac{13}{24} \cdot z^{-2} + z^{-3}$ $A_2(z) = \frac{A_3(z) - K_3 \cdot B_3(z)}{1 - K_3^2} = 1 + \frac{3}{8} \cdot z^{-1} + \frac{1}{2} \cdot z^{-2}$ $\frac{K_3 = \alpha_3(3) = \frac{1}{3}}{1 - K_2^2}$ $\frac{K_2 = \alpha_2(2) = \frac{1}{2}}{1 - K_2^2}$ $\frac{K_2 = \alpha_2(2) = \frac{1}{2}}{1 - K_2^2}$ $\frac{K_1 = \alpha_1(1) = \frac{1}{4}}{1 - K_2^2}$
- Expressió per al mètode recursiu:

$$\alpha_{m}(0) = 1, \quad \alpha_{m}(m) = K_{m}, \quad \alpha_{m-1}(k) = \frac{\alpha_{m}(k) - \alpha_{m}(m) \cdot \alpha_{m-1}(m-k)}{1 - \alpha_{m}^{2}(m)} \qquad 1 \le k \le m - 1$$

Estructures 'Lattice'. IIR

• Estructura tot pols: Els paràmetres es determinen amb el mateix mètode que l'estructura FIR (tot zeros) Etapa bàsica

Estructures 'Lattice'. IIR (Cont)

• Estructura amb pols i zeros (Estructura amb graons):

- Els paràmetres K_m es determinen agafant $A_N(z)$ i utilitzant el mètode recursiu descendent (vist a les estructures 'Lattice' FIR)
- Els paràmetres v_m també es calculen recursivament amb $B_m(z)$ i $C_M(z)$:

$$C_{m-1}(z) = C_m(z) - v_m \cdot B_m(z)$$

amb
$$v_m = c_m(m)$$
, per $m = 0, 1, ..., M$

Comparativa de recursos computacionals

• Estructures FIR, amb M la longitud de h(n) o H(k))

Estructura	Multiplicadors	Sumadors	Posicions de memòria	Comentaris
Directa	М			Ús didàctic
Fase lineal	M/2 (M parell) (M-1)/2 (M senar)	M-1	M-1	Quan el sistema presenta fase lineal ($h(n)$ simètric)
Mostreig en freqüència	2(K+1)	2·K	K +M	Útil en respostes freqüencials de <i>banda curta</i> , quan només <i>K</i> valors de l'espectre $H(k)$ són rellevants (no nuls). Es pot reduir el nombre de multiplicacions en sistemes de fase lineal
Lattice	2·(M-1)	2·(M-1)	<i>M-1</i>	La característica principal és la modularitat

• Estructures IIR (N.- ordre del sistema, M.- ordre de la part FIR)

Directa I		22-62.	M+N+1	No s'utilitza
Directa II (i transposada)	M+N+1	M+N	max{M,N}	La que menys recursos de memòria necessita. Amb la versió transposada es redueix el nombre de sumadors. Aquesta última és la que més s'utilitza
Lattice $(N \ge M)$	2·N+M+1	2·N+M	N	Bastant estesa a la pràctica (processat de veu i filtres adaptatius) tot i el nombre elevat de multiplicadors*. Robustes en aritmètica de punt fize

Implementació Software. Un últim apunt

- En el disseny, interessa que el dispositiu programable realitzi el càlcul amb la màxima rapidesa possible (*temps real*) desprès d'haver adquirit el valor de l'entrada (x(n))
- Per aquest motiu, la programació de les estructures es reorganitzen en un pre-processat i un post-processat
- Exemple en una estructura de 2on. ordre:

Processat: Post-pro.:	$y(n) = a_0 \cdot x(n) + D$ Cap	$\omega(n) = x(n) + D_1$ $y(n) = a_0 \cdot \omega(n) + D_2$ Cap	$y(n) = a_0 \cdot x(n) + \omega_1(n-1)$ $\omega_1(n) = a_1 \cdot x(n) - b_1 \cdot y(n) + \omega_2(n-1)$ $\omega_2(n) = a_2 \cdot x(n) - b_2 \cdot y(n)$
Pre-pro.:	$D = a_1 \cdot x(n-1) + a_2 \cdot x(n-2) - b_1 \cdot y(n-1) - b_2 \cdot y(n-2)$	$\boldsymbol{D}_1 = -b_1 \cdot \omega(n-1) - b_2 \cdot \omega(n-2)$ $\boldsymbol{D}_2 = a_1 \cdot \omega(n-1) + a_2 \cdot \omega(n-2)$	Сар

E. Directa Tipus 1

E. Directa Tipus 2

E. Directa Tipus 2 transposada

 $H(z) = \frac{a_0 + a_1 \cdot z^{-1} + a_2 \cdot z^{-2}}{1 + b_1 \cdot z^{-1} + b_2 \cdot z^{-2}}$

En el pre-processat es realitzen els càlculs que no requereixen x(n)El post-processat es realitza al inici del bucle

Anàlisi en l'espai d'estats

• Les variables d'estat:

- Proporcionen informació sobre els senyals interns del sistema
- Caracterització del sistema més detallada que no pas la descripció entrada-sortida
- Útil en l'anàlisi *multi-variable* (sistemes amb més d'una entrada i/o sortida)

Descripció de l'espai d'estats

25/33

Descripció de l'espai d'estats (Cont)

• Realització *tipus II*

$$\begin{bmatrix} v_{1}(n+1) \\ v_{2}(n+1) \\ \vdots \\ v_{N-1}(n+1) \\ v_{N}(n+1) \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 & 0 & -a_{N} \\ 1 & \cdots & 0 & 0 & -a_{N-1} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 1 & 0 & -a_{2} \\ 0 & \cdots & 0 & 1 & -a_{1} \end{bmatrix} \begin{bmatrix} v_{1}(n) \\ v_{2}(n) \\ \vdots \\ v_{N-1}(n) \\ v_{N}(n) \end{bmatrix} + \begin{bmatrix} b_{N} - b_{0} \cdot a_{N} \\ b_{N-1} - b_{0} \cdot a_{N-1} \\ \vdots \\ b_{2} - b_{0} \cdot a_{2} \\ b_{1} - b_{0} \cdot a_{1} \end{bmatrix} \cdot x(n) \qquad y(n) = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{1}(n) \\ v_{2}(n) \\ \vdots \\ v_{2}(n) \\ \vdots \\ v_{N-1}(n) \\ v_{N}(n) \end{bmatrix} + b_{0} \cdot x(n)$$

Descripció general de l'espai d'estats

L'elecció de les variables d'estat **no és única**. Quines s'han d'agafar depèn de la informació i el problema a tractar en cada cas.

