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Abstract 

This work proposes a methodology for multivariate dynamic modeling and multistep-ahead prediction 

of nonlinear systems using surrogate models for the application to nonlinear chemical processes. The 

methodology provides a systematic and robust procedure for the development of data-driven dynamic 

models capable of predicting the process outputs over long time horizons. It is based on using 

surrogate models to construct several Nonlinear AutoRegressive eXogenous models (NARX), each 

one approximating the future behavior of one process output as a function of the current and previous 

process inputs and outputs. The developed dynamic models are employed in a recursive schema to 

predict the process future outputs over several time steps (multistep-ahead prediction). The 

methodology is able to manage two different scenarios: 1) one in which a set of input-output signals 

collected from the process is only available for training, and 2) another in which a mathematical model 

of the process is available and can be used to generate specific datasets for training. With respect to 

the latter, the proposed methodology includes a specific procedure for the selection of training data in 

dynamic modeling based on Design Of Computer Experiment (DOCE) techniques. The proposed 

methodology is applied to case studies from the process industry presented in the literature. The results 

show very high prediction accuracies over long time horizons. Also, thanks to the flexibility, 

robustness and computational efficiency of surrogate modeling, the methodology allows dealing with 

a wide range of situations, which would be difficult to address using first principle models. 
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Highlights: 

• The work presents an efficient methodology for developing data-driven multivariate dynamic 

models of nonlinear chemical processes.  

• The methodology is based on fitting several NARX models, and their use in a recursive 

scheme for multi-step ahead prediction. 

• A new procedure for the selection of training data for dynamic modeling is proposed based on 

DOCE.  

• The methodology is shown able to predict the dynamic multivariate outputs of nonlinear 

processes over long time horizons in a robust, accurate and computationally efficient way. 

• The methodology is shown flexible and can be easily applied in situations where conventional 

first principle models are difficult to use or not available.  

1 Introduction 

  

List of Abbreviations   

ANN Artificial Neural Network 

DOCE Design Of Computer Experiment 

DOE Design Of Experiment 

ESO Ensemble of Single-Output 

FDD Fault Detection and Diagnosis 

FPM First Principle Model 

GP Gaussian Process 

MLP ANN Multi-Layer Perceptron ANN 

MPC Model Predictive Control 

MO  Multi-Output 

NARX Nonlinear AutoRegressive eXogenous 

NRMSE Normalized Root Mean Square Error 

OK Ordinary Kriging 

RMSE Root Mean Square Error 

RTO Real Time Optimization 

SVR Support Vector Regression 
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List of Main Mathematical Symbols  

1) Ordinary Kriging   

𝑥𝑖 𝑖 − 𝑡ℎ training input sample  

𝑤𝑖  𝑖 − 𝑡ℎ training output sample  

𝑛 Number of training samples  

𝑘 Number of input variables of the surrogate model  

[𝑋]𝑛×𝑘    Matrix of training inputs samples 

[W]n×1  Vector of training output samples  

 ŵ The estimated output by the surrogate model 

𝜇𝑜𝑘 Mean or main trend of the Ordinary Kriging  

Z(x) Stochastic Gaussian Process residual  

𝜎𝑜𝑘
2  Process variance 

R(xi,xj) Correlation function between the 𝑖 − 𝑡ℎ and the 𝑗 − 𝑡ℎ training input samples 

𝜉𝑙 Ordinary Kriging hyperparameters 

δij  The Kronecker delta 

𝑝𝑙  Ordinary Kriging smoothing parameters 

λ Regularization constant  

𝐿𝑖𝑘 Likelihood function of the observed output  

[R]n×n Correlation matrix between the training input samples 

(x*,w*) A new interpolating point, not in the training set 

2) Dynamic modelling based on surrogate models 

𝑼 The process control input(s)  

Du Number of the process control inputs 

𝒀 The process output(s) 

Dy Number of the process outputs 

𝑡0 First time instance 

𝑡𝑓 Final time instance 

𝑡𝑖 𝑖 − 𝑡ℎ time instance 

∆𝑡 = (𝑡𝑖 − 𝑡𝑖−1 ) Sampling period of the process variables 

𝑈𝑖 Value(s) of the process control input(s) at the time instance 𝑡𝑖 

𝑌𝑖 Value(s) of the process output(s) at the time instance 𝑡𝑖 

₣ Multi-output emulator/black-box model 

𝕗1,.., 𝕗𝑞 Set of q single-output emulators/black-box models 

f Recursive single-step emulator 

q The required prediction horizon in terms of the number of time steps-ahead 

�̂�𝑡+1, �̂�𝑡+2, … �̂�𝑡+𝑞  The predicted process outputs q steps-ahead 

𝐿 Time lag  

�̂�𝑗,𝑡+1  The predicted value of the j-th process output by the j-th recursive single-step 

emulator, 𝑓𝑗 , at the next time step 𝑡 + 1 

𝑈𝑡 𝑚𝑖𝑛 ∶   𝑈𝑡 𝑚𝑎𝑥  Allowable control limits  

[ 𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥] Variation domain of the process outputs  

3) Bioreactor 

𝐶𝑚 Concentrations of the microorganisms inside the reactor 

𝐶𝑠 Concentrations of the substrate inside the reactor 

𝑈 Reactor outlet flowrate 
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4) Three-tanks system   

𝐴 Cross section area of the tanks 

 𝑎1, 𝑎3 and  𝑎0 Flow coefficients  

𝑔 Gravitational acceleration 

ℎ1, ℎ2  and ℎ3 Liquid levels in tank 1, tank 2 and tank 3, respectively 

𝑄1 and 𝑄2 Inlet flowrates to tank 1 and tank 2, respectively 

𝑠13, 𝑠23 and 𝑠0 Cross section area of connecting pipes  

𝑠𝑔𝑛 Sign function 

5) Oil Shale Pyrolysis 

  

𝐶𝐾𝑟 Concentration of kerogen 

𝐶𝑃𝑏 Concentration of pyrolytic bitumen 

𝐶𝑂𝑔, Concentration of oil and gas 

𝐶𝐶𝑟 Concentration of the organic carbon residue 

𝑘𝑖 The i-th reaction rate 

𝑘𝑖0 Initial value of the i-th reaction rate 

𝐸𝑖 The activation energy 

𝑅 The gas constant 

𝑇 Manipulated temperature  

 

In process engineering area, a reliable dynamic model of the process is necessary for its optimal 

operation, control and management. In particular, a dynamic model able to accurately predict the 

future values of the process outputs in  reasonable computational times is the base of most online 

applications, e.g. Real Time Optimization (RTO), Model Predictive Control (MPC), Dynamic Data 

Reconciliations, Fault Detection and Diagnosis. 

Although analytical models (hereafter also called “First Principle Models” – FPMs) are available to 

describe the dynamics of many chemical processes, practical limitations often hinder their usage, 

especially in applications, such as RTO and MPC, which require the online repetitive solution of an 

optimization problem which, in itself, requires the evaluation of the model several times [1, 2]. This 

may result in an unaffordable computational effort, especially for large-scale or fast dynamic systems 

[3], due to the complexity of the solution procedure –e.g. iterative schemes and/or integration 

techniques- used to solve such mathematical models [4, 5].   

Furthermore, the available FPMs are often developed under the assumption of favorable (ideal) 

working conditions, which are typically not encountered at the industrial scale, that is characterized by 

uncontrolled disturbances, different operating conditions, continuously varying parameters (e.g. heat 

transfer coefficients) and, possibly, different  units/reactors geometries, etc. [6, 7]. Also, since process 

FPMs typically do not take into account the physical characteristics of mechanical and electrical 

components, connections and piping, which remarkably influence the real process, the accuracy of the 
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FPMs predictions are reduced [8, 9]. In other cases, the development of a detailed analytical FPM is 

conceptually difficult or even unaffordable, due to the limited knowledge about the nonlinear 

behaviors and complex phenomena characterizing the process, such as reaction kinetics, thermo-

dynamic relationships, heat and mass transfer, etc. [10, 8]. In these situation, on another hand, real 

data  collected from the process are available, but there is no support of a well-founded 

conceptual/mathematical model for describing the process based on first principles [11, 12, 13].  

In all these cases, system identification or data-driven dynamic modeling methods can be used to 

construct empirical dynamic models for predicting the future values of the process outputs [11]. Many 

methods have been developed for linear dynamic system modelling, but their application to nonlinear 

processes provides unsatisfactory results [1]. This is due to the fact that linear approximations severely 

simplify the nonlinear behavior of the process, resulting in poor prediction accuracy [1, 14]. Advanced 

data-driven nonlinear modelling techniques, such as Artificial Neural Networks (ANNs) (e.g. Radial 

Basis-ANNs, Recurrent-ANNs etc.) [15, 16], Fuzzy models [11], Neuro-fuzzy models [17] and 

recently Gaussian Process (GP) models [18, 19], have been widely proposed to capture nonlinear 

dynamic relations between the nonlinear process inputs and outputs. These techniques, which are also 

referred to as metamodels or surrogate models, establish nonlinear relationships between inputs and 

outputs variables, using input-output training data, which can be either generated from complex FPM 

simulations or measured from the real process [7].  

1.1 Review on Data-driven dynamic modelling in chemical processes  

ANNs have become a popular choice for nonlinear dynamic modeling and identification [16, 20, 21], 

due to their universal approximation abilities [14, 22]. Although they exhibit very powerful 

capabilities, their usage has two main practical drawbacks: i) large effort is required to select a good 

network structure (numbers of layers and the included neurons) and configurations (type of activation 

function, training algorithm, cost/error function, etc.) [7], and ii) the curse of dimensionality, i.e. the 

increase of the number of inputs causes the growth of the number of the ANN neurons, and 

consequently, of the number of parameters (weights and biases) to be set: then, the quantity of data 

needed for training the ANN grows exponentially with the number of inputs [3].  

Although different algorithms have been developed to automatically select ANNs structures and 

configurations [22], their application requires additional computational effort, since they solve a 

complex optimization problem, in which the network configuration and its parameters are treated as 

decision variables to be tuned to minimize an objective associated to the output prediction error [23, 

24, 25]. As a result, their application to cases involving high dimensional systems, large-scale 

databases and/or online fitting and updating has been quite limited. 
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In spite of these difficulties, a significant number of successful applications of ANNs for dynamic 

modelling are reported over a wide spectrum of fields [11, 26, 20, 27]. Especially in the process 

engineering area, ANNs have been extensively used as Nonlinear AutoRegressive eXogenous 

(NARX) models for dynamic system identification of both univariate (single output) [28, 1, 29, 30, 31, 

21] and multivariate (multi-output) problems  [16, 32, 17, 33, 14, 34]. In the literature, multivariate 

systems are usually approximated either using a multi-output ANN model or an ensemble of single-

output ANNs models, where, in the latter case, a set of independent single-output ANN models, each 

approximating one  output as a function of the inputs, is built.   

