
Optimizing Sparse Matrix-Vector Multiplication
in NEC SX-Aurora Vector Engine

Constantino Gómez1, Marc Casas1, Filippo Mantovani1, and Erich Focht2

1Barcelona Supercomputing Center, {first.last}@bsc.es
2NEC HPC Europe (Germany), {first.last}@EMEA.NEC.COM

August 14, 2020

Abstract

Sparse Matrix-Vector multiplication (SpMV) is an essential piece of code used
in many High Performance Computing (HPC) applications. As previous literature
shows, achieving e�cient vectorization and performance in modern multi-core
systems is nothing straightforward. It is important then to revisit the current state-
of-the-art matrix formats and optimizations to be able to deliver high performance
in long vector architectures. In this tech-report, we describe how to develop an ef-
ficient implementation that achieves high throughput in the NEC Vector Engine: a
256 element-long vector architecture. Combining several pre-processing and ker-
nel optimizations we obtain an average 12% improvement over a base SELL-C-σ
implementation on a heterogeneous set of 24 matrices.

1 Introduction

The Sparse Matrix-Vector (SpMV) product is a ubiquitous kernel in the context of High-
Performance Computing (HPC). For example, discretization schemes like the finite dif-
ferences or finite element methods to solve Partial Di�erential Equations (PDE) pro-
duce linear systems with a highly sparse matrix. Such linear systems are typically
solved via iterative methods, which require an extensive use of SpMV across the whole
execution. In addition, emerging workloads from the data-analytics area also require
the manipulation of highly irregular and sparse matrices via SpMV. Therefore, the e�-
cient execution of this fundamental linear algebra kernel is of paramount importance.

The performance of the SpMV y = Ax is strongly correlated to several factors. First
accesses to data structures containing the A matrix and the y vector are typically reg-
ular, which means that they benefit from hardware resources like memory bandwidth
capacity and structures like hardware pre-fetchers. The access on the x vector are
driven by the sparsity pattern of A, which makes them irregular and hard to predict.
In addition, x is the only element of SpMV where some degree of data reuse can be
exploited, although the irregular nature of its accesses prevent the reuse of the x vec-
tor. Another important performance aspect when parallelizing SpMV is the control flow

1

divergence driven by the di�erent number of non-zero entries of the A matrix. Such
divergence can become a really important issue to leverage the computing power of
high-end numerical accelerators like Graphic Processor Units (GPUs) or long vector
architectures.

Many di�erent approaches have been proposed to e�ciently store sparse matrices
and e�ciently run SpMV y = Ax. One of the most common approaches, Compressed
Sparse-Row (CSR), and its column counterpart Compressed Sparse-Column (CSC), ef-
ficiently stores sparse matrices and enables simple stride-1 memory access patterns
on A and y. However, accesses on x are highly irregular and it su�ers from flow di-
vergence issues since each row-vector product depends on the number of non-zeros
it contains. As such, it is not an appropriate format to manipulate sparse matrices on
GPUs or long vector architectures.

Other approaches aim to mitigate the drawbacks of CSR by enlarging its storage
requirements to increase the locality on x. SELL-C-σ [1] and ELLPACK Sparse Block [2]
make use of row sorting and column blocking to improve both storage requirements
and locality on x. This tech-report demonstrates that, although some of these ap-
proaches are very good abstractions to represent and manipulate sparse matrices,
there are many unexploited opportunities to improve their performance on long vec-
tor architectures.

The main contributions of this tech-report are:

– We develop a highly e�cient SpMV implementation for long vector architectures
based on the state-of-the-art SELL-C-σ format. Our implementation reaches
117 GFlops saturating 69% of the peak memory bandwidth in a NEC SX-Aurora
Vector Engine [3]. This accelerator leverages a vector instruction set that goes
beyond the SIMD approach (of e.g., AVX-512 in x86 CPUs) with an 16-kbit long vec-
tor registers and instructions. Our evaluation assumes therefore an exploratory
role for other vector ISA gaining momentum such as Arm SVE and RISC-V vector
extension. Since there was no SELL-C-σ implementation for such class of ar-
chitectures, we contribute to the HPC community with a highly optimized vector
implementation of the SELL-C-σ format that can easily be ported to other vector
ISA whenever they are ready.

– We implement, evaluate and discuss the performance impact of several optimiza-
tions targeting vector architectures making extensive use of the available vector
instructions. We improve the SELL-C-σ baseline by 12%.

– We compare our novel approach for long vector architectures with other state-
of-the-art approaches targeting SpMV in cutting-edge multi-core CPU and GPU
devices. We demonstrate that our approach is 3× and 1.71× faster, respectively,
than these approaches since it achieves an outstanding average SpMV e�ciency
of 4.19% of the peak performance.

The remaining part of the document is structured as follows: in Section 2 we intro-
duce the background of SpMV, drawbacks, and benefits of several previously proposed
formats that we use as a starting point for our work; in Section 3 we explain in detail
the added contributions of this tech-report; in Section 4 we describe our experimental

2

setup, i.e., the hardware and the system software used to run our tests; in Section 5 we
present and analyze the results of our experiments; Section 6 contains an overview of
other relevant related work; Lastly, in Section 7, based on our analysis, we o�er con-
clusions about the suitability of SELL-C-σ and other SpMV optimizations for very long
vector architectures.

2 Background

In this section, we introduce relevant state-of-the-art sparse matrix formats that set
the grounds to build our long-vector architecture targeted optimizations for SpMV that
conform the contributions of this tech-report.

CSR – The Compressed Sparse Row (CSR) is one of the most commonly used formats
to represent sparse matrices. It stores the values and column indices of all the number
of non-zero (NNZ) elements in two separate arrays in row order. A third array keeps
a pointer to the starting position of every row in those arrays. In practice, the main
advantages of CSR are that it has a very good compression ratio for any type of ma-
trix element distribution and performs accesses to the A values and column indices
in a streaming fashion. The main disadvantages are that it is not a format suitable
for vector architectures, and that the accesses to x have poor locality which ends up
producing a high number of outstanding requests to main memory.

Figure 1: Data layout representation of SELL-C-σ with Column Blocking and Divergence Flow
Control optimizations.

ELLPACK – ELLPACK [4] is designed to perform e�ciently in GPUs and vector ar-
chitectures. Compared to CSR, it o�ers improved locality of memory accesses to x by
storing and accessing the non-zero elements in column order at the cost of additional
storage. For a matrix A of size M × N with a maximum row size of K , it requires an
array of size M ×K to store A. The two left-most drawings in Figure 1 visually describe
how a sparse matrix is compressed and represented in ELLPACK. The main downside of
ELLPACK is that it only o�ers good performance and compression as long as the matrix
being stored has a regular NNZ elements per row. As matrices become more irregular,
the performance is expected to decrease and the number of zero elements stored to
increase.

3

Sliced ELLPACK – SELLPACK [5] optimizes the ELLPACK format to improve storage
e�ciency and throughput for both regular and irregular matrices. In this format, matrix
rows are ordered by their NNZ. Then, the matrix is logically divided into slices of a fixed
number of rows. Rows are padded with zeroes to match the longest row within the
same slice, as opposed to ELLPACK that matches the longes row in the whole matrix.

SELL-C-σ – SELL-C-σ [1] introduces the idea of limiting the sorting window to avoid
reordering the whole matrix. SELL-C-σ addresses two main issues: i) the large cost of
sorting matrices with a large number of rows; and ii) the exploitation of the natural
locality in accesses to x of adjacent rows, which approaches that apply a total sorting
of the matrix can reduce. The sorting window size is defined by the σ parameter, which
is typically a multiple of the maximum length of the SIMD or vector unit.

ELLPACK Sparse Block (ESB) – ESB [2] introduces two additional optimizations to
reduce bandwidth requirements: column blocking, and the use of a bit array to mask
instructions. In an e�ort to improve the locality of accesses to x, ESB subdivides the
matrices by blocks of columns. Each of those blocks is processed like an independent
matrix stored with the SELL-C-σ format and contiguously allocated. ESB uses a bit array
data structure to store one bit mask for each column of the slice. A bit is set to one
for each non-zero element in the column. This information is later used to mask the
elements of the SIMD operations. It also allows to compress the matrix even more as
zero padding is no longer required.