Solució de y(n) en l'espai d'estats

- Dos mètodes: Recursiu o mitjançant sistema diagonal
 - Recursiu: Donades les equacions i les condicions inicials de les variables d'estat:

$$\mathbf{v}(n+1) = \mathbf{F} \cdot \mathbf{v}(n) + \mathbf{q} \cdot x(n)$$

$$y(n) = \mathbf{g}^t \cdot \mathbf{v}(n) + \mathbf{d} \cdot x(n)$$

Condicions inicials:
$$v(n_0)$$

Per
$$n > n_0$$

 $\mathbf{v}(n_0+1) = \mathbf{F} \cdot \mathbf{v}(n) + \mathbf{q} \cdot \mathbf{x}(n)$
 $\mathbf{v}(n_0+2) = \mathbf{F} \cdot \mathbf{v}(n_0+1) + \mathbf{q} \cdot \mathbf{x}(n_0+1) = \mathbf{F}^2 \cdot \mathbf{v}(n_0) + \mathbf{F} \mathbf{q} \cdot \mathbf{x}(n_0) + \mathbf{q} \cdot \mathbf{x}(n_0+1)$
...
 $\mathbf{v}(n) = \mathbf{\Phi}(n-n_0) \cdot \mathbf{v}(n_0) + \sum_{k=n_0}^{n-1} \mathbf{\Phi}(n-1-k) \cdot \mathbf{q} \cdot \mathbf{x}(k), \qquad \mathbf{\Phi}(i-j) = \mathbf{F}^{i-j}, \mathbf{F}^0 \to \text{Matriu identitat } N \times N$
 $y(n) = \mathbf{g}^t \cdot \mathbf{\Phi}(n-n_0) \cdot \mathbf{v}(n-n_0) + \sum_{k=n_0}^{n-1} \mathbf{g}^t \cdot \mathbf{\Phi}(n-1-k) \cdot \mathbf{q} \cdot \mathbf{x}(k) + \mathbf{d} \cdot \mathbf{x}(n)$
 $\mathbf{\Phi}(n) = \mathbf{F}^n \longrightarrow \begin{array}{c} Matriu \ de \ transició \ d'estats \end{array}$

- Resposta amb entrada nul·la:
- $y_{zi}(n) = \mathbf{g}^t \cdot \mathbf{\Phi}(n n_0) \cdot \mathbf{v}(n_0)$

Resposta amb condicions inicials nul·les:
$$y_{zs}(n) = \sum_{k=n}^{n-1} \mathbf{g}^{t} \cdot \mathbf{\Phi}(n-1-k) \cdot \mathbf{q} \cdot \mathbf{x}(k) + \mathbf{d} \cdot \mathbf{x}(n)$$

Resposta total: $y(n) = y_{zi}(n) + y_{zs}(n)$

Solució de y(n) en l'espai d'estats (Cont)

- Al existir moltes possibilitats d'elegir les variables d'estat es poden obtenir infinitat d'estructures diferents mitjançant transformacions:
 - Si P és una matriu NxN i existeix P⁻¹, una nova realització s'obté de la manera següent:

 $\hat{\mathbf{v}}(n) = \mathbf{P} \cdot \mathbf{v}(n)$ $\mathbf{v}(n) = \mathbf{P}^{-1} \cdot \hat{\mathbf{v}}(n)$ $\hat{\mathbf{v}}(n) = \mathbf{P}^{-1} \cdot \hat{\mathbf{v}}(n)$ $\hat{\mathbf{v}}(n) = \mathbf{g}^{t} \cdot \mathbf{P}^{-1} \cdot \mathbf{v}(n) + \mathbf{d} \cdot \mathbf{x}(n)$ $\hat{\mathbf{v}}(n+1) = \mathbf{F} \cdot \hat{\mathbf{v}}(n) + \mathbf{q} \cdot \mathbf{x}(n)$ $\hat{\mathbf{v}}(n+1) = \mathbf{F} \cdot \hat{\mathbf{v}}(n) + \mathbf{q} \cdot \mathbf{x}(n)$ $\hat{\mathbf{v}}(n+1) = \mathbf{F} \cdot \hat{\mathbf{v}}(n) + \mathbf{q} \cdot \mathbf{x}(n)$ $\hat{\mathbf{v}}(n) = \mathbf{g}^{t} \cdot \mathbf{v}(n) + \mathbf{q} \cdot \mathbf{x}(n)$ $\hat{\mathbf{F}} = \mathbf{P} \mathbf{F} \mathbf{P}^{-1}, \ \hat{\mathbf{q}} = \mathbf{P} \mathbf{q}, \ \hat{\mathbf{g}}^{t} = \mathbf{g}^{t}$ $\hat{\mathbf{v}}(n) = \hat{\mathbf{g}}^{t} \cdot \mathbf{v}(n) + \mathbf{q} \cdot \mathbf{x}(n)$

Resposta impulsional:

$$h(n) = \mathbf{g}^t \cdot \Phi(n-1) \cdot \mathbf{q} \cdot u(n-1) + \mathbf{d} \cdot \delta(n)$$

Sistema transpost

Solució de y(n) en l'espai d'estats (Cont II)

- La solució de y(n) és més fàcil d'obtenir si F es pot transformar en una matriu diagonal (mètode del sistema diagonal):
 - Es necessita una matriu **P** per tal que $\hat{F} = P \cdot F \cdot P^{-1}$ sigui diagonal (VAPS i VEPS)
 - VAPS (Valors propis): S'obtenen calculant les arrels del polinomi característic

det $(\mathbf{F} - \lambda \cdot \mathbf{I}) = \mathbf{0}$, on \mathbf{I} i es la matriu identitat (NxN). N \rightarrow ordre del sistema \mathbf{F}

VEPS (*Vectors propis*): vectors ortogonals que es determinen amb els VAPS calculats previament

 $\mathbf{F} \cdot \mathbf{u}_i = \boldsymbol{\lambda}_i \cdot \mathbf{u}_i$, on $\mathbf{u}_i^t \cdot \mathbf{u}_j = 0$, per $i \neq j$