On the other hand, Gaussian Process (GP) models have been proposed in the Bayesian inference area 

by O’Hagan et al. [35, 36] for the approximation of complex static computer codes, representing a 

generic class of non-parametric probabilistic models. GP models have shown promising accuracy and 

ability to reduce the previously mentioned problems of ANNs [3, 37, 38]. This is due to their 

nonparametric nature: they do not approximate the system by fitting the parameters of a selected 

structure or functional shape but, instead, they search for relationships among the measured data 

through a correlation function/model. Therefore, the number of the metamodel parameters to be 

identified is significantly low compared to other parametric models (e.g. ANNs models) and, 

consequently, the size of the required set of training data is significantly reduced, too [3]. Besides, GP 

models offer high approximation accuracy, tuning flexibility and ability to estimate a measure of 

uncertainty about the prediction in the form of prediction error or variance [12, 39].  

Thanks to the pioneer works of Murray-Smith, et al. [40], Kocijan, et al. [41] Girard, et al. [42], and 

Rasmussen & Deisenroth [43], among others, GP models have gained a wide popularity for dynamic 

modeling and identification of nonlinear systems, and shown performances comparable and 

competitive to other state-of-art techniques. The main limitation of the GP models is the large 

computational cost for optimizing/fitting their parameters, especially when considering large amount 

of training data and/or addressing high dimensional systems [3, 9]. With respect to the problem of 

performing multi-step ahead predictions, some works have been able to successfully propagate the GP 

estimated error when it is used in recursive prediction [42]. But, again, the computational cost 

associated to the uncertainty propagation is still significant. 

The Ordinary Kriging (OK) techniques can be considered specific form of GP models [12] and share 

similar  advantages, such as accurate approximation capabilities, required small number of training 

data, flexible tuning of the model parameters [44] and ability of estimating a prediction error. Also, 

alike to the GP model, OK suffers from the high computational training effort. Thanks to the works of 

Davis and Ierapetritou [4] and Caballero and Grossmann [2], the OK surrogate models has been 

introduced to the chemical process engineering area and, since this time, it is attracting increasing 
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attention for surrogate-based optimization and analysis of complex nonlinear static processes [7, 45, 

46, 47].  

Nowadays, the GP and OK models have been proposed for univariate dynamic modeling of nonlinear 

chemical processes  [3, 18], where they are employed as NARX models to estimate the future value - 

over one step-ahead - of an output of interest, as a function of the process current inputs and output 

values. The developed model is, then, used to perform multistep-ahead prediction via recursive 

calculation, where the predicted output at the current time is fed-back to the model as a part of its input 

for the next prediction step.  

To the best of the authors’ knowledge, few works have extended the GP and OK capabilities to 

multivariate dynamic modeling of chemical processes: Hernandez and Grover [48] developed a 

method for multivariate dynamic modeling based on a set of GP models, each one representing a 

discrete-time state space model predicting the time evolution of one process output; they also proposed 

a sequential sampling technique to select the training data to be used for training the GP-based 

dynamic models; the method was successfully applied to approximate a stochastic zero-input/multi-

output dynamic model describing  nanoparticle size evolution. In an area more related to process and 

system engineering, Boukouvala et al. [12] proposed a similar approach based on a set of Kriging 

metamodels, each one predicting the future values of one process output through recursive prediction 

over several time steps, and applied it to the simulation of a powder-roller-compaction pharmaceutical 

process. The approach has shown good accuracy in the identification of the dynamic behavior of the 

process outputs (ribbons density and roll gap) that are influenced by three control inputs (roll speed, 

roll pressure, feed speed); they proposed the use of a full factorial design for selecting the initial 

training dataset, and a sequential procedure to update the trained models during their online usage by 

adding to the initial training set the predicted instances for which the summation of the OKs estimated 

variances/errors was lower than a specific threshold.   

However, these two works share some common limitation: 1) they  have been validated considering 

processes characterized by very smooth/steady dynamics, without any influencing control/external 

inputs [48] or with very simple changes in them [12], 2) both works provided simple Markovian state-

space models and they have not illustrated the ability of their methodologies to develop dynamic 

models with delayed/lagged inputs, 3) they presumed that a FPM is always available, which is 

combined with DOCE methods to produce optimized data for training, and 4) the robustness of their 

methodologies to handle different cases studies, and their flexibility to integrate different metamodel 

types are not explored. Finally, the methodology proposed by Boukouvala et al. [12] has not been 

proven to provide one compact set of models able to simulate the future behavior of the system 

outputs corresponding to simultaneous changes in the process inputs, since, in this method, a new set 

of dynamic models should be fitted several times, each time to approximate the system behavior 
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corresponding to a simple step change in one of the control input variables, keeping the rest of the 

control input variables fixed.  

The aforementioned limitations obstacle the use of these methodologies for the dynamic modelling of 

real processes or systems, where remarkable challenges are posed: i) in real processes,  many external 

inputs exist, which control or disturb the process causing significant changes in its outputs behavior, 

ii) incorporating lags or delays in the model inputs is a basic requirement in data-driven dynamic 

modeling, in order to capture the possible delayed behavior of the process itself and/or to compensate 

for missing repressors of the model [49, 50], iii) in many practical situations, data collected from the 

process can be the only source of information available (i.e. no FPM). 

Shokry and Espuña [51] and Shokry et al. [52] proposed a multivariate dynamic modeling 

methodology in which OK models have been used as NARX models. The method was successfully 

applied to model different batch processes for the purpose of dynamic optimization [51] and 

continuous processes [52] for the purpose of Fault Detection and Diagnosis (FDD). Shokry et al. [53] 

successfully applied the same methodology to the univariate dynamic modelling of a real batch 

process operated under different initial conditions and involving missing measurements. The obtained 

model is used as a dynamic observer for the online supervision of the process and the detection of 

possible faults. These works focused on the specific application (e.g., open loop optimal control and 

FDD) for which these dynamic models were constructed, and lacked of generality and robustness with 

respect to the considered metamodels type. 

More recently, Bradford et al., 2018 presented a similar method for multivariate dynamic modeling 

that relies on a set of GP-based NARX models. The method was applied to model the multivariate 

behavior of a real Algal lutein production batch process that involves two control inputs and three 

process outputs.  Although the method provided good prediction accuracy, the addressed case study is 

characterized by  simple dynamics, since one control input is kept constant in all the different batches, 

while the second is allowed to vary from one batch to another, but its value within the same batch is 

kept constant. Hence, practically, the control inputs became constant parameters and, consequently, 

the set of dynamic models are validated by predicting the simple behavior of zero-input batches. Also, 

when the validated set of GP dynamic models is further used for dynamic optimization, the predicted 

optimal “offline” profiles of the process outputs are not compared to those of the real batch system.   

This work extends and generalizes the works presented in [51, 52, 53] by presenting a generic 

multivariate dynamic modeling and multi-step ahead prediction methodology. The methodology is 

based on training a set of OK-based NARX models; each model predicts the upcoming value of one 

process output over a constant time step as a function of the preceding values of the process inputs and 

outputs, over a suitable time lag. The obtained models represent discrete state-space models (also 
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called single-step or one-step ahead simulators) that mimic the incremental evolution of the process 

outputs. The trained dynamic models interact through a recursive scheme to predict the system outputs 

over several time steps (multistep-ahead prediction),  

The main contributions of this work are:  

1) the development of a novel, generic and robust methodology for multivariate dynamic 

modeling and multi-step ahead prediction of complex nonlinear chemical processes using 

surrogate models. The properties of generality and robustness are fundamental in order to 

address the main limitations currently attributed to the existing approaches in terms of a) the 

ability to provide accurate data-driven dynamic models for general multi-input/multi-output 

processes that may involve complex dynamic behaviors (complex control input profiles, 

delayed behaviors, etc.), b) the ability to simulate the process future outputs over large time 

horizons, c) the capability to accommodate different types of data modeling techniques and d) 

the ability of handling different situations, either when a limited set of input-output data 

signals are available, or when the training data can be optimally generated using a FPM and 

design for computer experiment techniques.  

2) the introduction of the use of OK models for the multivariate dynamic modeling in the 

chemical process field in a robust and flexible manner, and the comparison of its capabilities 

with most popular techniques (i.e. ANNs).  

3) the development of a novel Design Of Computer Experiments procedure for dynamic 

modeling, considering the purpose of the simplification and complexity reduction of 

expensive dynamic FPMs. 

The rest of the paper is structured as follows. Section 2 gives a general view over the considered 

DOCE and surrogate modeling techniques (i.e.: OK and ANN), including their mathematical/statistical 

basis and implementations details. Section 3 presents the proposed dynamic metamodeling method, 

and the new procedure proposed for the design of computer experiments in the case of dynamic 

modelling. Section 4 shows the method application to three different case studies (different natures, 

i.e. continuous and batch and, different areas, i.e. biochemical, industrial and petrochemical) and 

discusses the obtained results. Finally, Section 5 concludes the work, stresses its advantages and 

discusses its limitations, which would be further investigated in future works.   

2 Surrogate models building techniques 

Surrogate models are data-driven techniques which are used to build empirical relations describing the 

mapping between input and response variable(s) [44, 54]. Although this definition can involve a very 
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wide range of data-based models, including the simplest types (e.g.: linear or polynomial regressions), 

the term is usually associated to nonlinear multivariate models, like ANNs, GPs, OK, Support Vector 

Regression  (SVR), etc. [55]. Surrogate models can be trained using real data collected by sensors 

from the physical systems or using simulation data generated from a complex FPMs, for the purpose 

of its simplification. The following subsections review most common DOCE techniques used for 

training data selection in cases where a FPM is available, highlight the basics of the two common 

nonlinear data-driven modeling techniques, namely OK and ANNs, which have been used in this 

work, and review basics of common DOCE methods.   

2.1 Design Of Computer Experiments (DOCE) 

Design Of Computer Experiments (DOCE) techniques [56] aim at selecting the best combinations of 

the input variables values -within specific domain or bounds- that can be used for the simulation of the 

complex FPM providing the most representative information/knowledge about the output behavior 

[57]. The set of combinations of the input variables values is called “sampling plan”, [𝑋]𝑛, where 𝑛 is 

the number of sample points or instances. Since the main objective is to collect as much information as 

possible about the output behavior over all the local sub-regions in the input domain, and most 

computer simulation models are deterministic, the DOCE techniques consider samples selection 

criteria different than those of the DOE. These criteria are, mainly, the space-fillingness and the 

stratification of the sampling plan [44, 57], and both lead to increasing the uniformity of the sampling 

plan over all the local sub-regions of the input domain to be covered.   