Figure 1 represents the logical steps to convert a sparse matrix to the SELL-C-σ (with
blocking) format during the preprocessing phase. In this simplified example we con-
sider the parameters: C = 4, σ = 8 and num. blocks = 2. On the leftmost part, the natural
representation of the matrix is divided in two separate blocks of Block size columns.
Then, the rows of each block are ordered by size within a so-called ELLPACK window,
i.e., within the blue region containing contiguous chunks of σ rows. The rightmost
drawing (SELL-C-σ slices) shows the final data layout within a window where two slices
are highlighted in light-pink and light-purple. Elements within each slice, including the
zero-padding if no optimization is applied, are stored contiguously in column-major
order. The red arrows describe the access pattern to the matrix elements if our Di-
vergent Flow Control or the Bit-Array optimizations are enabled. We elaborate on this
optimization further in this work in Section 3.2.

3 Contributions

In this section, we describe each of the contributions that improve the performance
of SpMV. Section 3.1 presents our proposals to improve the SELL-C-σ format. These
proposals can be applied to a wide range of scenarios. Section 3.2 describes our con-
tributions to accelerate SpMV on long vector architectures.

4

3.1 Implementing the SELL-C-σ format

SELL-C-σ is an e�cient sparse matrix format for vector architectures. ESB extends this
format with optimizations that target a particular type of matrices or better suited for
specific accelerators like the Intel Xeon Phi (KNC). Because of that, we choose SELL-
C-σ as a starting point to develop our SpMV implementation for Vector Engine. From
there, we revisit and adapt some optimizations previously proposed in the literature
extending them with new approaches targeting long vector architectures. In detail, we
explore: i) the adequate sorting strategy based on the trade-o� between performance
and preprocessing overhead as the σ parameter increases; ii) the use of task-based
parallelism and the impact of the task granularity in the scaling performance of SELL-
C-σ; and iii) the impact of column blocking in matrices to improve locality on vector
x.

In Listing 1 we provide detailed pseudo-code of our basic implementation of SELL-
C-σ for the Vector Engine. The rest of the optimizations are built on top of this code.
Our codes are optimized using low-level intrinsics which allow us to leverage NEC spe-
cific architectural features such as arithmetics using long vectors and memory access
policies.

1 void kernel_SELLCS(ELLPACKmtx matrix, double x, double y,
2 int64 start_row, int64 end_row, int64 vrow_order,
3 int64 slices_width, int64 slices_ptr) {
4 int vlen = 256;
5 // Outer loop: iterates over rows in the matrix
6 for (int64 rowid = start_row; rowid < end_row; rowid += 256)
7 {
8 //nl is the number of active vector lanes, always 256 except a the end of the matrix
9 int nl=((end_row - rowid) < vlen)? (end_row - rowid): 256;

10 // Set results = {0,...0}
11 vr results = _vxor(results, results, nl);
12 // Pointers to values and col. indices
13 int64 slice_idx = rowid >> 8;
14 double *values_ptr = &matrix->values[slices_ptr[slice_idx]];
15 int64 *colidx_ptr = &matrix->column_indices[slices_ptr[slice_idx]];
16 // Compute scatter addresses
17 vr y_sc_addr = _vld(8, &vrow_order[rowid], nl);
18 y_sc_addr = _vmulul(8, y_sc_addr, nl);
19 y_sc_addr = _vaddul(y, y_sc_addr, nl);
20 // Get the width of the slice
21 int64 swidth = slices_width[slice_idx];
22 /* Inner loop: iterates over columns in the slice */
23 for (int64 i = 0; i < swidth; i++)
24 {
25 // Vector load matrix values and col. indices
26 vr A_values = _vld(8, values_ptr, nl);
27 vr A_colidx = _vld(8, colidx_ptr, nl);
28 // Gather X vector values
29 vr xgather_addr = _vmulul(8, A_colidx, nl);
30 xgather_addr = _vaddul(x, xgather_addr, nl);
31 vr x_val = _vgt(xgather_addr, &x[0], &x[ncols], nl);
32 // Multiply
33 results = _vfmadd(results, x_val, A_values, nl);
34 values_ptr += 256; colidx_ptr += 256;
35 }
36 // Scatter the results back to Y
37 _vsc(results, y_sc_addr,&y[0], &y[nrows], nl);
38 }
39 }

Listing 1: Basic Vector Engine SELL-C-σ implementation

5

Sorting strategies – The SELL-C-σ format requires matrix rows to be sorted in terms
of their Number of Non-Zero elements, NNZ , which may incur a significant overhead.
We mitigate the cost of SELL-C-σ in terms of sorting by applying the non-comparative
Radix Sort algorithm. It has a worst-case cost of O(w × n), where w is the number
of digits of the largest value, and is well suited for sorting integers and long-vector
architectures [6]. Since reordering the whole matrix can be extremely costly, SELL-C-σ
splits the matrix into several subsets of rows and requires each one of them to be
sorted independently. We call the number of rows per subset reorder window, which
corresponds to the σ parameter. To select an optimal reorder window size for our
experiments, we run our SELL-C-σ implementation with Divergent Flow Control opti-
mization, as it requires an extra preprocessing step in which the MAXnnz structure
is computed (see Figure 1). We evaluate the trade-o� between the performance bene-
fits of SELL-C-σ during the SpMV computation, and the cost of sorting the matrix rows
during the preprocessing phase. If the σ parameter is bigger than the total number
of rows of a matrix, the second is used instead. We use the optimal task partitioning
configuration for each matrix. As Figure 2 shows, for some matrices a bigger reorder
window can provide up to 2× performance improvements, but for most of them, a re-
order window of 16 k-rows is enough to perform optimally with improvements between
0% and 30% compared to σ = 256. In general, reordering the matrix in groups of 16K
rows takes about 40% to 50% additional time during the preprocessing phase. For ref-
erence, in our experiments, converting most matrices to SELL-C-σ takes the equivalent
in time of 70 to 150 iterations. To avoid algorithmic errors due to the sorting, we use
the data structure, row_order[num_rows], that keeps the initial order of the matrix, to
store back the results in y.

512 1K 2K 4K 8K 16K 32K 64K 10M
Row Sorting Window (sigma)

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

w.
r.t

. s
ig

m
a

=
25

6

512 1K 2K 4K 8K 16K 32K 64K 10M
Row Sorting Window (sigma)

1.0

1.5

2.0

2.5

Pr
ep

ro
ce

ss
in

g
Ti

m
e

[s
] w

.r.
t.

sig
m

a
=

25
6

Figure 2: Performance increase and preprocessing overhead increasing the sigma window.

Task-Based Parallelism – We orchestrate the parallel execution of our workloads
by splitting them into several sequential pieces, called tasks, and letting an underlying
runtime system to dynamically schedule them as computing resources become avail-
able. OpenMP supports this parallel execution model via task constructs [7]. In this
context, the programmer must assign an appropriate amount of work to each paral-
lel task to expose a significant amount of concurrency to the parallel hardware while,
at the same time, avoid incurring in too much overhead in terms of task creation or
synchronization. As the ideal task granularity changes from matrix to matrix, we per-
form a scalability test up to 8 OpenMP threads, with di�erent number of tasks ranging
from 8, which would be the minimum for 8 cores, to 256 in steps in powers of two. In
any task partition configuration all tasks contain similar NNZ . The results of these

6

experiments allow us to understand the level of task parallelism needed to achieve
the best workload balancing without creating too many tasks instances. In general, we
observe that most matrices achieve its best performance when the workload is divided
between 8 to 64 tasks. Only few experiments (around 10%) show better performance
when the workload is divided between 128 and 256 tasks. In such cases the benefits
are less than 1% compared to dividing it by 8 to 64 tasks. For each matrix, we select
the number of tasks configuration that achieves the highest performance. We use such
configurations in our performance experiments, further, in the evaluation section.