P s'obté creant una matriu U on cada columna la formen els VEPS calculats previament

$$= \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_N \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \qquad \stackrel{\wedge}{\mathbf{F}} = \mathbf{U}^{-1} \cdot \mathbf{F} \cdot \mathbf{U}, \quad \mathbf{P} = \mathbf{U}^{-1} \qquad \qquad \mathbf{U}^{-1} = \frac{(Adj(\mathbf{U}))^t}{det(\mathbf{U})}$$

I

Solució de y(n) en l'espai d'estats (Cont III)

Exemple:

- Determineu la resposta impulsional h(n) de la seqüència de Fibonacci {1, 1, 2, 3, 5, 8, 13, ...} que es genera mitjançant el sistema següent expressat en l'espai d'estats: $\mathbf{v}(n+1) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \cdot \mathbf{v}(n) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \cdot x(n) \qquad \qquad y(n) = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \mathbf{v}(n) + x(n)$
- Solució:

$$det (\mathbf{F} - \lambda \cdot \mathbf{I}) = det \begin{bmatrix} -\lambda & 1\\ 1 & 1-\lambda \end{bmatrix} = \lambda^2 - \lambda - 1 = 0. \quad \mathbf{VAPS:} \quad \lambda_1 = \frac{1 + \sqrt{5}}{2} \quad \text{,} \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}$$

Càlcul dels VEPS associats: $\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \cdot \mathbf{u}_i = \lambda_i \cdot \mathbf{u}_i$. $\mathbf{u}_l = \begin{vmatrix} 1 \\ \lambda_1 \end{vmatrix}$, $\mathbf{u}_2 = \begin{vmatrix} 1 \\ \lambda_2 \end{vmatrix}$

Matriu **P**:
$$\mathbf{U} = \begin{bmatrix} 1 & 1 \\ \lambda_1 & \lambda_2 \end{bmatrix} \longrightarrow \mathbf{P} = \mathbf{U}^{-1} = \frac{1}{\lambda_2 - \lambda_1} \begin{bmatrix} \lambda_2 & -1 \\ -\lambda_1 & 1 \end{bmatrix}$$

Sistema diagonal: $\hat{\mathbf{F}} = \mathbf{U}^{-1} \cdot \mathbf{F} \cdot \mathbf{U} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, $\hat{\mathbf{q}} = \mathbf{P}\mathbf{q} = \begin{vmatrix} 1/\sqrt{5} \\ -1/\sqrt{5} \\ -1/\sqrt{5} \end{vmatrix}$, $\hat{\mathbf{g}}^t = \mathbf{g}^t \cdot \mathbf{P}^{-1} = \begin{bmatrix} \frac{3+\sqrt{5}}{2} & \frac{3-\sqrt{5}}{2} \end{bmatrix}$

Resposta impulsional:
$$h(n) = \mathbf{g}^t \cdot \mathbf{F} \cdot \mathbf{q} \cdot u(n-1) + \mathbf{d} \cdot \delta(n)$$

$$h(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{3+\sqrt{5}}{2} \right) \left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{3-\sqrt{5}}{2} \right) \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] \cdot u(n-1) + \delta(n)$$

L'espai d'estats en el domini 'z'

Transformació:

 $z \cdot \mathbf{V}(z) = \mathbf{F} \cdot \mathbf{V}(z) + \mathbf{q} \cdot X(z) \qquad Z \qquad \mathbf{v}(n+1) = \mathbf{F} \cdot \mathbf{v}(n) + \mathbf{q} \cdot x(n)$ $Y(z) = \mathbf{g}^t \cdot \mathbf{V}(z) + \mathbf{d} \cdot X(z) \qquad \mathbf{v}(n) = \mathbf{g}^t \cdot \mathbf{v}(n) + \mathbf{d} \cdot x(n)$

• Espai d'estats i matriu de transició:

 $\mathbf{V}(z) = (z\mathbf{I} - \mathbf{F})^{-1} \cdot \mathbf{q} \cdot X(z)$

Espai d'estats

 $\mathbf{\Phi}(n) = \mathbf{F}^n = \mathbf{Z}^{-1} \{ z \cdot (z\mathbf{I} - \mathbf{F})^{-1} \}$

Matriu de transició

$$H(z) = \frac{Y(z)}{X(z)} = \mathbf{g}^{t} \cdot (z\mathbf{I} - \mathbf{F})^{-1} \cdot \mathbf{q} + \mathbf{d}$$

 $Y_{zs}(z)$

Condicions inicials del sistema

$$\mathbf{Y}(z) = z\mathbf{g}^{t} \cdot (z\mathbf{I} - \mathbf{F})^{-1} \mathbf{V}(0) + [\mathbf{g}^{t} \cdot (z\mathbf{I} - \mathbf{F})^{-1} \cdot \mathbf{q} + \mathbf{d}] \cdot \mathbf{X}(z)$$

 $Y_{zi}(z)$

Funció de transferència:

 $\mathbf{Y}(z) = [\mathbf{g}^{t} \cdot (z\mathbf{I} - \mathbf{F})^{-1} \cdot \mathbf{q} + \mathbf{d}] \cdot \mathbf{X}(z)$

(condicions inicials nul·les)

Resposta total del sistema:

$$\mathbf{V}(z) = \begin{bmatrix} V_1(z) \\ V_2(z) \\ \vdots \\ V_N(z) \end{bmatrix}$$

31/33

L'espai d'estats en el domini 'z' (Cont)

• Exemple:

- Determineu H(z) i resposta impulsional h(n) del sistema que genera la seqüència de Fibonacci
- Solució:

$$det(z\mathbf{I} - \mathbf{F})^{-1} = \begin{bmatrix} z & -1 \\ -1 & z - 1 \end{bmatrix}^{-1} = \frac{1}{z^2 - z - 1} \begin{bmatrix} z - 1 & 1 \\ 1 & z \end{bmatrix}$$

- Funció de transferència: $H(z) = \mathbf{g}^t \cdot (z\mathbf{I} \mathbf{F})^{-1}\mathbf{q} + \mathbf{d} = \frac{1}{z^2 z 1} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} z 1 & 1 \\ 1 & z \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1 = \frac{z^2}{z^2 z 1} = \frac{1}{1 z^{-1} z^{-2}}$
- **Resposta inpulsional**: S'obté amb la anti-transformada 'z' de H(z)

$$h(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right] \cdot u(n)$$

Estructures basades en l'espai d'estats

Connexió en paral·lel (Forma normalitzada):