Many DOCE techniques have been developed basically for static surrogate modeling. The most 

common techniques include Latin hypercube sampling [44], low discrepancy sequences as the 

Hammersley technique [58] and space-filling designs like max-min techniques and space-filling Latin 

hypercube design [59]. Alternatively, sequential or adaptive sampling are special type of DOCE 

techniques that are typically related to the use of OK/GP models [7]. In these sequential techniques, 

the total number of training points are not selected at once: the surrogate model is initially fitted with a 

relatively small number of training points, and it is iteratively updated by adding new training points 

of interest (infill or update points) to the initial training dataset so as to enhance a desired criterion of 

the metamodel performance, which is highly dependent on the eventual use of the metamodel (global 

approximation, surrogate-based optimization, etc.); then, the metamodel is refitted. The iterative 

procedure stops when the metamodel performance criterion reaches a satisfactory level or tolerance 

[44, 56].  

Most of these DOCE techniques show both desired and limiting characteristics in terms of the 

uniformity of the generated sampling plan and demanded computational cost. For example, Latin 

hypercube and low discrepancy sequence designs provide sampling plans of good uniformity with 
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very low computational cost [58]. Space-filling designs are able to provide sampling plans with very 

high uniformity, although the associated computational cost is relatively high [2, 59]. Because, these 

techniques usually encompass a complex optimization problem [55], in which the locations of the 

input combinations (i.e., instances) within the k-dimensional input space of the model are manipulated 

to maximize a certain space-filling criterion [44]. Sequential sampling designs have also shown very 

high uniformity and high efficiency, since they take maximum advantages of each point in the 

sampling plan, but the computational cost of such techniques is extremely high, since each iteration 

involves an optimization problem seeking for the point that optimally enhances the metamodel 

accuracy, in addition to the subsequent fitting of the metamodel with the updated training set [60]. For 

the previous reasons, the iterative DOCE procedures are favorable when dealing with very expensive 

FPM (i.e., computational fluid dynamic models) where the cost of one simulation run using the FPM 

is much higher than one iteration of the sequential sampling procedure. A more detailed analysis about 

the different DOCE techniques can be found in [57, 58] 

This work considers the Hammersley design technique, due to its ability to provide sampling plans of 

good uniformity and stratification properties with very low computational cost [57, 58]. In each case, 

the optimal selection of the number of sample points (𝑛) required to capture the output behavior 

depends on the input dimensionality of the surrogate model (k), the size of the input space and, also, 

on the intricacy and nonlinearity of the considered output behavior. In general, as 𝑛 increases, the 

effort (time/cost) required not only for executing the experiments, but also to design the sampling plan 

and for the surrogate model fitting increases. Then, the modeler should carefully balance the trade-offs 

between the required surrogate model accuracy, the computational cost and the eventual application 

benefits of the surrogate model. 

2.2 Ordinary Kriging (OK) 

Given a set of n input-output training data [xi,wi], i=1,2,..n, 𝑥 ∈ 𝑅𝑘, 𝑤 ∈ 𝑅, the OK assumes the 

predictor ŵ(x)= 𝜇𝑜𝑘 +Z(x), where the constant term 𝜇𝑜𝑘 represents the main trend of the system to be 

approximated, and Z(x) is a deviation/residual from that trend, which accounts for the detailed 

complex behavior of the system that could not be captured via the main trend 𝜇𝑜𝑘. The residual Z(x) is 

modeled as a stochastic Gaussian process with expected value E(Z(x))= 0  and  covariance between 

two residuals cov(Z(xi),Z(xj)) that only depends on their corresponding inputs xi, xj. Thus, it can be 

calculated as: cov(Z(xi),Z(xj)) =𝜎𝑜𝑘
2  R(xi,xj), being 𝜎𝑜𝑘

2  the process variance and R(xi,xj) a correlation 

function, 𝑅(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝(−∑ 𝜉𝑙|𝑥𝑖,𝑙−𝑥𝑗,𝑙−|
𝑝𝑙𝑘

𝑙=1 ) + 𝛿𝑖𝑗 𝜆,  where, 𝜉𝑙 are the model hyper-parameters, 

δij is the Kronecker delta, 𝑝𝑙 are smoothing parameters and λ is a regularization constant [61].  

The parameters [𝜇𝑜𝑘, 𝜎𝑜𝑘
2 , ξl, pl, λ] are estimated via maximizing the likelihood function of the 

observed ouput data [W]n×1. Then, the OK final predictor and estimated error are obtained in Eq. (1) 
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and in Eq. (2), respectivly. Where x* is a new interpolating point (i.e. not in the training data), [r]n×1 is 

the vector of correlations between the new point to be predicted x* and the original training data 

points, and calculated as R (xi, x*), [R]n×n is the correlation matrix between the training inputs and 

[1]n×1 is the identity vector [60, 2]. 

 

 �̂�(𝑥∗) = 𝜇
𝑜𝑘
+ 𝑟𝑇𝑅−1(𝑊 − 𝟏𝜇

𝑜𝑘
) (1) 

 𝑠
2(𝑥∗) = 𝜎𝑜𝑘

2 (1 + 𝜆 − 𝑟𝑇𝑅−1𝑟 + (1 − 𝟏𝑇𝑅−1𝑟)
−1
(𝟏𝑇𝑅−1𝟏)⁄ ) (2) 

The OK implementation proposed by Forrester et al. [44] is considered in this paper due to its high 

effectiveness, generality and ease of implementation. The “fmincon” algorithm of the Matlab 

optimization toolbox library is used for tuning the OK parameters by maximizing the concentrated 

likelihood function. The parameters pl are usually set to value of  2, which guarantees smooth 

differentiable correlation functions [44].   

2.3 Artificial Neural Networks (ANNs) 

An ANN is a lattice of nodes, termed as neurons, which are placed in this lattice through a certain 

number of layers, and are fully interlinked together to be capable of the nonlinear processing of the 

information. A weight value is assigned to each link connecting each couple of neurons in successive 

layers; additionally, a bias is considered as an independent input to each neuron. The output of each 

neuron in a hidden layer is computed as the weighted sum of its inputs received from the neurons in 

the previous layer plus the bias. The computed value is, then, processed by a transfer function and is 

sent to the next layer in the network, and so on until the output layer [26, 1] . The training of the ANN 

is accomplished by solving a nonlinear optimization problem, in which an objective function (related 

to the errors between the predicted outputs by the network and the target outputs of the training 

dataset) is minimized by tuning the optimization variables values represented in the weights and the 

biases of the neurons [26, 1]. 

Amongst the various kinds of ANNs, we consider the Multi-Layer Perceptron ANN (MLP-ANN), 

which is the most popular kind used in engineering practice, as it offers high efficiency, accuracy and 

straightforward applicability [55, 1]. The “feedforwardnet” function of the Matlab ANN toolbox is 

used in this work to build MLP-ANN; a trial and error technique is employed for selecting the suitable 

number of layers and neurons and the training algorithm achieving a compromise between the 

structure simplicity and the prediction accuracy.  
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It deserves highlighting that this paper does not aim at comparing specific techniques for data-driven 

modelling, but it investigates the robustness and flexibility of the proposed multivariate dynamic and 

multi-step ahead predictions methodology by handling different data-based modelling techniques. 

 

3 Dynamic modelling based on surrogate models 

This part presents i) an overview on the most common approaches considered in the literature [62, 3] 

for the univariate dynamic modeling and multi-step ahead prediction using black box models (Section 

3.1), ii) the proposed methodology for multivariate dynamic modeling and multi-step ahead prediction 

of chemical processes based on surrogate models (Section 3.2), iii) the proposed DOCE procedure for 

training data generation in dynamic modeling in cases when the purpose is the simplification and 

complexity reduction of expensive dynamic FPMs (Section 3.3) and iv) the procedure for training data 

generation that mimics practical situations where a FPM of the process is not available and, only 

input-output signals, measured and collected from the process by the physical sensors network are 

available (Section 3.2).   

3.1 Univariate dynamic modelling and multi-step ahead prediction 

Let us consider a univariate dynamic system or process, characterized by Du control inputs 𝑼 ∈ 𝑅𝐷𝑢 

and one process output 𝒀 ∈ 𝑅, where both can be real data collected from actual plant or simulated 

data generated by a FPM over discrete, successive and uniform time intervals or sampling periods 

∆𝑡 = (𝑡𝑖 − 𝑡𝑖−1 ): [𝑡0, 𝑡1, 𝑡2, 𝑡3, . . . 𝑡𝑖, … 𝑡𝑓−1, 𝑡𝑓], where 𝑡0 and 𝑡𝑓 are the first and the final time 

instances, respectively. Hence, the measured control input and process output signals become 𝑼 =

[𝑈0, 𝑈1, 𝑈2, . . . 𝑈𝑖 , …𝑈𝑓−1, 𝑈𝑓] and 𝒀 = [𝑌1, 𝑌2, 𝑌3, . . . 𝑌𝑖 , …𝑌𝑓−1, 𝑌𝑓]. 

Using this input-output training information, it is required to construct a data-driven or black-box 

model that is able to forecast the future values of the output over q time steps-ahead from the current 

generic time instance 𝑡, i.e., [�̂�𝑡+1, �̂�𝑡+2, … �̂�𝑡+𝑞]. For this purpose, three main dynamic modeling 

approaches have been usually considered [62, 3]:  

i) The first approach is the “Multi-Output” (MO) emulator that considers a q-output data-

driven model, where each output of this model corresponds to the process output value at 

the j-th time step, 𝑗 = 1,2, 𝑞. In this case, the model input, x, must include the previously 

measured values of the process outputs and the corresponding control inputs over a 

specific time lag L, i.e. [�̂�𝑡+1, �̂�𝑡+2, … �̂�𝑡+𝑞] = ₣(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿), where ₣ 
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is the multi-output black-box model. In this case, a multi-output surrogate model must be 

used, e.g. multi-output ANN.    

ii) A second alternative is the “Ensemble of Single-Output” models (ESO) approach in which 

q single-output black box models are considered: each model predicts the single output at 

each of the q required times, hence �̂�𝑡+1 =

𝕗1(𝑌𝑡, 𝑌𝑡−1, . . 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿),…,  �̂�𝑡+𝑞 =

𝕗𝑞(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿),   where 𝕗1,… 𝕗𝑞  are single-output black-box models. 

iii) The third approach is the recursive single-step emulator, which employs one black box 

model to approximate the evolution of the process output over a single time increment or 

step ∆𝑡, such that  �̂�𝑡+1 = 𝑓(𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿).  

                                     

The single-step emulator approximates the future value of the process output as a function of the 

process previous control input and output values, considering a specific time lag L. However, it is used 

in a recursive way for forecasting the output value along 𝑞 intervals of time. Hence, at every 

prediction step, the forecasted value of the process output is sent back to the model acting as a part of 

its input for the next time step prediction, jointly with the new values of the process control inputs.  