Matrix Column Blocking – As we mention in Section 2, previous work [2] analyzes
the e�ects of column blocking on SpMV.

However, that study is limited to Intel Xeon Phi (KNC) which has a SIMD width of
512-bits. We extend our SELL-C-σ base implementation with a similar column blocking
approach on top of SELL-C-σ to test its suitability with longer vectors. We comment on
the results in Section 5.1.

3.2 Optimizations Targeting Long-Vector Architectures

In this section, we describe the optimizations we propose targeting long-vector archi-
tectures like SX-Aurora and others. Our proposals to accelerate SpMV on long vector
architectures are: i) the use of cache allocation to improve the reuse of x and depri-
oritization of store dependencies; ii) divergence flow control adapting the length of
vector operations to avoid loading and computing zero-padded elements; iii) enabling
loop unrolling in SELL-C-σ using partial loop fusion; iv) e�cient computation of gather
and scatter addresses with special instructions.

Cache allocation and store relaxation policies – In the context of SpMV, data struc-
tures corresponding to the matrixA have very di�erent data access patterns and reuse
properties than the vector x. Indeed, the matrix values and column_indices data struc-
tures are accessed with a very simple stride-1 memory access pattern and never reused,
while the vector x is accessed randomly but often reused. One of the fundamental as-
pects to achieve good performance for SpMV is to exploit all opportunities for data
reuse to alleviate the pressure on the memory bandwidth. Therefore, it is critical to
reuse all vector x coe�cients stored in the cache hierarchy as much as possible. Long-
vector architectures typically o�er support to explicitly guide from the source code the
cache replacement policy [3, 8]. We exploit such support to indicate to the architec-
ture that cache lines containing pieces of both the values and column_indices arrays
must be evicted before than any other cache line. Therefore, we reduce the chances of
evicting a cache line occupied by the vector x an access to a non-reused data structure
misses. We refer to this policy as Non-Cacheable load.

Another important aspect is the way we handle stores, which exploits the memory
access pattern driven by the SELL-C-σ format. We use a register to accumulate the in-
termediate results of a rows slice. Once the pass over a certain slice finishes, the vector
register holding intermediate results is stored to several memory addresses that will
not be accessed again until many other slices are computed. Storing the whole vector
register in memory is done via a scatter store instruction. Typically, dependencies on
scatter store instructions are computed considering the whole range between the ini-

7

tial and final addresses they access, which can delay subsequent memory instructions
that access addresses within this range, although not necessarily the same ones as the
scatter store. Since we know that memory instructions immediately following the scat-
ter do not access the same memory addresses, we instruct the hardware to not check
dependencies across the scatter and some subsequent instructions. We refer to this
policy as Store Overtake. A memory fence instruction is inserted to define where this
relaxation period finishes. Modern vector architectures support this kind of memory
scatter dependencies relaxation. [8].

Table 1 summarizes how we apply this concepts in our implementation of SELL-C-σ
and include cache allocation and store relaxation policies in each memory access to
obtain improvements in performance.

Loop Vector Mem. Access Policy applied

Inner Load Values Non-Cacheable
Inner Load Col. Indices Non-Cacheable
Inner Gather X coef. < none >
Outer Load Row Order < none >
Outer Scatter result to Y Overtake

Table 1: Policies applied to optimize SELL-C-σ.

Handling Flow Divergence by Adapting the Vector Length – One major aspect when
computing SpMV on long vector architectures is the management of flow divergence.
It mainly arises from the varying number of non-zero elements per matrix row, which
forces the loop iterating over matrix non-zero coe�cients to produce di�erent control
flow scenarios per row. Therefore, vectorizing matrix rows containing very di�erent
numbers of non-zero elements wastes computing resources, particularly the ones as-
signed to rows with small amounts of non-zero coe�cients.

One very popular technique to handle flow divergence is the use of predicated reg-
isters. They contain an array of bits specifying whether its corresponding vector ele-
ment is zero or not. Predication is supported by commercial SIMD ISAs like AVX512 [9] or
SVE [10] and is a valuable approach to let the compiler vectorize irregular loops. How-
ever, it requires a large amount of storage, since every single vector element needs its
corresponding predicated mask, and many of its implementations do not avoid pro-
cessing zeroed vector entries but just discard the output of these meaningless com-
putations.

We propose a new approach to handle flow divergence on vector architectures
that relies on the ratio between the number of vector elements vel and the number
of vector lanes vla. We call this new approach Divergent Flow Control (DFC). Vector
architectures have the capacity of processing vector elements in batches of vla, that
is, they require processing vel

vla
batches of vla to finish the pass over the whole set of vel

elements. Our approach instructs the hardware to process just MAXnnz elements of
the vector, which implies that the hardware will need to process just

⌈
MAXnnz

vla

⌉
batches

of vla elements, where MAXnnz is the maximum number of non-zeros over all rows
involved in the vector operation. Importantly, this information can be defined in just 8
bits. For example, the SX-Aurora architecture, which is described in Section 4, has 256-
element vector registers, hence the possible values are 1 ≤ MAXnnz ≤ 256, which

8

means that in a single byte we can encode the vector length that we need for each
vector instruction.

As we describe in the previous section, we modify our code to enable this optimiza-
tion by adding an extra data structure, the active_lanes vector, which contains the
MAXnnz for every column-wise vector operation to do inside each slice. The right-
most drawing of Figure 1 shows a basic example of how MAXnnz are counted and
stored in a vector. The computation of zero-padded elements in yellow is avoided.

Applying loop unrolling – Loop unrolling is a well-know optimization to reduce
control flow overhead and maximize the use of the register file. Our loop unrolling
approach particularly maximizes locality on vector x by increasing the depth of vertical
or column-wise vector operations while, at the same time, maximizes data reuse on
the register file. This is a very natural optimization in our context since SELL-C-σ also
targets the same kind of locality on vector x without writing back to memory partial
results until all the rows in a slice are completed.

An e�cient implementation of loop unrolling is not straight forward in our context.
In Listing 2, we show an example including unrolling two slices of the algorithm. This
example also implements the DFC optimization that we describe above. The main issue
when unrolling slices is that each slice may have a di�erent width. However, we know
that within the same row order window, each slice has a width less or equal to the
previous one. That is, in on our example swidth1 ≥ swidth2.

It is possible to fuse from the bottom-up the inner loop iteration space of the slices
as we show in lines 25 to 41 in Listing 2. We must add an additional loop to handle the
remaining elements of slice 1. This loop is represented in lines 43-47 in our example.
Note that, if unrolling is applied, the sigma reorder window has to be a multiple of the
number of rows the unroll covers.

The unroll size is limited by the number of vector registers. Since the number of
local variables increase each time we unroll, it is important to declare them in the most
immediate context where they are consumed, which makes it easier for the compiler
to manage register dependencies, apply architecture-specific optimizations and avoid
spilling. Our implementation is able to unroll up to 8 times without producing any
spilling access on a vector architecture with 64 architectural registers available.

E�cient computation of gather/scatter addresses – Gather and scatter instruc-
tions fetch and store, respectively, to the addresses provided in a vector. In our im-
plementation, gather is used to access non-contiguous elements of the x vector, while
scatter is used to store the results back to the corresponding element of the y vec-
tor. The addresses are generated by multiplying the index of the vector element we
access by the corresponding data type size. (e.g., by 8 if we use 64-bit elements). To
handle the integer arithmetic involved in address computation, a multiply instruction
followed by and add operation can be replaced by a single shift and add instruction.
Listing 2, (lines 20 and 30) exemplifies how we apply this optimization.