F és diagonal

$$H(z) = C + \sum_{k=1}^{N} \frac{B_k}{z - p_k}$$

$$\mathbf{v}(n+1) = \begin{bmatrix} p_1 & 0 & \cdots & 0 \\ 0 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p_N \end{bmatrix} \cdot \mathbf{v}(n) + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \cdot \mathbf{x}(n)$$
$$y(n+1) = \begin{bmatrix} B_1 & B_2 & \cdots & B_N \end{bmatrix} \cdot \mathbf{v}(n) + C \cdot \mathbf{x}(n)$$

 b_0

Connexió cascada (Forma acoblada):

Representació numèrica en punt fixe

- Representació binaria
 - Nombres enters:

$$X = (b_{-A}, \dots, b_{-1}, b_0, b_1, \dots, b_B)_r = \sum_{i=-A}^{B} b_i \cdot r^{-i}, \quad 0 \le b_i \le r - 1$$

MSB (Most Significant Bit) LSB (Least Significant Bit)

Nombres decimals (<1): A = 0, B = n-1

- b_b Valor de dígit (0 o 1)
- *r*.- base o nombre de valors diferents que pot adquirir b_i (2)
- A.- Nombre de digits enters (n-1)
- B.- Nombre de digits fraccionaris (0)

$$\mathbf{I} \quad \mathbf{X}_{SM} = 1.b_1, b_2, \dots, b_B \dots X \le 0$$

Format de Signe i Magnitud

0.0

• Valors positiu:
$$X = 0.b_1, b_2, ..., b_B = \sum_{i=1}^{B} b_i \cdot 2^{-i}, X \le 0$$

• Valors negatius: $X = -0.b_1, b_2, ..., b_B = -\sum_{i=1}^{B} b_i \cdot 2^{-i}$

$$X_{1C} = 1. \overline{b}_{1}, \overline{b}_{2}, ..., \overline{b}_{B}$$

$$\overline{b}_{i} = 1 - b_{i}$$

$$X_{1C} = 1 \cdot 2^{0} + \sum_{i=1}^{B} (1 - b_{i}) \cdot 2^{-i} = 2 - 2^{-B} - |X|$$

Format de Complement a 1

$$X_{2C} = 1. \, \overline{b}_1, \overline{b}_2, ..., \overline{b}_B + 00 \cdots 01$$
$$X_{2C} = X_{1C} + 2^{-B} = 2 - |X|$$
Format de Complement a 2

-1.0

2

-0.75

0.75

Representació numèrica en coma flotant

• Format de dos nombres binaris: *mantisa* (*M*) i *exponent* (*E*)

<u>Format</u>: $X = M \cdot 2^E$

- *M*.- Fracció numèrica (rang: $\frac{1}{2} \le M \le 1$) amb bit de signe
- E.- Valor enter amb bit de signe que treballa com exponencial

 $\begin{cases} M_2 = 0.110000\\ E_2 = 1.01 \end{cases} = \begin{cases} M_2 = 0.000011\\ E_2 = 0.11 \end{cases}$

• Exemples:

$$X_1 = 5 \longrightarrow \begin{cases} M_1 = 0.101000 \\ E_1 = 0.11 \end{cases} \qquad X_2 = 3/8 \longrightarrow \begin{cases} M_2 = 0.110000 \\ E_2 = 1.01 \end{cases}$$

Multiplicació:

$$X_1 \cdot X_2 = M_1 \cdot M_2 \cdot 2^{E_1 + E_2} = (0.011110) \cdot 2^{0.10} = (0.111100) \cdot 2^{0.01} \equiv \frac{15}{8}$$

- Suma:
 - Els exponents han de ser iguals per poder sumar les mantises. Aquesta operació requereix incrementar/decrementar un dels exponents (per igualar a l'altre) i desplaçar la seva mantisa cap a la dreta/esquerra

$$X_2 = 3/8$$

 $X_1 + X_2 = (0.101011) \cdot 2^{0.11} \equiv 43/8$

Punt fixe i coma flotant (Comparativa 32 bits)

• Punt fixe:

• Rang: 2^b-1 valors:

Representació	Rang de X	Resolució
Valors enters	2 ³² -1 = 4,294,967,295	1
Amb bit de signe	-(2 ³¹ -1) = -2,147,483,647 (2 ³¹ -1) = 2,147,483,647	1
Decimal (3 dígits) i bit de signe	-(2 ³¹ -1)·2 ⁻¹⁰ = -2,097,151.999 (2 ³¹ -1)·2 ⁻¹⁰ = 2,097,151.999	2 ⁻¹⁰

Coma flotant

M.-24 bits (23 + bit de signe, rang: $\frac{1}{2} \le M \le 1$), *E*.-8 bits (7 + bit de signe)

Rang	de X:
------	-------

	М		Ε		Valor	
Notació	S	23 bits	S	7 bits	aprox.	
Valor mínim	0	100…0	1	1111111	0.3·10 ⁻³⁸	
Valor màxim	0	111…1	0	1111111	1.7·10 ³⁸	

Bastant complicat de representar el valor '0'

• Estàndar IEEE 754:

$$X = (-1)^{S} \cdot 2^{E-127}(M)$$

- Si E = 255 i $M \neq 0$, X nó és considera un nombre - Si E = 255 i M = 0, $X = (-1)^{S} \cdot 2^{E-127} \cdot (1.M)$ - Si 0 < E < 255, $X = (-1)S \cdot 2E^{-126} \cdot (0.M)$ - Si E = M = 0, $X = (-1)^{S} \cdot 0$

36/33

Punt fixe vs. Coma flotant. Consideracions

Coma flotant

- Desplaçaments en la mantisa resulta en pèrdua de precisió en cas de rebassar el nombre de bits
- Revessament: succeeix quan es supera el marge dinàmic de l'exponent al multiplicar dos valors
- Resolució (distància entre dos valors consecutius) variable en coma flotant: A major rang dinàmic (nombres elevats) pitjor resolució
- Millor resolució per nombres petits (però pitjor per nombres elevats) en comparació amb el format de 'punt fixe'
- Punt fixe
 - En '*punt fixe*', el rang de *X* amb *b* bits:

Resolució màxima en coma fixa

- Format de nombres enters: $rang = [0, 2^b 1]$
- Fraccions: $rang = [0, 1-2^b]$

molt més petit en comparació amb el rang en 'punt flotant'

Punt fixe vs. Coma flotant. (Cont)

Generals

- **Tant les DSP's de '***punt fixe***' com '***flotant***' utilitzen el format numèric de** *fraccions* **(Tècnicament valors mixtes són difícils de multiplicar i els valors enters no es poden reduir mitjançant tècniques d'arrodoniment. Per això no s'utilitza el format de valors enters)**
- Les DSP's de 'punt fixe' utilitzen aritmètica de complement a dos mentre que en 'punt flotant' aquesta és utilitzada en {mantisa, exponent}
- Els errors de quantificació (arrodoniment o truncament) en 'punt fixe' són molt més elevats, en comparació amb el 'coma flotant'.
- Aquests errors provoquen que el sistema tingui comportaments no lineals: oscil·lacions, inestabilitat, revessament, etc... (Pols i zeros del sistema canvien de lloc)
- A més de la disponibilitat de recursos, el fet d'utilitzar una representació numèrica determinada és un altre factor diferencial en el cost de les DSP's

Errors de quantificació: Arrodoniment i truncament.

Sensibilitat als errors de quantificació

• Sistemes IIR

- Interessa que el denominador de Δp_i sigui elevat (a pols separats, mínima sensibilitat). Això s'aconsegueix combinant estructures de 2on. ordre amb pols conjugats
 Cascada: Paral·lel:
 - Cascada o paral·lel?

$$H(z) = \prod_{k=1}^{K} \frac{b_{k0} + b_{k1} \cdot z^{-1} + b_{k2} \cdot z^{-2}}{1 + a_{k1} \cdot z^{-1} + a_{k2} \cdot z^{-2}}$$

 $H(z) = \prod_{k=1}^{K} \frac{c_{k0} + c_{k1} \cdot z^{-1}}{1 + a_{k1} \cdot z^{-1} + a_{k2} \cdot z^{-2}}$

- **Cascada:** Hi ha control directe sobre els pols i zeros del sistema (a_k i b_k es calculen directament).
- **Paral-lel:** Només hi ha control directe sobre els pols del sistema (c_k no especifica la posició dels zeros).
- L'estructura en cascada és més indicada quan s'utilitza format numèric en 'punt fixe'.
- En l'estructura paral·lel, els problemes de la quantificació de coeficients es solucionen utilitzant 'coma flotant'

Sensibilitat als errors de quantificació (Cont)

Sistemes FIR

- Els efectes no són tan acusats com en els sistemes IIR:
 - Només afecten a la *magnitud* de la característica freqüencial (no la *fase lineal*)
- No obstant, també és correcte utilitzar el criteri de mòduls de 2on. ordre dels sistemes IIR
- La configuració en cascada és la més apta (a diferència de les IIR on es pot utilitzar tant la configuració cascada com paral·lel)
- Quan més gran és la longitud del filtre (*h(n)*) major tindrà que ser el nombre de bits necessari per representar els coeficients (10 bits per longituds h(n) moderades)
- Per un increment de 4·*M* mostres de *h*(*n*) s'ha d'incrementar 1 bit per mantenir la desviació de l'error: $\sigma_E^2 = \frac{2^{-2(b+1)}}{12}M = \frac{2^{-2(b+2)}}{3}M$

 $E_M(\omega) = \sum_{n=1}^{M-1} e_h(n) e^{-j\omega \cdot n}$

$$\overline{h}(n) = h(n) + e_h(n)$$

$$2^{-(b+1)} < e_h(n) < 2^{-(b+1)} < b_h(n) < 2^{-(b+1)}$$

 $\sigma_E = \frac{2^{-(b+2)}}{\sqrt{2}} \sqrt{M}$

Efectes de la quantificació en filtres digitals

- Principalment en la qüantificació de coeficients preocupen els cicles límit:
 - Inestabilitats indesitjades a la sortida del sistema. Presència de components contínues o oscil·latòries amb absènbcia de senyal d'entrada
 - Només en els sistemes recursius
 - No linealitats degudes al revessament
 - Es produeix per nivells d'entrada elevats i en sumes de complement a 2
 - En general, és bastant difícil analitzar i avaluar aquest fenòmens de manera determinista
 - La caracterització més adoptada en la pràctica es basa en l'ús de mètodes estadístics
- Els estudis d'aquests fenòmens només té sentit en realitzacions de 'punt fixe' on aquests acostumen a ser importants

Cicles límit

- Exemple de components contínues i oscil·latòries: (Sistema 1er. ordre)
 - S'utilitza aritmètica de 'punt fixe' de 4 bits
 - La quantificació arrodoneix el resultat a l'alça

$$v(n) = Q[a \cdot y(n-1)] + x(n)$$

n	a=0.1000 = ½	Valor decimal	a=1.1000= - ½	Valor decimal	a=0.1100 = ³ ⁄ ₄	Valor decimal	a=1.1100 = - ³ ⁄ ₄	Valor decimal
0	0.1111	15/16	0.1111	15/16	0.1011	11/16	0.1011	11/16
1	0.1000	8/16	1.1000	-8/16	0.1000	8/16	1.1000	-8/16
2	0.0100	4/16	0.0100	4/16	0.0110	6/16	0.0110	6/16
3	0.0010	2/16	1.0010	-2/16	0.0101	5/16	1.0101	-5/16
4	0.0001	1/16	0.0001	1/16	0.0100	4/16	0.0100	4/16
5	0.0001	1/16	1.0001	-1/16	0.0011	3/16	1.0011	-3/16
6	0.0001	1/16	0.0001	1/16	0.0010	2/16	0.0010	2/16
7	0.0001	1/16	1.0001	-1/16	0.0010	2/16	1.0010	-2/16
8	0.0001	1/16	0.0001	1/16	0.0010	2/16	0.0010	2/16

Banda morta:

 $|v(n-1)| \le \frac{1/2 \cdot 2^{-b}}{1-|a|}$

Cicle límit

200

43/33

Cicles límit (Cont)

- L'estudi del cicle límit en sistemes d'ordre superior es més complexe:
 - P.e: en sistemes de 2on. ordre es pot demostrar que existeix una banda morta

 $|v(n-2)| \le \frac{1/2 \cdot 2^{-b}}{1-|a_2|}$ però existeixen més modes de cicle límit