The single-step emulator is also known as autoregressive model, and it has proved to be much more 

efficient than the two previous approaches, because of its capability to predict the output variable 

values over any number of time steps through a recursive procedure. This capability is not obtainable 

when using the other two approaches (MO and ESO), because they are designed and trained to predict 

the output value over a fixed or rigid number of time steps. Thus, if it is required to change the 

prediction horizon (i.e. number of prediction time steps), a completely new model (MO case) or set of 

models (ESO case) must be constructed. Additionally, the single step emulator approach is more 

simple/practical in terms of the computational effort required for its implementation, since only one 

single-output model is constructed and used, instead of the construction/training of a MO model or 

ESO models. And, finally, it is worth noting that, when considering a multivariate (i.e. multi-output) 

process, the effort and time required for the construction of data-driven dynamic models based on the 

MO or ESO approaches will be dramatically magnified. For all the aforementioned reasons, the single-

step emulator scheme is considered in this study.  



15 

 

3.2 Proposed multivariate dynamic modelling and multi-step ahead 

prediction methodology 

Assuming a general multivariate dynamic process involving the inputs 𝑼 ∈ 𝑅𝐷𝑢 and outputs 𝒀 ∈ 𝑅𝐷𝑦, 

and keeping the same assumption that all the process inputs and outputs are either measured (real 

process) or simulated (computer code) at constant, successive and equal time intervals 

[𝑡0, 𝑡1, 𝑡2, 𝑡3, . . . 𝑡𝑖 , … 𝑡𝑓−1, 𝑡𝑓], the proposed method is based on the construction/training of a set of 𝐷𝑦 

NARX models (see Eqs. (3)) in order to capture the incremental evolution of the process 

outputs,  �̂�𝑡+1, over one step-ahead time interval. Thus, each model 𝑓𝑗, 𝑗 = 1,2,… 𝐷𝑦 approximates the 

future value of the j-th process output at the next time step 𝑡 + 1, i.e.  �̂�𝑗,𝑡+1, as a function of the 

previous process inputs and outputs, considering a specific time delay L. In this way, any possible 

correlation between the upcoming value of a certain output �̂�𝑗,𝑡+1 and any of the process previous 

input and output can be captured.  

   

�̂�1,𝑡+1  = 𝑓1 [�̂�𝑡 , . . ,  �̂�𝑡−𝐿 ,  𝑈𝑡 , . . , 𝑈𝑡−𝐿],                                        

⋮
�̂�𝑗,𝑡+1  = 𝑓𝑗 [�̂�𝑡 , . . ,  �̂�𝑡−𝐿 ,  𝑈𝑡 , . . , 𝑈𝑡−𝐿],                                        

⋮
�̂�𝐷𝑦,𝑡+1  = 𝑓𝐷𝑦  [�̂�𝑡 , . . ,  �̂�𝑡−𝐿 ,  𝑈𝑡 , . . , 𝑈𝑡−𝐿],                                     }

 
 

 
 

 (3) 

After the models group (in Eq. (3)) is trained, they are used to forecast the evolution of the process 

outputs over longer period of time associated to a “totally new” and known profile of the process 

control input 𝑈𝑣 = [𝑈𝑡0𝑣
𝑣 , 𝑈𝑡1𝑣

𝑣 … .𝑈𝑡𝑖
𝑣
𝑣 … . . 𝑈𝑡𝑓−1

𝑣
𝑣 , 𝑈𝑡𝑓

𝑣
𝑣 ] that affects the process over the “totally new” time 

sequence [𝑡0
𝑣 , 𝑡1

𝑣 , … . , 𝑡𝑖
𝑣 , … . . 𝑡𝑓−1

𝑣 , 𝑡𝑓
𝑣] (the superscript v refers to “validation”), i.e. performing multi-

step ahead prediction. The latter goal is achieved through recursive prediction, assuming that the first 

𝐿 values of the outputs are known, ( 𝑌𝑡0𝑣
𝑣 , …  𝑌𝑡𝑛𝐿𝑣

𝑣 ), 𝑛𝐿 = 𝐿. The recursive prediction starts using the 

known inputs 𝑥1
𝑣 = [ 𝑌𝑡0𝑣

𝑣 , …  𝑌𝑡𝑛𝐿𝑣
𝑣 ,  𝑈𝑡0𝑣

𝑣 , …  𝑈𝑡𝑛𝐿𝑣
𝑣  ] to predict the process output values at the next time 

step, �̂�𝑡𝑛𝐿+1𝑣
𝑣 . These predicted output values are used, jointly with the new control input values, as the 

new models input, 𝑥2
𝑣 = [𝑌𝑡1𝑣

𝑣 , …  𝑌𝑡𝑛𝐿𝑣
𝑣 ,  �̂�𝑡𝑛𝐿+1𝑣

𝑣 ,  𝑈𝑡1𝑣
𝑣 , …  𝑈𝑡𝑛𝐿𝑣

𝑣 ,  𝑈𝑡𝑛𝐿+1𝑣
𝑣 ], for the next time step, so as to 

predict the output values,  �̂�𝑡𝑛𝐿+2𝑣
𝑣 . The recursive prediction continues until the last time step, at which 

the prediction input 𝑥𝑛𝑣
𝑣 = [ �̂�𝑡𝑓−1−𝐿

𝑣
𝑣 , . . .  �̂�𝑡𝑓−1

𝑣
𝑣 , 𝑈𝑡𝑓−1−𝐿

𝑣
𝑣 , … , 𝑈𝑡𝑓−1

𝑣
𝑣 ] are used to predict the output �̂�𝑡𝑓

𝑣
𝑣 . 

Notice that 𝑛𝑣 = 𝑡𝑓
𝑣 − 𝑛𝐿 is the number of prediction steps or times recursively performed by the 

models in order to predict the future outputs behavior of the validation signals.   

The dynamic models performance can be assessed considering an accuracy metric (e.g., Normalized 

Root Mean Square Error – NRMSE - Eq.(5)) that computes the difference between the exact and the 
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predicted values of each of the 𝐷𝑦 output signals, respectively,   𝑦𝑗,𝑡𝑖
𝑣

𝑣 ∈  𝑌𝑡𝑖
𝑣
𝑣   and  �̂�𝑗,𝑡𝑖

𝑣
𝑣 ∈   �̂�𝑡𝑖

𝑣
𝑣  , 𝑖 =

𝑛𝐿 + 1, . . . , 𝑓, 𝑗 = 1,2, …𝐷𝑦. 

    𝑅𝑀𝑆𝐸𝑗 = √
1

𝑛𝑣
∑ ( 𝑦𝑗,𝑡𝑖

𝑣
𝑣 −  �̂�𝑗,𝑡𝑖

𝑣
𝑣 )2

𝑓
𝑖=𝑛𝐿+1                                                    (4) 

 𝑁𝑅𝑀𝑆𝐸𝑗 = 100
𝑅𝑀𝑆𝐸𝑗

(𝑚𝑎𝑥 (𝑦𝑗,𝑡𝑖
𝑣

𝑣 ) − min ( 𝑦𝑗,𝑡𝑖
𝑣

𝑣 ))
   (5) 

It is worth to highlight that the mathematical structure/design of the proposed modeling approach 

(Eq.(3))  does not directly or explicitly assume any correlation between the outputs of the single-step 

emulator [�̂�1,𝑡+1, … �̂�𝑗,𝑡+1, �̂�𝐷𝑦,𝑡+1], since each dynamic model is constructed and trained 

independently. However, the information about the eventual correlations among the dynamic model 

outputs is introduced by two mechanisms: i) the fact that each model output �̂�𝑗,𝑡+1 is computed as a 

function of the whole set of former values of the process state (inputs and outputs), and ii) the 

recursive nature of the prediction scheme (Figure 1), which makes each dynamic model fj to contribute 

with its prediction �̂�1,𝑡+1 to the overall prediction of the process output �̂�𝑡+1 = 

[�̂�1,𝑡+1, �̂�2,𝑡+1, … , �̂�𝑗,𝑡+1, … , �̂�𝐷𝑦,𝑡+1] which, at the end, will constitute the prediction/model input at the 

next time step. In other words, the output of each dynamic model at the current time step depends on 

the delayed outputs predicted by other dynamic metamodels at previous time steps, interacting among 

them during the recursive calculations, so every sole model benefits from the knowledge supplied by 

the other models in former time steps.  

On another hand, it is unlikely that each process output will be dependent of the complete set of the 

process input and output variables -including their lagged values-, see Eq. (3). But, since there is no 

prior knowledge about the process behavior, it is useful to allow for all the possible correlations 

between the process variables, and to let the training task to extract the knowledge about the strength 

of the allowed correlations. However, this may be also a limitation when a large-scale process is 

considered, since this will increase the input dimensionality, complicate the model structure and, 

consequently, increase the number of model parameters. Therefore, this might pose many challenges 

to the training task: not only the computational effort will increase, but also a higher number of 

training data will be required in order to face the tuning of the additional model parameters. In this 

case, previously to the modeling task, an initial analysis can be carried out in order to reduce the 

models input dimensionality. Although this is not in the scope of this work, it is worth to mention that 

this can be achieved either based on the knowledge about the system variables and their relations, or 

using computational techniques as cross-correlation, sensitivity analysis, feature selection and 

extraction techniques, etc.  
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Figure 1. Scheme of the proposed multistep-ahead prediction using the fitted multivariate dynamic 

models. 

 

Another factor to be selected at this stage is the model lag/order, 𝐿, which will affect the resulting 

model quality and complexity (and, obviously, will also determine the effort required for model 

training/tuning). Several methods can be found in the literature for making this selection. For linear 

dynamic models, the cross-correlation between the model output and input has been used [11, 50]. 

This technique exploits the linear relationships assumed by choosing a linear model. Thus, the cross-

correlation between the model output, 𝑌𝑡+1, and the input including different delayed information, 

𝑌𝑡 , 𝑌𝑡−1, … , 𝑌𝑡−𝐿 , 𝑈𝑡 , 𝑈𝑡−1, … , 𝑈𝑡−𝐿, would give an indication about the delay within which the model 

input mostly influences its output. Similarly, the correlation between the model inputs and the model 

prediction error, 𝑒 =  𝑌𝑡+1 − �̂�𝑡+1,   based on a test set, can reveal the missing regressors, i.e. delayed 

inputs. Another technique that has been commonly used for the inference/selection of the time lag 

associated to a linear dynamic model is based on the use of Akanke’s information criterion. More 

details can be found in [49].  