To evaluate the impact of our proposals, we created five implementations which in-
crementally include the optimizations we describe above. The optimizations included
in every implementation are specified in Table 2. In addition to those five, we also
created an implementation of SELL-C-σ including the column blocking, sorting strate-
gies, DFC and e�cient computation of gather/scatter addresses, that we evaluate in a

9

1 kernel_SELLCS(...) {
2 int vlen = 256;
3 for (int64 rowid = start_row; rowid < (end_row - 511); rowid += 512) {
4 int64 slice_idx = rowid >> 8;
5 double *values_ptr = &matrix->values[slices_ptr[slice_idx]];
6 uint64 *colidx_ptr = &matrix->column_idx[slices_ptr[slice_idx]];
7 // Duplicate variables
8 vr results = _vxor(results, results, vlen);
9 vr results2 = _vxor(results2, results2, vlen);

10 int64 swidth = slices_width[slice_idx];
11 int64 swidth2 = slices_width[slice_idx + 1];
12 int64 act_lanes_idx = actlanes_ptr[slice_idx];
13 int64 act_lanes_idx2 = act_lanes_idx + swidth;
14 double *values_ptr2 = values_ptr + (swidth*vlen);
15 int64 *colidx_ptr2 = colidx_ptr + (swidth*vlen);
16 vr y_sc_addr = _vld(8, &vrow_order[rowid], vlen);
17 y_sc_addr = _vsfa(y_sc_addr, 3UL, y, vlen);
18 vr y_sc_addr2 = _vld(8, &vrow_order[rowid + vlen], vlen);
19 y_sc_addr2 = _vsfa(y_sc_addr2, 3UL, y, vlen);
20 /* Partial loop fusion: Slices 1 & 2 */
21 for (int64 i = 0; i < swidth2; i++) {
22 // Slice 1
23 int nl_1 = vactive_lanes[act_lanes_idx++] + 1;
24 vr A_values = _vld(8, values_ptr, nl_1);
25 vr A_colidx = _vld(8, colidx_ptr, nl_1);
26 vr xgather_addr = _vsfa(A_colidx, 3UL, x, nl_1);
27 vr x_val = _vgt(xgather_addr, &x[0], &x[ncols], nl_1);
28 results = _vfmadd(results, x_val, A_values, nl_1);
29 // Slice 2
30 int nl_2 = vactive_lanes[act_lanes_idx2++] + 1;
31 vr A_values2 = _vld(8, values_ptr2, nl_2);
32 vr A_colidx2 = _vld(8, colidx_ptr2, nl_2);
33 vr xgather_addr2 = _vsfa(A_colidx2, 3UL, x, nl_2);
34 vr x_val2 = _vgt(xgather_addr2, &x[0], &x[ncols], nl_2);
35 results2 = _vfmadd(results2, x_val2, A_values2, nl_2);
36 values_ptr += vlen; colidx_ptr += vlen; values_ptr2 += vlen; colidx_ptr2 += vlen;
37 }
38 /* Finish the vector ops remaining in slice 1*/
39 for (int64 i = swidth2; i < swidth; i++) {
40 // [...]
41 results = _vfmadd(results, x_val, A_values, nl_1);
42 values_ptr += vlen; colidx_ptr += vlen;
43 }
44 _vsc(results, y_sc_addr, &y[0], &y[nrows], vlen);
45 _vsc(results2, y_sc_addr2, &y[0], &y[nrows], vlen);
46 }
47 // [Omitted Unroll Epilogue]
48 }

Listing 2: Manually unrolling the SELL-C-σ by 2 slices

dedicated subsection of Section 5.1.

3.3 Optimization generalization

We examine the portability of these optimizations to three additional mainstream vec-
tor (or SIMD) architectures: Intel AVX-512, ARM SVE and RISC-V vector extension. Fol-
lowing, we describe the necessary changes in the code to port each optimization, and
comment about the possible limitations or drawbacks in performance.

Some optimizations like the sorting strategies, column blocking and loop unrolling,
are implemented with standard C and not using any architecture dependent instruc-
tion. Of course, the optimal σ, unroll and number of blocks parameter configurations
are expected to di�er across input sets and architectures. In a similar way, implement-
ing the task-based parallelism approach just requires a parallel runtime with OpenMP

10

SELLCS SELLCS SELLCS SELLCS
SELLCS DFC U8-DFC U8-NC U8-NC-DFC

Optimization

Sorting strategies • • • • •
Task-Based Parallelism • • • • •
Matrix Column Blocking
Cache Allocation & Store relaxation policies • •
Divergent Flow Control • • •
Loop unrolling • • •
E�cient gather/scatter address computation • • • • •

Table 2: Optimizations applied on each of the implementations evaluated in the tech-report.

4.0 support available in the system. Our Divergent Flow Control optimization leverages
the load vector length from the Vector Engine ISA to adjust the vector length on every
operation as needed; in RISC-V, the length of each vector operation can also be dy-
namically set with a similar instruction. Intel AVX nor ARM SVE specifications do not
support an exact equivalent mechanism, but they support masking of operations. A
partial version of this optimization then, can be implemented using masks using an ad-
ditional Bit-Array data structure [2]. However, the use of masks has two disadvantages
compared to adjusting the vector length. The major one is that, although masking will
prevent unnecessary vector loads of zero elements, it will not reduce the latency of
the vector instructions. Also but less relevant, a bit array requires 256 bits to control
the 256 elements of the vector while DFC would use just 8 bits.

In other architectures it is also possible to annotate instructions with cache al-
location and store relaxation hints, referred also as non-temporal hints, like in SX-
Aurora. In Intel architectures this behavior is enabled by using the movnt* instruction
for stores and loads. In this case, the mfence instruction can be used for synchroniza-
tion. ARM SVE supports also non-temporal loads (e.g., load1d becomes loadnt1d). The
current specification of RISC-V vector extension does not support non-temporal hints
by default so it remains implementation dependant.

Finally, shift and add is an interesting instruction to speedup gather and scatter
logical address computation in aurora. However, AVX512, ARM SVE and RISC-V instruc-
tions use indices or o�sets relative to a base address specified in an instruction field.
The logical address computation is done internally.

4 Methodology

In this section we introduce the hardware and software infrastructure used for our
evaluation. The main system on which we evaluated our implementation is the NEC
SX-Aurora (described in the following section), while for performance and energy com-
parison we considered:

– Intel Xeon Platinum 8160 CPU with 24 cores each running at 2.10 GHz. Each core
houses 32 kB L1 and 1024 kB L2 data cache. The L3 cache is shared among the 24
cores and its size is 33792 kB. Also, each core is powered by a AVX-512 SIMD unit,

11

allowing operating with registers of up to 512 bits (i.e., 16 floats, 8 doubles).

– NVIDIA V100 (Volta) GP-GPU with 84 Volta Streaming Multiprocessor (SM) running
at a maximum frequency of 1.5 GHz. The 84 SMs share 6144 kB L2 cache and are
connected to 4096 GB HBM2.

4.1 SX-Aurora Vector Engine

The NEC SX-Aurora Vector Engine (VE) is the latest incarnation of NEC’s long vector
architecture which combines SIMD and pipelining. Vector units and vector registers
use a 32 × 64-bit wide SIMD front in a 8 cycles deep pipeline resulting in a maximum
vector length of 256× 64-bit elements or 512× 32-bit elements. The VE10B processor
used for this publication has been released in 2018, its characteristics were presented
at the IEEE HotChips 2018 [11] and first evaluations of performance were discussed
in [3]. Due to its 6 HBM2 8 high stacks the Vector Engine has a very high memory
bandwidth of 1.22 TB/s out of the 48 GB on-chip RAM, shared by only 8 powerful cores.
The VE10AE and VE10BE models released at the end of 2019 have improved the memory
bandwidth to 1.35 TB/s but were not accessible for this publication’s work.