- Estructures IIR paral·lel: el cicle 'global' és la suma dels cicles individuals de cada secció.
- Estructures IIR *cascada*: cicles d'etapes precedents es *filtren* en etapes posteriors. S'ha d'evitar un cicle precedent en una possible ressonància posterior

Escalament

- Tot i eliminar els cicles límits del revessament, l'aritmètica de saturació genera distorsió. Aquesta distorsió s'evita escalant x(n) dues maneres:
 - *Mitjançant l'elecció d'un valor màxim* (A_x) *per x(n)* $\longrightarrow \hat{x}(n) = x(n) \xrightarrow{A_x} \frac{1}{\max ||x(n)||}$

 $A_x < \frac{1}{\sum_{k=1}^{\infty} |h_k(m)|} \qquad \qquad \begin{array}{c} \mathbf{2} \\ A_x < \frac{1}{\max |H_k(\omega)|} \\ 0 \le \omega \le \pi \end{array} \qquad \qquad \begin{array}{c} \mathbf{3} \\ A_x < \frac{1}{\sum_{k=1}^{M-1} |h_k(m)|} \end{array}$

- La **opció 1** evita el revessament i és la més severa de les tres La **opció 2** és útil en senyals de banda estreta, mentre que **l'opció 3** és per sistemes FIR
- **Escalat en base a l'energia de** x(n)**.** És una opció encara més pessimista que les anteriors

$$\sum_{k=-\infty}^{\infty} |y_k(n)|^2 \le C^2 \cdot E_x$$

$$\sum_{k=-\infty}^{\infty} |h_k(n)|^2 \int_{-\infty}^{1/2} |x_k(n)|^2 = \max_{\omega} |H_k(\omega)| \le \sum_{n=-\infty}^{\infty} |h_k(n)|^2$$

 $n = -\infty$
Anàlisi dels efectes de quantificació

- Com que és difícil modelar efectes de quantificació i/o escalat en sistemes grans, un altre opció consisteix en realitzar un *anàlisis general* amb *eines estadístiques*
- En aquest cas, els errors de quantificació es representen con un error o soroll e(n)
 Sistema de 2on. ordre

Anàlisi dels efectes de quantificació (Cont)

- Consideracions sobre l'error e(n):
 - Distribució uniforme en el rang $\{-1/2 \cdot 2^{-b}, 1/2 \cdot 2^{-b}\}$

$$\langle e(n) \rangle = 0$$
 (Valor mig) $\sigma_e^2 = \frac{2^{-2b}}{12}$ (Variànça)

- e(n) és un soroll blanc (e(n) i e(m) estan incorrelades per $n \neq m$)
- e(n) està incorrelada amb l'entrada x(n)

 $\begin{cases} a_1 = 2 \cdot r \cdot \cos \theta \\ a_2 = r^2 \end{cases}$ 2on. ordre

Conclusions en l'anàlisi dels efectes

• 1er. Ordre

- El soroll s'**amplifica** a la sortida en relació amb l'entrada $(\sigma_q^2 > \sigma_e^2)$ en un factor 1/(1-*a*). EL **SNR** es redueix
- Nombre de bits:
 - És més important en sumes que en les multiplicacions
 - Depèn del pol (a): tindria que ser més elevat quan més a prop estigui el pol del cercle unitari
- 2on. Ordre
 - Els efectes de la quantificació encara són *més severs* respecte al 1er. Ordre
 - Estructures *paral·lel*: els efectes de soroll global correspon a la suma d'efectes de cadascuna de les seccions individuals
 - Estructures cascada: Soroll en etapes posteriors queden filtrats en etapes posteriors. Importa l'aparellament de pols (reals). Dues postures a adoptar
 - Pols propers al cercle unitari emparellats amb zeros propers
 - Ordenar les seccions de més (primera) a menys guany (última)

Exemple numèric sobre els efectes d'arrodoniment

- El següent exemple il·lustra la importància d'utilitzar una organització adequada en una realització cascada
 - Determineu la variança del soroll causat per l'arrodoniment que hi ha a la sortida de les dues realitzacions cascada següents

$$\sum_{n=0}^{\infty} h_1^2(n) = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3} \qquad \sum_{n=0}^{\infty} h_2^2(n) = \frac{1}{1 - \frac{1}{4}}$$
$$\sigma_{q1}^2 = \sigma_e^2 \left[\sum_{n=0}^{\infty} h^2(n) + \sum_{n=0}^{\infty} h_1^2(n) \right] = 2.9\sigma_e^2$$
$$\sigma_{q2}^2 = \sigma_e^2 \left[\sum_{n=0}^{\infty} h^2(n) + \sum_{n=0}^{\infty} h_2^2(n) \right] = 3.16\sigma_e^2$$

La potència de soroll en la segona realització

és 9% superior a la primera

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

Universitat Politècnica de Catalunya

49/33

Resum final

- Existeixen diverses realitzacions de sistemes en temps discret. Aquestes són equivalents amb precisió infinita, però no amb precisió finita
- Tres factors que determinen la seva elecció: Complexitat de càlcul, memòria i longitud (bits) de paraula
- Les expressions del sistema en '*espai d'estat*' proporcionen una *descripció alternativa* en funció dels senyals interns del mateix
- Efectes de quantificació són importants en sistemes d'ordre elevat (especialment IIR) i es minimitzen utilitzant *blocs d'ordre 2.*
- Addicionalment, filtres optimitzats de variable d'estat d'ordre 2 minimitzen els efectes de l'arrodoniment. Això permet obtenir filtres robustos de banda ample i estreta
- Les estructures 'Lattice' són les més indicades en aritmètica de 'punt fixe'.