For nonlinear dynamic models, a common technique for the estimation of a suitable lag is the 

calculation of the Lipschitz index from the training data only without any dependence or assumption 

about the model nature [50, 63, 64]. The method is based on the continuity property of the nonlinear 

functions that represent input-output models of continuous dynamic systems. The Lipschitz index is 

Dynamic metamodels 
   

�̂�1,𝑡+1  = 𝑓1   
�̂�𝑡, . . �̂�𝑡−𝐿 ,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

�̂�𝑗,𝑡+1  = 𝑓𝑗   
�̂�𝑡, . . �̂�𝑡−𝐿 ,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

            ⁞                                     ⁞ 

�̂�𝐷𝑦,𝑡+1 = 𝑓𝐷𝑦 
�̂�𝑡, . . �̂�𝑡−𝐿 ,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

 

… 

 

Z-L 

 

Z-1 

�̂�𝑡+1 

Z-1 

 

Z-L 

 

�̂�𝑡 

… 

�̂�𝑡−𝐿 

𝑈𝑡 

𝑈𝑡−𝐿 

𝑈𝑡−1 



18 

 

computed considering different lags or delays starting from 𝐿 = 0, and the best embedding dimension 

is obtained when the index stops decreasing. 

Most of the techniques proposed for estimating the data-driven dynamic models order consider only 

univariate cases. When dealing with multivariate dynamic models,  defining a specific different lag for 

each input with respect to each output is an optimal, but utopic, objective, and to the authors’ 

knowledge, a way for achieving this is not yet available in the literature because it is 

practically/numerically complicated, mainly due to the eventual combined interactions. A practical 

and simple approach is to consider a model structure with the same lag for all the input variables [1, 

38, 10], see Eq.(3). Although this may seem restrictive, as each process variable, in fact, will present a 

different physical behavior, the idea is that the importance of the lagged inputs will be 

adjusted/balanced during the model training according to their significance with respect to the model 

output, through the manipulation of the values of the weights and biases in the ANN model, or of the 

parameters 𝜉𝑙 in the OK model. 

 In this work, a simple and common try and cut procedure is considered for this selection. So, different 

sets of multivariate dynamic models are built with different lag values, and the lag that achieves the 

minimum prediction error of all the 𝐷𝑦 models - over a new test set - is selected.   

3.3 Design of Computer Experiments for Dynamic Modelling 

As mentioned in Section 2.1, different techniques for the DOCE have been commonly used for 

determining the most convenient training set in the case of data-driven modeling with the purpose of 

approximating static complex computer models. But these techniques are rarely applied to situations 

where the purpose is the approximation of “dynamic” computer models. 

As indicated before, the few methods already proposed for DOCE in dynamic modeling [48, 12] show 

different limitations: 1) their capabilities to handle general dynamic processes that often include 

control inputs and lagged behavior are not illustrated, 2) their robustness to handle different case 

studies, and their flexibility to integrate different metamodel types are not explored, 3) these sampling 

procedures are based on the estimated prediction error of the GP/OK metamodels and, therefore, their 

application with important metamodelling techniques that do not possess this characteristic (e.g. ANN, 

SVR, etc.) is not feasible, and 4) the sequential nature of these sampling procedure would easily lead 

to a high computational burden, especially if it is applied to cases characterized by high dimensionality 

(e.g., several control inputs and process outputs with lagged behavior) and/or include high numbers of 

training data, see Section 2.1 . 

In this section, a DOCE is proposed for data-driven multivariate dynamic modeling of complex 

processes, assuming the availability of a reliable and accurate FPM. The method is based on the use of 
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Hammersley sampling design, which is the one selected in this work, as previously justified. However, 

any efficient alternative can be also used (e.g. optimized Latin hypercube designs, etc.). The proposed 

procedure is aimed at alleviating the limitations just mentioned at the beginning of this section. 

As an important principle of the proposed sampling procedure, it must be taken into account the 

different nature of the dynamic model (or metamodel) inputs, when compared to steady-state 

model/metamodel inputs. Since the inputs of a steady-state model are assumed to be independent (e.g. 

temperature, pressure, volume etc.), the selection of their values combinations [𝑋]𝑛 within their 

specific bounds is a straightforward task. However, in the case of a dynamic model (Eq. (3)), the 

model inputs 𝑥 = [𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿 ,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿] can not be considered independent since, in 

general, 𝑥 must include some model inputs (𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿) which actually correspond to previous 

outputs (over a certain time lag). Thus, the DOCE technique can freely select any possible 

combination of values for the process control inputs and their delayed 

counterparts, 𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿 , since these values correspond to external actions applied to the system 

and, as a consequence, they can be considered neither correlated nor dependent over time (i.e. 𝑈𝑡−1 

does not depend on 𝑈𝑡−2). But, in contrast, it is not possible to freely select any arbitrary combination 

of values for the process outputs and their delayed counterparts, 𝑌𝑡 , 𝑌𝑡−1, . .  𝑌𝑡−𝐿, because the process 

outputs may be correlated among others (i.e., 𝑦𝑗 depends on 𝑦𝑗′ , 𝑗 𝑎𝑛𝑑 𝑗
′, = 1,2, . . 𝐷𝑦, 𝑗 ≠ 𝑗

′), they 

will probably depend on their delayed values (i.e. 𝑦𝑗,𝑡−1 will probably depend on 𝑦𝑗,𝑡−2) and, of 

course, they will depend on the process inputs and their lagged values also (i.e. 𝑌𝑡−𝑖 =

𝑓(𝑌𝑡−(𝑖+1), 𝑈𝑡−(𝑖+1), … ).  Thus, 𝑌𝑡−𝐿 are the only output values that can be freely selected, since they 

are the initial values in the generated profile.  

So, the proposed procedure harnesses the Hammersley technique to design a sampling plan that 

includes n combinations of values of independent models inputs, [𝑌𝑡−𝐿,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿], over the 

expected operational domain of the process variables [𝑈𝑡 𝑚𝑖𝑛 ∶   𝑈𝑡 𝑚𝑎𝑥,  𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥]. Each 

combination (row of the sampling plan matrix) consists of the 𝐷𝑦  initial process output values, 𝑌𝑡−𝐿, 

besides the 𝐷𝑢 × (𝐿 + 1) values of the process control inputs and their lagged 

counterparts, [𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿]. The rest of the dynamic metamodel inputs, [𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿+1], 

together with the dynamic metamodel output, 𝑌𝑡+1, are obtained by the simulation of the process 

model considering the initial process outputs, 𝑌𝑡−𝐿, and the control input profile 

value, [𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿], previously selected by the DOCE technique (Figure 2). Finally, the input–

output training data, [𝑋]𝑛 = [𝑌𝑡 , 𝑌𝑡−1, . . 𝑌𝑡−𝐿 ,  𝑈𝑡 , 𝑈𝑡−1, . . 𝑈𝑡−𝐿]𝑛, [𝑊]𝑛 = [𝑌𝑡+1]𝑛, are used to train the 

set of 𝐷𝑦 dynamic metamodels (Eq. (3)).  
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Figure 2. Scheme of the proposed dynamic DOCE. 

The sampling procedure becomes simpler when no lag exists (i.e. Markovian process, L=0,). Hence, 

the DOCE technique is used to directly select/design a sampling plan [𝑋]𝑛 = [𝑌𝑡 ,  𝑈𝑡]𝑛. After that, n 

simulation runs are carried out using the process FPM in order to obtain the dynamic model output 

values [𝑊]𝑛 = [𝑌𝑡+1]𝑛. 

3.4 Input-Output signals generation 

In common practical situations, a FPM of the process may not be available and, consequently, the 

selection of the best training data through the application of the proposed DOCE procedure is not 

possible. Therefore, this work also considers cases where only input-output signals, measured and 

collected from the process by the physical sensors network are available. We mimic this situation 

through considering the process FPM as a real plant that generates these input-output data signals.   

The first step in the generation of input-output signals is the synthesis of a piecewise-constant set of 

the process control inputs 𝑈𝑡 ∈ 𝑅
𝐷𝑢, which are composed by random step changes of the control input 

values along the time within the allowable control limits 𝑈𝑡 𝑚𝑖𝑛 ∶   𝑈𝑡 𝑚𝑎𝑥. Each step change is 

expected to hold for some intervals, ∆𝑡, to catch the entire dynamic conduct of the process outputs 

corresponding to this step change. At the same time, the number of sampling periods over which the 

control input values hold should not be large, in order to avoid gathering redundant information about 

the steady-state mode of the process. The synthesized control input signals are, then, simulated by the 

process plant (i.e., model) in order to obtain the corresponding process output signals, to which 

Gaussian noise is added to emulate the sensors noise. The initial values of the process output signals 

are selected to be in the middle of their estimated variability domain, in order to maximize the 

likelihood that during their evolution they could span the sub-regions of the whole domain. These 

input-output signals, 𝑈𝑡 , 𝑌𝑡, are used to train the system of dynamic surrogate models considering a 

suitable lag, L.  

Usually, the domain within which the process control inputs are allowed to be manipulated 𝑈𝑡 𝑚𝑖𝑛 ∶

  𝑈𝑡 𝑚𝑎𝑥  is known from the process operational specification. However, the variation domain of the 

process outputs [ 𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥] should be also checked in front of the recorded process historical 

data. In the case of the considered simulated case studies, the domain  𝑌𝑡 𝑚𝑖𝑛 ∶   𝑌𝑡 𝑚𝑎𝑥 has been 
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estimated through several trial and error simulations, using control profiles within the specified limits 

of the process control inputs. Also, it is worth to mention that the time step length  ∆𝑡 is conditioned 

by the subsequent application of the multivariate dynamic models. For example, if these dynamic 

models are to be employed for monitoring, fault detection and diagnosis, or model predictive control 

applications,  ∆𝑡 will be the sampling period over which the process must be supervised or controlled. 

In this work, we have considered the same ∆𝑡 previously used in the literature for each one of the 

addressed case studies. 

4 Applications  

In this section, three benchmark models from the chemical process engineering literature are used to 

evaluate the proposed modeling methodology, including the sampling procedure, and to compare 

different metamodels types. These benchmarks are representative examples of nonlinear dynamic 

systems from three different sub-domains, namely, biochemical, industrial and petrochemical 

engineering. 

The first case involves the model of a continuous bioreactor system that has been considered in 

different dynamic modeling and control studies, e.g., for data-driven univariate dynamic modeling 

[38], Quasi-sliding model control [63], and for the design of nonlinear observers [65].  The second 

application considers the model of a three-tank system that has been commonly used as a benchmark 

in different monitoring, control and fault detection and diagnosis studies [66, 67, 68, 69]. The third 

case study involves the model for a shale-oil pyrolysis batch system that has been frequently addressed 

as example of batch processes dynamic optimization [70, 71]. 

As previously mentioned, in all these case studies two application scenarios will be considered: the 

first one would mimic a realistic situation where only input-output signals are available for training the 

models (see Section 3.4) and, thus, the FPM is used as the process plant from which these signals are 

collected. The second scenario assumes that the FPM is available for the application of the proposed 

DOCE procedure in order to optimally select the training data (see Section 3.3). Finally, in both 

scenarios, the trained dynamic models are tested with a set of totally new data, independently 

generated in the form of input-output signals. The dynamic models are harnessed for forecasting the 

process output values, given the values of the validation control inputs, by interacting in a coordinated 

way through the recursive time integration process proposed (Section 3.2). Finally, the NRMSE (Eq. 