Sparse matrix operations performance benefits of large memory bandwidth, but
equally important are other characteristics of the processor like mechanisms for mem-
ory latency hiding or caches. Each of the 8 Vector Engine cores consists of a scalar pro-
cessing unit (SPU) and a vector processing unit (VPU) and is connected to a common
last level cache (LLC) of 16 MB. The core’s bandwidth to the LLC is 406.9 GB/s, bidirec-
tional, therefore the memory bandwidth (995 GB/s peak measured with STREAM) can
be saturated by 4 cores. Each VPU has 64 architectural vector registers of 256×64-bit el-
ements and the threefold amount implemented in hardware, used for register renam-
ing. Three fused multiply-add vector units deliver a peak performance of 269 GLFOPS
(double precision) per core at 1.4 GHz, and 307 GFLOPS for the VE10A model running
at 1.6 GHz. The peak performance of the used Vector Engine variant is 2.15 TFLOPS,
which is not impressive when compared to the latest GPGPUs, but the 0.56 byte/FLOP
represent a well-balanced CPU with coarse grain parallelism in 8 cores and fine-grain
parallelism at vector level.

Vector Engines are integrated as PCIe cards into their host machines and o�oad
the operating system functionality entirely to the host. They run in multitasking and
multiprocessing mode, like standard CPUs, programs can run entirely on the Vector
Engine (native programming model), o�oad parts of code to the host machine (re-
verse o�oading) or run on the host and o�oad compute kernels to the Vector Engine
(accelerator, o�oad model). Heterogeneous programs can also be built with the hy-
brid MPI provided by NEC that connects processes running on the host and the VEs. In
all cases programmers can use languages like C, C++, Fortran, and parallelize with MPI
as well as OpenMP, while accelerator code can still use almost any Linux system call
transparently.

The proprietary compilers from NEC support automatic vectorization aided by di-
rectives. They are capable of using most features of the extensive vector engine ISA [12]
from high-level languages loop constructs. For the work presented in this article, we
needed even tighter control over Vector Engine features like vector masks generation

12

and control, vector registers and LLC cache a�nity of data. Therefore, we turned to the
open-source LLVM-VE project [13] which supports intrinsics allowing full control over
the generated code [14].

4.2 Experimental Setup

For our study, we select matrices, used frequently in recent literature [1,15–17] that rep-
resent a wide range of problems in the area of HPC applications. In Table 3 we include
the list of matrices and some of its characteristics, all of them can be downloaded at
the SuiteSparse Matrix Collection repository1.

Name Row×Col NNZ NNZ/row Density

scircuit 170K × 170K 958K 5 2.92E-05
mc2depi 525K × 525K 2.1M 3 5.71E-06
webbase-1M 1000K × 1000K 3.1M 3 3.00E-06
s4dkt3m2 90K × 90K 3.7M 41 4.53E-04
dense2 2K × 2K 4.0M 2000 1.00E+00
bmw7st-1 141K × 141K 7.3M 51 3.61E-04
torso1 116K × 116K 8.5M 73 6.28E-04
mip1 66K × 66K 10.3M 155 2.33E-03
fcondp2 201K × 201K 11.2M 55 2.73E-04
pwtk 217K × 217K 11.5M 52 2.39E-04
fullb 199K × 199K 11.7M 58 2.91E-04
halfb 224K × 224K 12.3M 55 2.45E-04
BenElechi1 245K × 245K 13.1M 53 2.16E-04
crankseg-2 63K × 63K 14.1M 221 3.46E-03
Si41Ge41H72 185K × 185K 15.0M 80 4.31E-04
TSOPF-RS-b2383 38K × 38K 16.1M 424 1.11E-02
msdoor 415K × 415K 19.1M 46 1.11E-04
bundle-adj 513K × 513K 20.2M 39 7.60E-05
ML-Laplace 377K × 377K 27.5M 73 1.94E-04
ldoor 952K × 952K 42.4M 44 4.62E-05
bone010 986K × 986K 47.8M 48 4.86E-05
af-shell10 1.5M × 1.5M 52.2M 34 2.25E-05
ML-Geer 1.5M × 1.5M 110M 73 4.85E-05
nlpkkt240 27M × 27M 760M 27 9.65E-07

12month1 12K × 837K 22.6M 1814 2.25E-03
spal-004 10K × 322K 46.1M 4524 1.46E-02

Table 3: Sparse matrices used in the evaluation.

For our SELL-C-σ implementations in the Vector Engine, we compile with LLVM-VE
v1.8 and link NEC’s proprietary compiler NCC v3.0.1. We also use the following math
libraries for performance comparisons between platforms: NLC 2.0, cuSPARSE v10.2,
and MKL v2020.0 for the Vector Engine, NVIDIA V100 and Intel Xeon systems described
above. All of them released less than a year ago. All codes are compiled with the
-O3 optimization level. For easy reproducibility, all the SpMV implementations, the
benchmarking tool developed and the exact environment configuration files used for
each system are provided in our repository2

1https://sparse.tamu.edu/
2https://repo.hca.bsc.es/gitlab/cgomez/spmv-long-vector

13

5 Evaluation

5.1 Performance of Long Vector Optimizations

In this section, we evaluate the performance impact of the di�erent optimizations
we describe in Section 3. They are implemented on top of our SELL-C-σ base imple-
mentation for the Vector Engine. As several studies show [18], SpMV performance is
highly dependent on the sparse matrix structure. Therefore, our optimizations are not
expected to deliver the exact same performance for all the matrices evaluated. To
analyze in detail our performance results, we take into account several aspects like:
matrix size and density, information we provide in Table 3; and microarchitecture event
information provided by the hardware Performance Monitoring Counters (PMCs). The
PMCs available in the Vector Engine, report several relevant metrics such as: the to-
tal number of dynamically executed scalar and vector instructions, the average vector
instruction length, the elapsed cycles, or the hit/miss ratio of the di�erent cache hi-
erarchy levels. We access the PMCs right before and after the SpMV computation. We
analyze these metrics and we relate their values with the performance that the di�er-
ent optimizations achieve.

Figure 3 displays performance results in terms of GFLOP/s considering all the matri-
ces described in Section 4.2 except the last two. We evaluate six di�erent implemen-
tations of the SpMV kernel: NLC, SELLCS, SELLCS-DFC, SELLCS-U8-DFC, SELLCS-U8-NC
and SELLCS-U8-NC-DFC. The NLC category represents results obtained with the NEC
math library, a proprietary software developed by NEC and particularly tailored to
the SX-Aurora Vector Engine. Table 2 specifies which of the optimizations described
in Section 3 are included in SELLCS, SELLCS-DFC, SELLCS-U8-DFC, SELLCS-U8-NC and
SELLCS-U8-NC-DFC. Results in Figure 3, are executed in SX-Aurora running in a single
Vector Engine, with optimal σ and task partitioning configurations as described in sec-
tion 3. The performance measures exclusively the SpMV computation without any pre-
or post-process.

There are some missing values for the dense2 and nlptkk240 matrices in Figure 3. In
the case of dense2, implementations containing the 8-slice unroll optimization, require
at least 2048 rows to execute correctly and this matrix has only 2000. In the case of
nlptkk240, the implementation using NLC runs out of memory while trying to allocate
the data structures. Despite these issues, we include these matrices since they extend
the variety of matrices considered in this part of the evaluation.

Cases with significant performance issues – In Figure 3 we observe a particular
set of matrices where the performance of our SELL-C-σ implementation is clearly sub-
optimal compared to the NLC math library. Those matrices are: mip1 and torso1. In
such matrices, we have been able to identify clear issues when scaling the number
of cores. To do so, we compare the total number of instructions executed between 1
and 8 cores. Ideally, if we run a parallel workload using 1 or 8 cores, the sum of total
instructions executed in each core should be roughly the same for every run. For the
case of mip1, when running on 8 cores, the total number of scalar instructions is one
order of magnitude larger than the single-core run, while the number of vector in-
structions executed is roughly the same. This large increment of scalar instructions is
introduced by the OpenMP runtime due to workload imbalance. Matrices with a large

14

sc
irc

uit

mc2
dep

i

web
base

-1M

s4
dkt3

m2

den
se

2

bmw7st-
1

torso
1

mip1

fco
ndp2

pwtk
fullb

halfb

Ben
Elec

hi1
0

50

100

G
FL

O
P/

s

32
.0

0

62
.9

2

28
.5

2

10
5.