Filtres analògics i digitals (FEAD)

Disseny de Filtres Digitals

Punt de partida

- Objectiu del disseny de filtres digitals:
 - Implementació (PC, DSP o estructura μP/ μC) de l'equació en diferències del filtre, segons especificacions d'aplicació

$$y(n) = -\sum_{k=1}^{N} a_k \cdot y(n-k) + \sum_{k=0}^{M} b_k \cdot x(n-k) \qquad H(z) = \frac{\sum_{k=0}^{N} b_k \cdot z^{-k}}{1 + \sum_{k=1}^{N} a_k \cdot z^{-k}} = \frac{b_0 + b_1 \cdot z^{-1} + \dots + b_n \cdot z^{-n}}{1 + a_1 \cdot z^{-1} + \dots + b_m \cdot z^{-m}} \prod_{llR}$$

- Organització de recursos segons complexitat computacional (Vist)
- Disseny dels coeficients (a_k, b_k) i nombre de valors (N,M) segons (Obtenció de la resposta impulsional):
 - Especificacions freqüencials de magnitud i fase
 - Elecció del tipus de filtre: IIR o FIR (N=0)

Causalitat i les seves implicacions

- Els filtres ideals no son causals i, per tant, no es poden implementar físicament (en temps real)
 - Exemple: Filtre 'passa-baixes' ideal

Són necessàries **infinites** monstres de h(n) per a la implementació, **inclús per** n < 0

- **Conseqüències** de la no causalitat:
 - **Resposta freqüencial** $H(\omega)$ no pot ser nul·la, excepte en punts separats
 - Compromís entre característiques desitjables de mòdul (|H(ω)|) constant i transicions abruptes a la banda d'atenuació.
 - **Mòdul** i fase ($\Theta(\omega)$) no es poden dissenyar *individualment*

Filtres aproximats

- Les aproximacions dels filtres ideals són *suficients* en molts casos
 - Exemple: Filtre 'passa-baixes' truncat *N* mostres:

Especificacions dels filtres

- Ample de banda: $\omega_s \omega_p$
- Les magnituds s'expresen en dB's: $\delta_{1(dB)} = 20 \cdot \log_{10} (\delta_1)$
- Especificacions: $\delta_1, \delta_2, \omega_p, \omega_s$
- Parpametres de disseny: a_k , b_k , N, M

Contingut

1. Disseny FIR

- Enfinestrament i mostreig freqüencial (bàsics)
- Aproximació de Chebyshev (optimització de la resposta freqüencial
- Diferenciadors
- Transformada de Hilbert

2. Disseny amb especificacions analògiques (IIR)

- Invariància impulsional, transformació bilineal i adaptació de la 'transformada z'
- Filtres Butterworth, Chebyshev, El·líptics, Bessel, ...

3. Transformacions en freqüència

Domini analògic i digital

4. Disseny amb especificacions digitals (Mínims quadrats)

Padé i Wiener

Disseny FIR: Aspectes generals

• Sistema FIR:

$$y(n) = \sum_{k=0}^{M-1} b_k \cdot x(n-k) = \sum_{k=0}^{M-1} h_k \cdot x(n-k) \qquad H(z) = \sum_{k=0}^{M-1} h_k \cdot z^{-k} \qquad \longrightarrow \qquad b_k = h(k)$$

 $\underline{Simètrica:} \ h(n) = h(M-1-n) \quad H(\omega) = H_r(\omega) e^{-j\omega(M-1)/2} \ \underline{Anti-simètrica:} \ h(n) = -h(M-1-n) \quad H(\omega) = H_r(\omega) e^{-j[-\omega(M-1)/2 + \pi/2]} e^{-j\omega(M-1)/2} e^{-j\omega(M-1)/2 + \pi/2} e^{-j\omega(M-1)/2 + \pi/2} e^{-j\omega(M-1)/2} e^{-j\omega(M-1)/2}$

$$(\omega) = h\left(\frac{M-1}{2}\right) + 2\sum_{n=0}^{(M-3)/2} h(n)\cos\left[\omega\left(\frac{M-1}{2}-n\right)\right]$$

$$H_r(\omega) = 2\sum_{n=0}^{M/2-1} h(n)\cos\left[\omega\left(\frac{M-1}{2}-n\right)\right]$$

$$H_r(\omega) = 2\sum_{n=0}^{M/2-1} h(n)\sin\left[\omega\left(\frac{M-1}{2}-n\right)\right]$$

$$H_r(\omega) = 2\sum_{n=0}^{M/2-1} h(n)\sin\left(\frac{M-1}{2}-n\right)$$

$$H_r(\omega) = 2\sum_{n=0}^{M/2-1} h(n)\sin\left(\frac{M-1}{2$$

- L'objectiu consisteix en determinar h(n) per n=0,1,...,M-1 per mitjà d'especificacions del filtre (δ₁, δ₂, ω_p, ω_s) i amb ajuda d'expressions basades en la resposta freqüencial (H_r(ω) i Θ(ω))
- La condició d'anti-simetria no serveix en el disseny de filtres FIR passa-baixes

Η.

Amalitud

Amanlitude

Disseny FIR mitjançant finestres

Amb l'especificació en freqüència del filtre H_d(ω) desitjat, primer s'obté la resposta impulsional h_d(n) per desprès truncar-la a un nombre de mostres finit

El resultat també està condicionat per la finestra w(n)

M = 31

M=61

2.5

Finestra rectangular: $w(n) = \begin{cases} 1, & n = 0, 1, \dots, M-1 \\ 0, & altrament \end{cases} \quad FFT^{-1} \qquad |W(\omega)| = \frac{|\sin(\omega \cdot M/2)|}{|\sin(\omega/2)|}, \quad -\pi \le \omega \le \pi$

- Suavitza la característica $H_d(\omega)$ (Interessa *M* gran)
- Lòbuls laterals provoquen efectes indesitjables en la resposta freqüencial
- Els lòbuls laterals es redueixen amb finestres que no presentin grans *discontinuitats*

0.5

 $M(\omega)$

José Antonio Soria Pérez Departament d'Enginyeria Electrònica

ω

1.5

Tipus de finestres w(n)