(5)) is calculated between the predicted outputs and the corresponding known real values. 
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4.1 Bioreactor 

A bioreactor consists in a system inside which microorganisms grow by feeding on the substrate in 

order to produce the desired product. The difficulties to model the biochemical dynamics associated to 

the involved processes, usually depending on many factors and conditions not easy to control, convert 

such systems in challenging situations where to test nonlinear dynamic modeling methods and their 

applications [65, 63, 38]. 

A second-order discrete dynamic model of the bioreactor is considered to describe the evolution of the 

concentrations of the microorganisms, 𝐶𝑚, and the substrate, 𝐶𝑠, inside the reactor, which are affected 

by the reactor outlet flowrate, 𝑈, as detailed by Eqs.(6): 

 

𝐶𝑚(𝑡+1) = 𝐶𝑚(𝑡) + 0.5 
𝐶𝑚(𝑡) 𝐶𝑠(𝑡)

𝐶𝑚𝑡 +  𝐶𝑠(𝑡)
𝐶 − 0.5 𝑈(𝑡)𝐶𝑚(𝑡)

𝐶𝑠(𝑡+1) =  𝐶𝑠(𝑡) − 0.5 
𝐶𝑚(𝑡) 𝐶𝑠(𝑡)

𝐶𝑚(𝑡) +  𝐶𝑠(𝑡)
𝐶 − 0.5 𝑈(𝑡)𝐶𝑠(𝑡) + 0.05 𝑈(𝑡)

}
 
 

 
 

 (6) 

The objective is building a group of data-driven models (Eqs. (7)), which are able to accurately 

approximate the bioreactor output evolution, [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]: 

 
�̂�𝑚(𝑡+1) = 𝑓1(𝐶𝑚(𝑡), … 𝐶𝑚(𝑡−𝐿),  𝐶𝑠(𝑡) … ,  𝐶𝑠(𝑡−𝐿), 𝑈(𝑡), … , 𝑈(𝑡−𝐿))

�̂�𝑠(𝑡+1)  = 𝑓2(𝐶𝑚(𝑡), … 𝐶𝑚(𝑡−𝐿),  𝐶𝑠(𝑡), … ,  𝐶𝑠(𝑡−𝐿), 𝑈(𝑡), … , 𝑈(𝑡−𝐿))
} (7) 

As previously mentioned, the situation where only signals measured from the process plant are 

available [𝑈(𝑡), 𝐶𝑚(𝑡), 𝐶𝑠(𝑡)] is first considered for model training. Thus, a flowrate signal, 𝑈(𝑡), is 

synthesized by arbitrary changing its amplitude along the time, where every change lasts over 20 

sampling intervals (Figure 3-left). The amplitude values of the step changes are randomly chosen 

within the known operating range [0:0.7] of the outlet flowrate, 𝑈(𝑡). 

 

Figure 3. Training signal (bioreactor). 
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This outlet flowrate signal is introduced to the process FPM (Eq. (6)) in order to obtain the 

corresponding process output signals: concentrations of microorganisms, 𝐶𝑚(𝑡), and substrate, 𝐶𝑠(𝑡). 

To these calculated values, 𝐶𝑚(𝑡), 𝐶𝑠(𝑡), a Gaussian noise 𝒩(𝜇 = 0, 𝜎 = 0.0025%) is added to 

emulate the kind of information which would be available in this case (Figure 3-(middle, right)), 

where 𝜎 is a percentage of the variability domain ([0: 0.15, 0:0.15]) of these variables, 𝐶𝑚(𝑡), 𝐶𝑠(𝑡) . 

As previously mentioned in Section 3.4, the variation ranges of the output, 𝐶𝑚(𝑡) and 𝐶𝑠(𝑡) are 

estimated by carrying out different trial and error simulations using random values of the outlet 

flowrate, whose variation range is already specified, [0:0.7]. Besides, the initial values of the substrate 

and microorganisms concentrations, [𝐶𝑚(0),𝐶𝑠(0)], are selected to be in the middle of their variation 

ranges. 

In parallel, a second situation where the training data is generated by means of the proposed sampling 

procedure for the dynamic modeling has also been considered. Hence, the Hammersley technique is 

used to sample over the expected variation domain of the dynamic models input, [0: 0.15, 0: 0.15, 0: 

0.7], so as to generate a sampling plan which includes 300 sample points (input values combinations), 

as described in Section 3.3. It should be noted that a different sampling plan is designed for each one 

of the different lag values considered, since a different lag implies a different number of the dynamic 

model inputs (i.e. model delayed input). 

The procedure application becomes straightforward when no lag is considered (𝐿 = 0): the DOCE is 

used to design a sampling plan over the dynamic models input variables [𝐶𝑚(𝑡), 𝐶𝑠(𝑡), 𝑈(𝑡)] and, then, 

the FPM is used to simulate the model output [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]; after that, the input-output training 

data matrices, [𝐶𝑚(𝑡), 𝐶𝑠(𝑡), 𝑈(𝑡)]300 − [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)]300, are used to train the models.  However, if 

a lag is considered, just for example, 𝐿 = 1, the Hammersley technique used to design a sampling plan 

should only consider the independent inputs of the dynamic model, [𝐶𝑚(𝑡−1), 𝐶𝑠(𝑡−1), 𝑈(𝑡−1), 𝑈(𝑡)], and 

the FPM is employed to simulate the dependent inputs, [𝐶𝑚(𝑡), 𝐶𝑠(𝑡)], of the dynamic model and also 

the model output, [𝐶𝑚(𝑡+1), 𝐶𝑠(𝑡+1)], as described in Section 3.3. Similarly, in this case, a Gaussian 

noise with the same mean and standard deviation is added to the all process output data. Finally, the 

input-output training data matrices, [𝐶𝑚(𝑡), 𝐶𝑚(𝑡−1), 𝐶𝑠(𝑡), 𝐶𝑠(𝑡−1), 𝑈(𝑡), 𝑈(𝑡−1) ]300 − [𝐶𝑚(𝑡), 𝐶𝑠(𝑡)]300, 

are obtained. 

Both training datasets (input-output signals or DOCE) have been used to train different groups of the 

multivariate models in Eqs.(7), considering the OK and ANNs techniques and various lags (𝐿 =

0, 1, 2 𝑜𝑟 3).  

In case of the ANN, its structure has been selected by a search procedure, trying to balance the 

accuracy and simplicity of the resulting network. Specifically, for any of the models in Eqs.(7), four 
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different ANNs-based dynamic models, corresponding to four different lags (𝐿 = 0, 1, 2 𝑜𝑟 3), have 

been fitted. Since in each case the number of the model inputs will be different, a single fixed ANN 

structure is not likely to be suitable for all these different dynamic models. In this case, a two layer 

ANN is used, where the number of neurons in each layer equals to double of the number of input 

variables of the dynamic model. Besides, a log-sigmoid transfer function is used for the hidden layer 

neurons, whereas a linear transfer function is used for the output layer. The network training is trained 

by mean of Bayesian regularization backpropagation algorithm, which updates the weights and biases 

according to Levenberg-Marquardt optimization. This training algorithm usually provides the ANNs 

with good generalization properties. Again, it is worthy to stress that the selection of the ANN 

structure and configurations is a time and effort consuming task, even when addressing a low 

dimensional problem, as the case in hands. This challenge will be magnified as the problem 

dimensionality and/or the number of training data increases.  

Regarding the OK-based models, the “fmincon” algorithm for nonlinear optimization of the Matlab 

optimization toolbox is used to tune the parameters [ξl, λ] (see Section 2.2). Unlike the ANN, all the 

OK parameters are automatically optimized. However, a main obstacle which complicates the fitting 

of the OK is the choice of proper initial values necessary for starting the optimization search: a 

derivative-based optimization algorithm is relatively fast but it can, readily, end up at a local optima, 

because of the intricacy of the likelihood function. In this work, few optimization runs (each departing 

from distinct initial values of the parameters) are considered, to ensure effective training of the OK. 

Although derivative-free optimizers (e.g., genetic algorithms, swarm intelligence-based algorithms) 

guarantee global search, their search mechanism may demand a huge computational burden 

considering the expensive evaluation of the likelihood function (see Section 2.2).For assessing the 

trained models performance, two validation signals have been randomly generated in the same 

previously mentioned manner (Section 3.4), where the amplitude value of the control scenarios 

(reactor outlet flowrate, 𝑈) has been randomly selected within the specified domain [0:0.7]. However, 

the time length over which each amplitude value holds has been selected differently for each control 

scenario. The objective is to assess the accuracy and robustness of the multivariate metamodels under 

different operational conditions and dynamics (Figure 5-top solid black lines) and also to avoid any 

correspondence with the training conditions. 

The dynamic metamodels are harnessed to emulate the evolution of the microorganisms concentration, 

𝐶𝑚(𝑡+1), and substrate concentration, 𝐶𝑠(𝑡+1) , alonf the entire time period (five hundred steps) of each 

of the two validation scenarios of the output flowrate, 𝑈, (Figure 5) through the recursive procedure 

illustrated in Section 3.2. Table 1 and Figure 4 illustrate the NRMSE of the multivariate dynamic 

models  �̂�𝑚(𝑡+1) and �̂�𝑠(𝑡+1) when they are trained using the considered techniques (i.e.: ANN, OK), 

lags (𝐿=0, 1, 2, 3) and procedures for training data selection (input-output signals, DOCE). 
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Table 1. NRMSE (%) of the multivariate dynamic metamodels (bioreactor). 