68

76
.4

6

66
.5

6 86
.1

6

88
.4

1

73
.7

3

72
.2

3

74
.1

3

73
.0

8

10
4.

34

37
.2

8

35
.3

6

21
.7

2

94
.4

0

74
.6

0 95
.6

4

70
.1

1

6.
38

10
6.

25

10
4.

40

10
2.

67

10
3.

91

10
9.

05

40
.1

9

39
.1

3

32
.2

6

93
.7

2

74
.7

5

89
.1

3

69
.8

8

25
.5

3

10
5.

03

10
1.

51

10
1.

24

10
1.

80

10
7.

89

40
.9

9

45
.2

1

33
.7

1

92
.8

5

93
.5

4

72
.9

2

24
.6

5

10
3.

17

10
4.

81

99
.8

0

10
0.

97

10
6.

48

43
.2

1

52
.4

6

20
.5

2

10
2.

08

10
4.

71

46
.3

2

6.
30

11
6.

36

11
3.

35

11
3.

89

11
1.

41

11
7.

51

43
.8

7

52
.2

8

37
.8

4

10
1.

63

10
1.

70

73
.5

4

28
.2

3

11
2.

48

11
2.

38

10
7.

67

11
3.

00

11
5.

39

Version NLC SELLCS SELLCS-DFC SELLCS-U8-DFC SELLCS-U8-NC SELLCS-U8-NC-DFC

cra
nks

eg
-2

Si41Ge4
1H72

TSOPF-RS-b2383

msd
oor

bundle-
adj

ML-Laplace
ldoor

bone0
10

af-s
hell

10

ML-G
ee

r

nlpkk
t240

AVERAGE
0

50

100

G
FL

O
P/

s

65
.4

5

60
.4

5 84
.4

7

73
.4

0

61
.2

8

10
9.

61

73
.7

4

66
.3

9

11
8.

72

11
2.

67

76
.9

798
.8

9

63
.9

4 83
.6

6 10
2.

14

74
.8

7 98
.3

8

10
2.

75

99
.0

7

11
0.

55

97
.5

7

42
.7

9

80
.6

810
2.

25

62
.2

5 82
.8

8 10
0.

99

87
.3

3

97
.0

9

10
0.

85

97
.0

4

10
8.

39

96
.3

6

43
.1

1

81
.6

910
0.

50

62
.9

4 92
.3

7

10
2.

78

51
.2

1

10
5.

27

10
3.

35

10
9.

08

11
1.

87

11
0.

50

65
.1

8 84
.0

910
1.

02

63
.8

1 95
.3

0 11
4.

19

38
.8

0

11
1.

42

11
1.

99

11
6.

12

11
7.

39

11
7.

44

70
.5

9 87
.2

310
9.

09

64
.5

9 94
.6

6 11
4.

02

55
.8

5

11
0.

54

11
2.

40

11
5.

43

11
6.

30

11
5.

79

68
.2

8 90
.3

0

Figure 3: Performance comparison of NLC vs our SELL-C-σ implementations for regular matrices.

di�erence in NNZ element density among sorting regions may incur in these issues. A
more refined data partitioning should be considered for such cases.

Divergent Flow Control evaluation – To understand the impact in performance of
the DFC optimization, we compare the performance of SELLCS with SELLCS-DFC. These
two implementations only di�er in the use of the DFC optimization. Only the second
one includes it. On average, the overall performance benefits of adapting each vector
length instruction to MAXnnz are almost negligible. However, it has a large impact in
some scenarios. For example, for webbase-1M, which represents a website connectiv-
ity matrix and has a very low non-zero element density, SELLCS-DFC is 50% faster than
SELLCS. For that matrix, PMC data reveals that the average length of vector instructions
when using SELLCS is 256, while it drops to 148 for SELLCS-DFC. The performance dif-
ference between SELLCS-DFC and SELLCS is explained by the vector length reduction
achieved by SELLCS-DFC, driven by the ratio of NNZ to zero-padding in webbase-1M.
We observe a very similar behavior for the rest of the matrices that benefit from this
optimization, including bundle-adj. While DFC does not o�er any benefit in regular ma-
trices where an average vector length of 256 does not waste resources, it can be critical
for performance in highly irregular matrices. As the minimum required length of vector
instructions can be precomputed before running SpMV, DFC potential benefits can be
easily predicted.

Unrolling by 8 evaluation – To evaluate the benefits of unrolling we compare the
performance of SELLCS-DFC with SELLCS-U8-DFC, since they are equivalent with the
only exception that SELLCS-U8-DFC implements the unroll optimization. SELLCS-U8-
DFC unrolls its most inner loop 8 times to process eight slices in the same iteration.
SELLCS-U8-DFC is in average∼ 3% faster than SELLCS-DFC. For 13 out of 24 matrices, un-
rolling yields benefits ranging from 1% to 15%, while in the particular case of nlpkkt240
it brings a 51% performance increase. Now, unrolling introduces a constraint during
the partitioning of the slices into tasks. The way we implement it, requires that the first
slice of the 8 unrolled slices is the longest of them. After that, every next slice must be
equal or shorter than the previous. To avoid breaking this constraint, we do not allow
slices from two di�erent sorting windows to concur in the same unrolled iteration and

15

group them in multiples of 8. However, this forces our partitioner to create coarser than
optimal tasks, which might end up causing load imbalance between cores. The drop
in performance we observe in bundle-adj on the unrolled implementations is conse-
quence of that: the first slices of the matrix contain a very high amount of non-zeros
compared to the rest of it; to satisfy our partitioning constraint, those first slices are in-
cluded in a single suboptimal large task. Figure 3 shows that, in general, matrices with
fewer rows barely benefit from the unrolling optimization while the largest ones can
obtain noticeable benefits. PMC data indicates that these performance benefits come
from a reduction in the time spent computing vector operations. For the ML-Geer and
ML-Laplace matrices, unrolling optimization yields 3% and 3.5% improvements in LLC
hit ratio, respectively. It also brings 14% and 7% improvement in vector load through-
put for ML-Geer and ML-Laplace, respectively. These benefits in load throughput are
not only due to improved locality of the accesses on x, but also in the vector ILP, since
unrolling exposes more instructions to the hardware.

Cache allocation and store relaxation policies – We evaluate the performance im-
pact of using techniques that control cache eviction policies when data is loaded, and
the relaxation of instruction dependencies when data are stored. We compare tech-
nique SELLCS-U8-NC-DFC with SELLCS-U8-DFC. Figure 3 reports that two thirds of the
matrices obtain improvements ranging between 5% to 12% when using SELLCS-U8-NC-
DFC compared to SELLCS-U8-DFC. We examine in detail two cases that represent the
behavior observed in matrices that benefit from this optimization. When Cache allo-
cation and store relaxation policies are enabled, ldoor and pwtk obtain an increase in
LLC hit ratio of 8% and 6%, and an increase of the vector loaded elements per cycle
of 10% and 8%, respectively. We also observe a reduction of ∼ 50% of the L1 cache
misses in both cases. These results show how preventing the eviction of the x vector
is beneficial for performance. We do not observe any major drawback in performance
for any of the matrices we tested, so cache allocation and store relaxation policies can
be applied in any scenario without having to add complex logic to enable or disable
it. We do not observe any correctness issue when using the store relaxation policies.

Applying all optimizations – We obtain in average 90.3 GFLOPs across all matrices
by enabling all optimizations, which constitutes a significant improvement of ∼12%
and ∼17% compared to the baseline SELL-C-σ and NEC math library implementations,
respectively. The significant performance increase that we obtain over the NEC pro-
prietary software, which is specially tailored to SX-Aurora Vector Engine, demonstrates
the relevance of our optimizations in long vector architectures.