Nom de la finestra	Seqüència del domini temporal $h(n), 0 \le n \le M$ - 1	Observacions
Barlett	$1 - \frac{2 \cdot \left n - \frac{M - 1}{2} \right }{M - 1}$	
Blackman	$0.42 - 0.5 \cdot \cos\left(\frac{2\pi \cdot n}{M - 1}\right) + 0.08 \cdot \cos\left(\frac{4\pi \cdot n}{M - 1}\right)$	
Hamming	$0.54 - 0.46 \cdot \cos\left(\frac{2\pi \cdot n}{M - 1}\right)$	
Hanning	$\frac{1}{2} \left(1 - \cos\left(\frac{2\pi \cdot n}{M - 1}\right) \right)$	
Kaiser	$\frac{I_0 \left[\alpha \sqrt{\left(\frac{M-1}{2}\right)^2 - \left(n - \frac{M-1}{2}\right)^2} \right]}{I_0 \left[\alpha \left(\frac{M-1}{2}\right) \right]} \qquad I_0$	Funció de <i>bessel</i> modificada, classe 1 0 < α < 1
Lanczos	$\left\{\frac{\sin\left[2\pi\left(\frac{M-1}{2}\right)/(M-1)\right]}{2\pi\left(\frac{M-1}{2}\right)/(M-1)}\right\}^{L}$	<i>L</i> > 0
Tukey	$\begin{cases} 1, \\ \frac{1}{2} \left[1 + \cos\left(\pi \frac{n - (1 + \alpha)(M - 1)/2}{(1 - \alpha)(M - 1)/2}\right) \right], \end{cases}$	$\begin{vmatrix} n - \frac{M-1}{2} \\ \leq \alpha \frac{M-1}{2} \\ \leq \left n - \frac{M-1}{2} \right \\ \leq \frac{M-1}{2} \\ 0 \leq \alpha \leq 1 \end{vmatrix}$

9/33

Comparativa finestres

Comparativa finestres (i II)

Consideracions generals

- Respecte als dominis
 - L'anàlisi de sistemes en el domini *discret* del temps (n) planteja l'ús de equacions en diferències o bé elements de retard (Domini z), a diferència del domini continu que utilitza les derivades (Domini s)
- Respecte a les metodologies
 - A la pràctica, les tècniques de disseny es basen en l'anàlisi de prototips analògics per desprès realitzar una *conversió* a filtre digital IIR o FIR
 - Tres mètodes de conversió segons caracterització del filtre analògic: *Aproximació per derivades, invariància impulsional* i transformació *bilineal*

H(s)Ier. pas
$$\overleftarrow{conversió}$$

 $'s'a'z'$ H(z)Zon. pas
 $\overleftarrow{conversió}$
 $iferències$ $y(n) = -\sum_{k=1}^{N} a_k \cdot y(n-k) = \sum_{m=0}^{M} b_m \cdot x(n-m)$ José Antonio Soria Pérez
Departament d'Enginyeria ElectrònicaImage: Conversition of the second secon

Pas 1.- Aproximació per derivades

 És una aproximació de l'equació diferencial per mitjà d'una equació en diferències

Pas 1.- Invariància Impulsional

- Es basa en l'obtenció d'un sistema que és la versió mostrejada de la resposta impulsional del filtre analògic (h(n) ≡ h(nT) per n = 0, 1, 2,...)
- Per fer la transformació, s'expressa la funció de transferència del filtre analògic en *fraccions simples*

- $\{p_k\}$ representen els pols del filtre analògic, mentre que $\{c_k\}$ son els coeficients d'expansió en fraccions simples.
- Expressió a utilitzar en la transformació:

$$s - p_k = 1 - e^{p_k T} \cdot z^{-1}$$

Pas 1.- Transformació bilineal

• Descriu una correspondència entre el pla s i el pla z. L'eix $j\omega$ es transforma en el cercle unitat del pla z

$$H_{a}(s) = \sum_{k=1}^{N} \frac{b_{k}}{s+a_{k}} \longrightarrow \frac{dy(t)}{dt} + a_{k} \cdot y(t) = b_{k} \cdot x(t) \xrightarrow{t=nT} y'(nT) = -a \cdot y(nT) + b \cdot x(nT) \quad (2)$$

$$y(nT-T) \longrightarrow y(t) = \int_{t_{0}}^{t} y'(\tau) d\tau + y(t_{0}) \longrightarrow y(t) = \int_{t_{0}}^{t} y'(\tau) d\tau + y(t_{0}) \longrightarrow y(nT) = -a \cdot y(nT) + b \cdot x(nT) \quad (2)$$

 La transformació 's' – 'z' s'obté mitjançant l'equació en diferències que resulta de substituir (1) en (2)

$$H(z) = \frac{Y(z)}{X(z)} = \sum_{k=1}^{N} \frac{b_k}{\frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}}\right) + a_k}$$

$$s = \frac{2}{T} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

Exemple

• Feu la conversió del filtre analògic del pla s al pla z

$$H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 0.9}$$

• Aproximació per derivades: $s = (1 - z^{-1})/T$ $H(z) = \frac{T^2/(1 + 0.2T + 9.01T^2)}{1 - \frac{2 \cdot (1 + 0.1T)}{1 + 0.2T + 9.01T^2} z^{-1}} \xrightarrow{T=0.1} H(z) = \frac{0.009 \cdot z^{-2}}{1 - 1.8197 \cdot z^{-1} + 0.9008 \cdot z^{-2}}$

Variància impulsional: $s - p_k = 1 - e^{p_k T} \cdot z^{-1}$

$$H_{a}(s) = \frac{1/2}{s+0.1-3j} + \frac{1/2}{s+0.1+3j} \longrightarrow H(z) = \frac{1/2}{1-e^{-0.1T} \cdot e^{3jT} z^{-1}} + \frac{1/2}{1-e^{-0.1T} \cdot e^{-3jT} z^{-1}} = \frac{1}{1-1.8096 \cdot z^{-1}}$$

Transformació bilineal (per T=0.5)

$$H(z) = \frac{0.2974 + 0.119 \cdot z^{-1} - 0.1785 \cdot z^{-2}}{1 - 1.9024 \cdot z^{-1} + 0.9048 \cdot z^{-2}}$$

Conversió 's'-'z'. Consideracions

-10

- Estabilitat: •
 - És imprescindible que l'eix $j\Omega$ del pla s tingui una correspondència completa amb el pla z, dintre del cercle unitari en z

Aproximació per derivades (Correspondència incompleta)

José Antonio Soria Pérez Departament d'Enginveria Electrònica

 σ

Conversió 's'-'z'. Consideracions (Cont)

- Les tres metodologies garanteixen estabilitat del sistema discret desprès de la conversió, ...però amb matisos
 - Aproximació per derivades
 - Només es pràctic en sistemes passa-baixes i una classe limitada de sistemes passa-banda
 - Els mètodes basats en la k-èsima derivada (s^k=[(1-z⁻¹)/T^k]) són molt complexes de realitzar
 - Variància impulsional
 - Mateixes limitacions que el mètode d'aproximació per derivades degut al problema de solapament del pla s amb el z
 - Trasformació bilineal
 - Tot i la correspondència no lineal de l'eix freqüencial amb el domini continu, és el mètode més utilitzat a la pràctica