Training data type Lag 

�̂�𝒎(𝒕+𝟏)  �̂�𝒔(𝒕+𝟏) Average  (�̂�𝒎(𝒕+𝟏)& �̂�𝒔(𝒕+𝟏)) 

OK ANN OK ANN OK ANN 

Signal  

0 4.0 2.9 3.1 3.0 3.5 3.0 

1 3.4 4.6 3.0 2.7 3.2 3.6 

2 2.9 3.7 3.0 3.0 2.9 3.4 

3 2.9 4.4 3.0 2.9 3.0 3.6 

 𝝁 = 𝟑. 𝟐, 
𝝈 = 𝟎. 𝟐 

𝝁 = 𝟑. 𝟒, 
𝝈 = 𝟎. 𝟑 

DOCE 

0 2.3 1.2 0.4 0.3 1.4 0.8 

1 0.7 2.1 0.8 2.3 0.7 2.2 

2 1.6 1.2 0.4 0.3 1.0 0.8 

3 2.3 1.0 0.9 0.4 1.6 0.7 

 
𝝁 = 𝟏. 𝟐, 
𝝈 = 𝟎. 𝟒 

𝝁 = 𝟏. 𝟏, 
𝝈 = 𝟎. 𝟕 

 

Figure 4. NRMSE of the multi-step-ahead predictions of the output variables (𝐶𝑚, 𝐶𝑠) of the 

Bioreactor system versus the considered lag of the dynamic models: (a,b,c) training using signals data 

and (d,e,f) training using DOCE data. 
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Notice that, generally, all the models trained with the different training data types (signals, DOCE), 

techniques (ANN, OK) and lags (𝐿 = 0,1,2,3) achieved very good performances. In particular, the 

DOCE further enhances the performance of the multivariate dynamic models, even when only 300 

data points have been used for training in these cases, in comparison to the 500 training points used in 

the cases using input-output signals, (see the overall mean, 𝜇, and standard of deviation , 𝜎 , of the 

different sets of models built with different lags). Also, it is worth to highlight that, regarding the 

signals-based training procedure, the set of multivariate dynamic models based on ANNs with 𝐿=0, 

and OK with 𝐿=2 achieved the best performances, respectively NRMSE of 3.0 %, and 2.9 %. In 

relation to the DOCE training procedure, dynamic models based on ANNs with 𝐿= 3, and OK with 𝐿= 

1 provided the best performance, respectively NRMSE of 0.7 %, and 0.7 %. 

 

 

Figure 5. Multi-step ahead prediction of the Bioreactor output variables (𝐶𝑚, 𝐶𝑠) in two validation 

scenarios (left and right), predicted by different sets of OK-based dynamic models, trained using 

different data selection procedures and considering different lags of the dynamic models: solid black 

line is the exact behavior of the process, blue and brown dashed lines are, respectively, the best and 

worst predictions of the metamodels set trained using input-output signals and the green and red 

dashed lines are, respectively, the best and worst predictions of the metamodels set trained using the 

data selected by the proposed DOCE.  

 

Figure 5 shows the step-ahead predictions of the microorganisms, 𝐶𝑚(𝑡+1), and substrate, 𝐶𝑠(𝑡+1) , 

concentrations, corresponding to two validation scenarios by means of the multivariate dynamic 

models set based on the OK technique. The Figure compares -in terms of the prediction accuracy, see 
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Table 1- the best and the worst models in both training cases: using the input-output signal (blue and 

brown dashed lines for worst and best respectively) and the DOCE (red and green dashed lines for 

worst and best, respectively). Similar Figures for the dynamic models based on ANN techniques are 

illustrated in the Appendix. These Figures not only emphasize the very high prediction accuracy of the 

best multivariate metamodels, but also show that even in the worst modeling trials (e.g.: blue and red 

dotted lines) quite satisfactory levels of accuracy are achieved for both the OK and ANN cases. The 

step-ahead prediction of the multivariate dynamic models set based on the ANN technique are shown 

in Figure S1.  

Azman et al. [38] have used the same case study to illustrate their proposal of  univariate dynamic 

modeling based on GP models, where a single-input-single-output system, 𝑈 − 𝐶𝑚, was considered. 

They used an input-output training signal of 602 samples with added normal random noise to the 𝐶𝑚 

data (𝜇 = 0, 𝜎 = 0.0025), and a random validation scenario that involves 60 time steps. In their work, 

a dynamic model with a lag 𝐿 = 2 achieved the best prediction accuracy, with a RMSE of 3.44×10-3. 

Using the methodology proposed in this work, extended prediction capabilities have been achieved 

with equal (600 samples for the input-output signals training set) or much less (300 samples for the 

DOCE training set) training data sizes, since all the system outputs (𝐶𝑚 and 𝐶𝑠) have been considered 

and equivalent RMSEs have been achieved (3% NRMSE that corresponds to a RMSE of 3.1×10-3) 

over much larger prediction horizons (500 steps-ahead predictions). 

 

Figure 6. Computational times required for the: (a) generation of the training datasets using the 

proposed DOCE, (b) training of the multivariate dynamic models sets based on OK and ANN and for 

(c) the prediction of the testing scenarios of the bioreactor case study. (Intel core i5-6200U 

CPU@2.3GHz.) 

Figure 6-(a) shows that the computational effort required for training data generation using the 

proposed DOCE procedure increases with the considered lags in the dynamic models: larger 

considered lags require more integration steps in the analytical model simulation runs (Section 3.3 and 

Figure 2). Notice that the time required  for generating the other type of training data (signals) is not 

illustrated since it is independent of the model lag (an average of 5.6 sec for generating input-output 



28 

 

signal as in Figure 3).  Figure 6-(b) shows that, generally, 1) the increase in the dynamic models lag 

escalates the training time due to the increase in dynamic model input dimensions and, consequently, 

the growth of the model parameters to be identified, 2) the training time of the OK-based dynamic 

models (mauve color) are much larger compared with that of the ANN (green color), because of the 

very expensive evaluation of the objective function involved in its parameters tuning task (the 

concentrated likelihood function that implies the expensive calculations of the invers of the correlation 

matrix [𝑅]𝑛×𝑛, where 𝑛 is the number of the training data). Nevertheless, given the fact that the 

training of the multivariate dynamic models is aimed to be an offline task, the high training 

computational efforts should be affordable. Figure 6-(c) shows the average prediction time of the 

entire 500 steps ahead of one testing profile (as in Figure 5) required by the multivariate dynamic 

models sets with different lags. Notice that the prediction time of the OK-based models are much 

lower than those of the ANN-based ones, due to the very simple predictor formula associated to OK 

(see Eq.(1)) compared with the relatively expensive calculations required by the ANN to perform the 

prediction, which include multiplication of matrices of inputs and weights at each layer besides 

processing their result by the transfer functions. In general, the prediction time is quite suitable for any 

online application, as one-step ahead prediction requires an order of magnitude of 10−3 sec in a simple 

Personal Computer. 

It is worth noticing that, in this case study, as well as in the next ones, the analysis of the 

computational time are perturbed by different uncontrolled uncertainties and randomness, which lead 

to some outliers and noise in the trends of the curves in Figure 6. These uncertainties include the 

random initial values of the parameters of the metamodels (OK and ANN), the possible change of the 

behavior of the objective function involved in the parameter tuning task with the increase of the model 

lags (i.e. increase in the model input dimensions) and, also, the online availability of the processors 

and RAM of the computer while performing the calculations. 

Finally, it should be emphasized that the performance of the proposed methodology in all cases will be 

affected by the general limitations and criticalities of any data-driven / machine-learning technique, 

including the one that refers to the size and the quality of the training data: to ensure a satisfactory 

prediction accuracy level, sufficient number of training data should be available, including enough 

information about the different dynamic conditions/states/scenarios that the process will face. Also, 

the quality of the training data in terms of the measuring error/noise (unavoidable in real systems) is 

an important factor affecting the model performance, as the excess of noisy measurements could lead 

to poor model performance.  

Figure 7 shows two experiments that address the effects of the training dataset size and noise over the 

model prediction accuracy in this case, based on the OK model, trained with data generated via the 

DOCE procedure and considering lag =1 (best overall prediction accuracy in this case). Figure 7-(a) 
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shows how the size of the training dataset (fixing the noise standard deviation to 0.0025%) affects the 

average prediction accuracies of the model. Considering the overall accuracy (black stars) the initial 

positive effect of increasing the size of the training dataset achieves an optimum situation and, from 

this point, an increase of the training data does not necessarily enhance further the accuracy (as usually 

happens with these techniques).  Figure 7-(b) shows how the noise/error in the data also affects the 

average prediction accuracy of the models (fixing the number of training data to 300, which was the 

best value for the nominal conditions, with a noise standard deviation of 0.0025%). The Figure also 

shows that the methodology behaves robust with respect to the change of the training dataset size and 

the noise. 

 

 

Figure 7. Effect of the training dataset size (a) and the amount of noise (b) on the performance of the 

multivariate dynamic models set based on the OK technique, trained by data selected via the DOCE 

procedure and considering lag=1. 

 

4.2 Three-tanks system 

The second application is based on the three-tank system illustrated in Figure 8. It is a well-known 

nonlinear process that has been commonly used as a benchmark in different monitoring, control and 

fault detection and diagnosis studies [66, 67, 68]. Its popularity stems from the fact that it involves 

characteristics of fluid distribution systems (tanks, pumps, and pipelines) often encountered in real 

plants [69, 72], as cooling water circuits of distillation columns and feed water systems in power 

stations, etc.  
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Figure 8. Schematic representation of the three-tanks benchmark system. 

𝐴
𝑑ℎ1
𝑑𝑡

=  −𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| + 𝑄1                                                  

𝐴
𝑑ℎ2
𝑑𝑡

=  𝑎3 𝑠23 𝑠𝑔𝑛(ℎ3 − ℎ2 )√2𝑔|ℎ3 − ℎ2|  − 𝑎2𝑠0√2𝑔ℎ2 + 𝑄2                      

𝐴
𝑑ℎ3
𝑑𝑡

=  𝑎1 𝑠13 𝑠𝑔𝑛(ℎ1 − ℎ3 )√2𝑔|ℎ1 − ℎ3| − 𝑎3𝑠23𝑠𝑔𝑛(ℎ3 − ℎ2)√2𝑔|ℎ3 − ℎ2|}
 
 

 
 

 

 

(8) 

The system model (in Eqs.(8)) describes the dynamic relations among the levels of the tanks, 

ℎ1, ℎ2,ℎ3, (the process outputs) and the inlet flowrates, 𝑄1, 𝑄2, (the control input), whose limiting 

value is 0.005 𝑚3/𝑠 . The values of the cross section area of the tanks, A, the cross section areas of the 

connecting pipes 𝑠13, 𝑠23, 𝑠0, and the flow coefficients 𝑎1, 𝑎3, 𝑎0, can be found in [72].  

A set of multivariate dynamic models is to be constructed, which describes the step-ahead evolution of 

the tanks levels ℎ1(𝑡+1), ℎ2(𝑡+1), ℎ3(𝑡+1), see Eqs.(9). The same general procedure described in Section 

3 and the application details illustrated in Section 4.1 are systematically followed in this case, too. 

ℎ̂1(𝑡+1) = 𝑓1(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

ℎ̂2(𝑡+1) = 𝑓2(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

ℎ̂3(𝑡+1) = 𝑓3(ℎ𝑖(𝑡), ℎ𝑖(𝑡−1), . . ℎ𝑖(𝑡−𝐿), 𝑄𝑗(𝑡) , 𝑄𝑗(𝑡−1), . . 𝑄𝑗(𝑡−𝐿))

where 𝑖 = 1,2,3, and  𝑗 = 1,2 }
 
 

 
 

  (9) 

The first training set is obtained by means of the generating input-output signals including 750 

instances (Figure 9). Thus, piecewise constant signals of the fluid inlet flowrate, 𝑄1 𝑎𝑛𝑑 𝑄2, are 

composed, where the signal amplitude values are randomly selected along the time in a constant 

piecewise manner within the ranges of [0.0 : 0.005] 𝑚3/𝑠, and each amplitude change holds for 20 

sampling periods. The corresponding output signals, ℎ1, ℎ2 and ℎ3, are obtained by the process FPM 

simulation, where Gaussian noise of the same magnitude described in Section 4.1 is added to them. 
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Figure 9. Input-output signal of the three-tanks system used for training the set of multivariate 

dynamic models. 