Applicability of column blocking – We revisit the matrix column blocking optimiza-
tion (see Figure 1) to evaluate the impact in long vector architectures. We implement
another separate version of our SELLCS base implementation including the sorting,
task-based parallelism, cache and store policies, DFC and matrix column blocking op-
timizations. We perform two groups of experiments. First we evaluate the matrices
used previously in the previous experiments (see Figure 3). For such matrices we do
not observe performance benefits when increasing the number of blocks in which the
columns are divided. However, previous studies [2] with standard SIMD architectures,
show that this optimization is only e�ective in skewed matrices with very long rows,
which have higher opportunities to exploit x vector locality. For purposes of compari-
son, we test a second group composed of two additional matrices with skewed shape:
spal_004 and 12month1. We consider optimal σ task granularity for these two matrices,

16

as in our previous experiments. If Figure 4, 12month1 achieves up to 2× performance if
the matrix is divided in 16 blocks instead of one. In the case of spal_004, we measure
a steady degradation in performance as the number of blocks increases. Our results
suggest that, while the applicability of this optimization seems to be very limited, it still
can have a huge performance impact in few particular cases running on long vector
architectures.

0 50 100 150 200 250
Number of Blocks

30

40

50

60

GF
LO

P/
s

MatrixName
12month1
spal-004

Figure 4: Column Blocking: 12month1 obtains up to 2× performance improvement.

5.2 Comparison with state-of-the-art HPC architectures

We compare the performance and the energy e�ciency of our SELLCS-U8-NC imple-
mentation in Vector Engine against the Intel an NVIDIA platforms we describe in 4
using their respective MKL and cuSPARSE math libraries. Both math libraries provide
two methods to partition and schedule workload among cores. To ensure fairness, we
run experiments performance results with both methods and keep the best result for
each matrix. We report energy to solution metrics measuring the whole execution of
the SpMV including matrix loading and preprocessing. The Intel platform reports to-
tal energy consumed by a run based on information provided by the RAPL monitoring
counters. The nvidia-smi tool, provides information about the power drained by the
GPU every second. In Vector Engine, we collect power information using a command-
line program that reports instantaneous current and voltage. Power samples are then
integrated over time to obtain the total energy consumption of each run. In all power
measurement experiments, we run 600K iterations of the SpMV algorithm so the time
spent loading the matrix from disk and pre-processing is less than 10% of the full du-
ration. MKL experiments run with OMP_NUM_THREADS=48 to utilize all the cores in
both sockets. cuSPARSE experiments using a single NVIDIA Volta V100 device.

The upper plot in Figure 5 shows our performance evaluation considering the three
platforms. The lower bars represent the normalized energy-to-solution with respect
to MKL results. On average, SELLCS-U8-NC achieves a 71% and 200% speedup over the
cuSPARSE and MKL, respectively. In terms of energy e�ciency, SELLCS-U8-NC consumes
22% less energy compared to cuSPARSE, and 9.09× less energy compared to MKL. Also, a

17

careful reader can detect that the performance figures of the Vector Engine presented
in the upper part of Figure 5 are slightly lower than the ones presented in Figure 3.
The mismatch is on average below 5% and it is due to the instrumentation overhead
introduced by the power monitoring on the Vector Engine. We excluded two matrices
from this comparison: dense2, due to incompatibilities with the unroll optimization;
and nlpkkt240, due to memory management errors in the instrumentation libraries.

x86 Skylake NVIDIA v100 NEC SX-Aurora
GFlops % of peak GFlops % of peak GFlops % of peak

Peak DP 3200 7800 2150
Best SpMV 81.33 2.54% 86.15 1.11% 115.69 5.38%
Worst SpMV 3.05 0.09% 7.61 0.09% 28.07 1.3%
Average SpMV 29.84 0.93% 52.61 0.67% 79.32 4.19%

Table 4: Percentage of the DP peak performance reached by SpMV on state-of-the-art HPC ar-
chitectures.

In Table 4 we report the percentage of the double-precision peak performance
achieved by each of the three architectures.

sc
irc

uit

mc2
dep

i

web
base

-1M

s4
dkt3

m2

bmw7st-
1

torso
1

mip1

fco
ndp2

pwtk
fullb

halfb

Ben
Elec

hi1

cra
nks

eg
-2

Si41Ge4
1H72

TSOPF-RS-b2383

msd
oor

bundle-
adj

ML-Laplace
ldoor

bone0
10

af-s
hell

10

ML-G
ee

r

AVERAGE
0

50

100

G
FL

O
Ps

37
.2

1

37
.5

3

12
.1

0

81
.3

3

45
.2

2

20
.7

7

21
.0

6

30
.5

1

35
.4

2

30
.3

2

29
.2

4

33
.2

9

25
.6

4

28
.8

4

25
.4

9

27
.4

8

3.
05

28
.7

9

25
.1

7

26
.0

2

25
.4

7

26
.5

5

29
.8

4

12
.1

5

10
.9

1

7.
61

43
.9

9

52
.2

9

49
.0

9

28
.4

5 59
.0

5

58
.3

0

59
.4

9

56
.8

6

58
.9

0 77
.0

6

67
.1

2 86
.1

5

53
.9

9

36
.4

1 66
.4

1

55
.7

2

65
.7

7

53
.4

3

68
.4

9

52
.6

1

42
.5

5

51
.1

7

37
.2

7

99
.9

3

99
.9

9

74
.9

3

28
.0

7

11
2.

28

11
3.

04

11
0.

02

11
1.

44

11
4.

11

10
6.

29

63
.3

5 94
.3

1 11
4.

10

55
.2

4

10
9.

72

11
2.

18

11
5.

69

10
9.

99

10
9.

91

90
.2

5

Implementation: mkl cusparse SELLCSv2-U8-NC-DFC

sc
irc

uit

mc2
dep

i

web
base

-1M

s4
dkt3

m2

bmw7st-
1

torso
1

mip1

fco
ndp2

pwtk
fullb

halfb

Ben
Elec

hi1

cra
nks

eg
-2

Si41Ge4
1H72

TSOPF-RS-b2383

msd
oor

bundle-
adj

ML-Laplace
ldoor

bone0
10

af-s
hell

10

ML-G
ee

r

AVERAGE
0.0

0.5

N
or

m
al

iz
ed

 E
TS

 w

.r.
t m

kl

0.
85

0.
88

0.
46 0.

61

0.
29

0.
16 0.

23

0.
17 0.
21

0.
17

0.
18 0.
19

0.
15 0.
18

0.
12 0.

19

0.
04 0.

17

0.
17

0.
15 0.
17

0.
16

0.
14

0.
43

0.
34

0.
15

0.
38

0.
22

0.
13 0.

22

0.
12 0.
16

0.
12

0.
12 0.
14

0.
13 0.
17

0.
13

0.
13

0.
03 0.

14

0.
12

0.
12

0.
12

0.
13

0.
11

Figure 5: Performance and energy-to-solution comparison between di�erent computing plat-
forms.

6 Related work

Since SpMV is a kernel of paramount importance in several algorithms of scientific
computing, a large body of research about SpMV optimization on many architectures
has been published in the last twenty years. Most recently, the research community is
focusing on developing e�cient SpMV implementations targeting emerging architec-
tures with di�erent degrees of parallelism, e.g., high number of cores and long SIMD or

18

vector units. However, most of those studies are limited to 8 elements SIMD units in
CPUs or 32 elements warps in GPUs [1,2,15,16,18,19]. Even if this approach covers state-
of-the-art Intel CPU with the AVX-512 extension and the latest GP-GPUs it falls short
with a 256 double-precision elements vector length platform such as the SX-Aurora
analyzed in our study.

Several studies propose new formats capable of exploiting the SIMD/vector units
available in those new architectures. Some of them are based in CSR and use some
kind of blocking with padding of zeroes to create contiguous segments of elements [15,
16, 20], however, as those formats rely on having big enough groups of NNZ elements
close to each other to be e�cient they are not suitable for long vector architectures.
Both Beamer et al. in [21] and Buono et al. in [17] propose a very similar two-step
SpMV algorithm that shows good performance improvements for big-data matrices.
Using the code provided by the authors of [21] we were able to reproduce the results
in an x86 system similar to the one used in their study. However, we were not able
to develop an e�cient implementation using intrinsics close in performance to our
SELL-C-σ code in the Vector Engine.

The SELL-C-σ [1] and ESB [2] matrix formats build on top of the Sliced ELLPACK
format [5]. They introduce several optimizations like limiting the reorder window of
rows, division in blocks along the X vector to increase locality and bit-masks to avoid
unnecessary memory accesses. Our work extends those studies by revisiting and opti-
mizing such techniques in a long vector architecture like the SX-Aurora Vector Engine.
Furthermore, we propose and evaluate two extra optimizations that produce an addi-
tional increase in performance.

Not all matrices perform optimally with a single format. A recent study shows how
machine learning can be used to select automatically the most adequate format for
each matrix [18]. While similar auto-tuning techniques can be combined with our work,
e.g., by training a neural network to pick the adequate σ and task size parameters for
us, that alone is a challenge on itself and is out of the scope of our study. Still, our
results show that the chosen parameters allow a general performance improvement
compared to the NEC optimized library over a wide range of sparse layouts.

7 Conclusions

Our implementation of SpMV for the SX-Aurora long vector architecture shows very
competitive performance results which mostly overtake the highly optimized propri-
etary vendor implementation found in the NEC Library Collection. We used the open-
source compiler LLVM for the kernel of the computation and discussed various op-
timizations that can be applied to other algorithms as well. The implementation is
for a Vector Engine native library, callable from Vector Engine programs but can be
easily transformed into an o�oad library callable directly from programs running on
the host machine, in order to accelerate host-native programs. That use case would
actually bring tuning opportunities for the preprocessing step which has received less
focus with respect to optimization. With the sorting running on the host side we would
expect a reduction of the matrix setup times.

19

When compared to other vector architectures the performance results in figure 5
show that the SX-Aurora performance is very competitive, in average winning over both
standard libraries from the competing architectures Xeon Skylake Platinum and NVIDIA
Volta: MKL and cuSparse. Although the Vector Engine has the lowest peak performance,
2.15 TFLOPS compared to 3.2 TFLOPS of two Skylakes and 7.8 TFLOPS of a V100, it can
leverage its superior memory bandwidth and reach higher SpMV performance than its
competitors. The results in table 4 show that the SX-Aurora has the most balanced ar-
chitecture, its 0.567 byte/FLOP paired with the long vector ISA that exposes parallelism
in a very explicit way lead to the highest percentage of performance e�ciency of up
to 5.38% of the peak.

In terms of energy-to-solution, the accelerators clearly beat the general-purpose
CPU with SIMD extensions and highly optimized libraries by factors mostly larger than
9. Combining these with the absolute performance values the SX-Aurora appears to be
a very attractive platform for memory bandwidth demanding data-parallel workloads.

References

[1] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A Unified Sparse
Matrix Data Format for E�cient General Sparse Matrix-Vector Multiplication on
Modern Processors with Wide SIMD Units,” SIAM Journal on Scientific Computing,
vol. 36, no. 5, pp. C401–C423, Jan. 2014.

[2] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “E�cient sparse matrix-vector multi-
plication on x86-based many-core processors,” in Proceedings of the 27th interna-
tional ACM conference on International conference on supercomputing. Eugene,
Oregon, USA: Association for Computing Machinery, Jun. 2013, pp. 273–282.

[3] K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama,
M. Sato, and H. Kobayashi, “Performance Evaluation of a Vector Supercomputer
SX-Aurora TSUBASA,” in SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Nov. 2018, pp. 685–696.

[4] D. R. Kincaid, T. C. Oppe, and D. M. Young, “Itpackv 2d user’s guide,” 5 1989.

[5] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning sparse matrix-
vector multiplication for gpu architectures,” in International Conference on High-
Performance Embedded Architectures and Compilers. Springer, 2010, pp. 111–125.

[6] M. Zagha and G. E. Blelloch, “Radix sort for vector multiprocessors,” in Proceedings
of the 1991 ACM/IEEE conference on Supercomputing, 1991, pp. 712–721.

[7] O. A. R. Board, “Openmp 5.0 specification,” Tech. Rep., Novem-
ber 2018. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

[8] N. CORPORATION, “X-aurora tsubasa architecture guide revision 1.1,” Tech. Rep.,
2018.

20

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

[9] C. Lomont, “Introduction to intel advanced vector extensions. intel white paper,”
2011.

[10] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Prémillieu, A. Reid, A. Rico, and P. Walker, “The ARM
scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017. [Online].
Available: https://doi.org/10.1109/MM.2017.35

[11] Y. Yamada and S. Momose, “Vector engine processor of nec’s brand-new super-
computer sx-aurora tsubasa,” in Proceedings of A Symposium on High Perfor-
mance Chips, Hot Chips, vol. 30, 2018, pp. 19–21.

[12] “Sx-aurora tsubasa architecture guide,” https://www.hpc.nec/documents/guide/
pdfs/Aurora_ISA_guide.pdf, 2018.

[13] “Llvm-ve github repository,” https://github.com/sx-aurora-dev/llvm-project - last
accesses April 2020.

[14] “Llvm ve intrinsics,” https://sx-aurora-dev.github.io/velintrin.html - last accesses
April 2020.

[15] X. Chen, P. Xie, L. Chi, J. Liu, and C. Gong, “An e�cient simd compression format
for sparse matrix-vector multiplication,” Concurrency and Computation: Practice
and Experience, vol. 30, no. 23, p. e4800, 2018, e4800 CPE-18-0532.R1. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4800

[16] Y. Li, P. Xie, X. Chen, J. Liu, B. Yang, S. Li, C. Gong, X. Gan, and H. Xu, “VBSF: a new stor-
age format for SIMD sparse matrix–vector multiplication on modern processors,”
The Journal of Supercomputing, Apr. 2019.

[17] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que, C. Long, and T.-C. Tuan, “Optimizing
Sparse Matrix-Vector Multiplication for Large-Scale Data Analytics,” in Proceedings
of the 2016 International Conference on Supercomputing, ser. ICS ’16. Istanbul,
Turkey: Association for Computing Machinery, Jun. 2016, pp. 1–12.

[18] S. Chen, J. Fang, D. Chen, C. Xu, and Z. Wang, “Optimizing Sparse Matrix-
Vector Multiplication on Emerging Many-Core Architectures,” May 2018. [Online].
Available: http://arxiv.org/abs/1805.11938

[19] H. Anzt, S. Tomov, and J. Dongarra, “Implementing a Sparse Matrix Vector Product
for the SELL-C/SELL-C-σ formats on NVIDIA GPUs,” University of Tennessee, Tech.
Rep. ut-eecs-14-727, 2014.

[20] W. Liu and B. Vinter, “CSR5: An E�cient Storage Format for Cross-Platform Sparse
Matrix-Vector Multiplication,” in Proceedings of the 29th ACM on International Con-
ference on Supercomputing. Newport Beach, California, USA: Association for Com-
puting Machinery, Jun. 2015, pp. 339–350.

[21] S. Beamer, K. Asanović, and D. Patterson, “Reducing Pagerank Communication via
Propagation Blocking,” in 2017 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), May 2017, pp. 820–831.

21

https://doi.org/10.1109/MM.2017.35
https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://www.hpc.nec/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://github.com/sx-aurora-dev/llvm-project
https://sx-aurora-dev.github.io/velintrin.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4800
http://arxiv.org/abs/1805.11938

	1 Introduction
	2 Background
	3 Contributions
	3.1 Implementing the SELL-C- format
	3.2 Optimizations Targeting Long-Vector Architectures
	3.3 Optimization generalization

	4 Methodology
	4.1 SX-Aurora Vector Engine
	4.2 Experimental Setup

	5 Evaluation
	5.1 Performance of Long Vector Optimizations
	5.2 Comparison with state-of-the-art HPC architectures

	6 Related work
	7 Conclusions