A second training set is again generated following the proposed dynamic DOCE procedure to include 

300 samples over the expected variation domain [0: 0.8, 0: 0.8, 0: 0.8, 0: 0.005, 0: 0.005] of the 

process variables, respectively, ℎ1, ℎ2 ℎ3, 𝑄1 and 𝑄2. Gaussian noise with the same mean and standard 

deviation is added to the process output data and, finally, the input-output training matrices are 

obtained, [ℎ𝑖(𝑡), … . , ℎ𝑖(𝑡−1),  𝑄𝑗(𝑡), … . , 𝑄𝑗(𝑡−1) ]300
− [ℎ𝑖(𝑡+1)]300, 𝑖 = 1,2,3 and 𝑗 = 1,2.  

The set of dynamic models in Eq.(9), [ℎ̂1(𝑡+1), ℎ̂2(𝑡+1), ℎ̂3(𝑡+1)], is trained using each type of the 

training datasets, based on the different considered techniques (i.e. OK and ANNs) and different lags. 

The same setting and guidelines used in Section 4.1 for selecting the ANN structure, for customizing 

its configurations and for tuning the OK models are also considered here. 

Table 2. NRMSE (%) of the multivariate dynamic metamodels (three-tanks). 

Training 

data type 
Lag 

�̂�𝟏(𝒕+𝟏)  �̂�𝟐(𝒕+𝟏)  �̂�𝟑(𝒕+𝟏)  
Average 

(�̂�𝟏(𝒕+𝟏) , �̂�𝟐(𝒕+𝟏) , �̂�𝟑(𝒕+𝟏) )  

OK ANN OK ANN OK ANN OK ANN 

Signal 

0 2.7 1.9 1.8 1.4 2.4 2.0 2.3 1.7 

1 6.6 2.1 2.9 1.9 5.1 2.2 4.9 2.0 

2 5.7 2.8 2.7 2.1 4.4 2.9 4.3 2.6 

3 4.7 2.9 2.5 3.7 3.8 3.0 3.7 3.2 

 
𝝁 = 𝟑. 𝟖, 
𝝈 = 𝟏. 𝟏 

𝝁 = 𝟐. 𝟒, 
𝝈 = 𝟎. 𝟕 

DOCE 

0 1.7 0.4 0.7 0.2 1.6 0.3 1.3 0.3 

1 0.6 0.2 0.3 0.2 0.5 0.2 0.4 0.2 

2 0.9 0.5 0.4 0.4 0.9 0.5 0.7 0.5 

3 0.8 1.6 0.6 1.4 0.7 1.7 0.7 1.6 
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𝝁 = 𝟎. 𝟖, 
𝝈 = 𝟎. 𝟒 

𝝁 = 𝟎. 𝟕, 
𝝈 = 𝟎. 𝟔 

 

 

Figure 10. NRMSE of the multi-step-ahead predictions of the output variables (ℎ1, ℎ2, ℎ3) of the 

three-tanks system versus the considered lag of the dynamic models: (a,b,c) training using input-

output signals data and (d,e,f) training using DOCE data. 

Again, two validation signals, generated as described in Sections 3.4 and 4.1, are used to assess the 

fitted dynamic models (Figure 11). It deserves to emphasize that the amplitude values of the validation 

control scenarios (inlet flowrates, 𝑄1 and 𝑄2) have been randomly chosen within the specified domain 

[0, 0.005] 𝑚3/𝑠 and the time length over which amplitude values hold has been selected differently 

for each scenario (see Figure 11 top four subplots). Table 2 and Figure 10 show the low NRMSE of 

the multivariate dynamic models  ℎ̂1(𝑡+1) , ℎ̂2(𝑡+1) and ℎ̂3(𝑡+1) when they are trained using the 

considered techniques, lags and procedures for training data selection. Also, the evolution of the tanks 

levels along the time predicted by the multivariate dynamic models sets based on the OK and the ANN 

techniques are shown in Figure 11 and Figure S2, respectively. 

 



33 

 

 

Figure 11. Multi-step ahead prediction of the three-tanks system output variables (ℎ1, ℎ2, ℎ3) in two 

validation scenarios (left and right), predicted by different sets of OK-based dynamic models, trained 

using different data selection procedures and considering different lags of the dynamic models: solid 

black line is the exact behavior of the process, blue and brown dashed lines are, respectively, the best 

and worst predictions of the metamodels set trained using input-output signals and the green and red 

dashed lines are, respectively, the best and worst predictions of the metamodels set trained using the 

data selected by the proposed DOCE.  
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Figure 12. Computational times required for the: (a) generation of the training datasets using the 

proposed DOCE, (b) training of the multivariate dynamic models sets based on OK and ANN and for 

(c) the prediction of the testing scenarios of the three tanks case study. (Intel core i5-6200U 

CPU@2.3GHz.) 

 

Figure 12-(a) shows the computational effort required for the training data generation using the 

proposed DOCE procedure. As in the previous case, the time required for generating the other type of 

training data (input-output signal, see Figure 9) is constant (now equals to an average of  9.0 sec.), and 

the rest of conclusions are also equivalents: Figure 12-(b) illustrates the escalation of the training time 

with the increase of the dynamic models lag and that the training time of the OK-based dynamic 

models (mauve color) are much larger relative to the ANN (green color). Figure 12-(c) shows the 

average prediction time of the entire 500 steps ahead of one testing profile. It emphasizes again the 

capabilities of the dynamic models for real time predictions, requiring an order of magnitude from 

10−3 to  10−2 sec for one-step ahead prediction. 

 

4.3 Oil Shale Pyrolysis 

Oil shale pyrolysis is an industrial process that aims at extracting shale oil through the decomposition 

of the shale. Pyrolysis approximates the natural processing of the organic material in the shale, i.e. 

kerogen, using higher temperatures to compensate for the geological time frame [71]. Upon heating, 

kerogen decomposes by consecutive reactions into a benzene-soluble material (pyrolytic bitumen), 

which, in turn, decomposes to form the final products of oil, gas, and carbonaceous residue on the 

spent shale [71]: 

mailto:CPU@2.3GHz
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𝐾𝑟

       𝑘1       
→      𝑃𝑏

𝑃𝑏
       𝑘2       
→      𝑂𝑔

𝐾𝑟 + 𝑃𝑏
       𝑘3       
→      𝑃𝑏 + 𝑃𝑏

𝐾𝑟 + 𝑃𝑏
       𝑘4       
→      𝑂𝑔 + 𝑃𝑏

𝐾𝑟 + 𝑃𝑏
       𝑘5       
→      𝑂𝑔 + 𝑂𝑐}

  
 

  
 

 

(10) 

The series of reactions taking place during the process are illustrated in Eqs.(10), where 𝐾𝑟 is the 

kerogen, 𝑃𝑏 is the pyrolytic bitumen, 𝑂𝑔 is oil and gas and 𝑂𝑐 is the organic carbon residue [71].  The 

mathematical model in Eqs.(11) describes the evolution of the concentrations, 𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, 

where 𝑘𝑖 is the specific reaction rate, 𝑘𝑖0 is its intial value, 𝐸𝑖   is the activation energy, 𝑅  is the gas 

constant and 𝑇  is the temprature that can be manipulated within the range of [698.15 ≤ 𝑇 ≤  748.15] 

[70]: 

 𝑑𝐶𝐾𝑟

𝑑𝑡
=  −𝑘1 𝐶𝐾𝑟 − (𝑘1 + 𝑘4 + 𝑘5 ) 𝐶𝐾𝑟𝐶𝑃𝑏

𝑑𝐶𝑃𝑏

𝑑𝑡
=       𝑘1 𝐶𝐾𝑟 − 𝑘2𝐶𝑃𝑏 + 𝑘3 𝐶𝐾𝑟𝐶𝑃𝑏       

𝑑𝐶𝑂𝑔

𝑑𝑡
=       𝑘2𝐶𝑃𝑏 − 𝑘4 𝐶𝐾𝑟𝐶𝑃𝑏                         

𝑑𝐶𝐶𝑟

𝑑𝑡
=       𝑘5 𝐶𝐾𝑟𝐶𝑃𝑏                                          

𝑘𝑖 = 𝑘𝑖0 𝑒𝑥𝑝
(
𝐸𝑖
𝑅𝑇
)
 , 𝑖 = 1,2,3,4,5 }

 
 
 
 

 
 
 
 

 

(11)  

This model has been commonly used for the dynamic optimization of the process [70], aiming at 

maximizing the pyrolytic bitumen production at the end of the batch, i.e.  𝐶𝑃𝑏(𝑡𝑓).  With this 

objective, the optimal batch time, 𝑡𝑓, and the optimal temperature profile over the batch time [ 𝑡0: 𝑡𝑓] 

are to be identified, considering the initial conditions [𝐶𝐾𝑟(𝑡0), 𝐶𝑃𝑏(𝑡0), 𝐶𝑂𝑔(𝑡0), 𝐶𝐶𝑟(𝑡0)]= [1, 0, 0, 0]. 

In this application, we illustrate the development of a set of dynamic models (Eqs.(12)) which is able 

to accurately approximate the future behavior of the oil shale pyrolysis process. Six different batch 

runs are simulated, such that each batch corresponds to a different control profile of the temperature, 

composed as previously mentioned within the known limits [698.15 𝐾: 748.15𝐾] and,  random initial 

conditions [𝐶𝐾𝑟(𝑡0), 𝐶𝑃𝑏(𝑡0), 𝐶𝑂𝑔(𝑡0), 𝐶𝐶𝑟(𝑡0)] between the range  [0.95 : 1.05 , 0 : 0.05, 0 : 0.05 , 0 : 

0.05]. Also, a random Gaussian noise of the aforementioned order of magnitude is added to the output 

values. It is worthy to mention that the batch time is set to its optimal value identified in the literature 

[71], i.e. 𝑡𝑓 = 9.3 𝑚𝑖𝑛 , while the sampling period is set to 0.093 𝑚𝑖𝑛. 
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�̂�𝐾𝑟(𝑡+1) = 𝑓1(𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿), 𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿))

�̂�𝑃𝑏(𝑡+1) = 𝑓2(𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿), 𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿))

�̂�𝑂𝑔(𝑡+1) = 𝑓3(𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿), 𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿))

�̂�𝐶𝑟(𝑡+1) = 𝑓4(𝐶𝐾𝑟(𝑡), . . , 𝐶𝐾𝑟(𝑡−𝐿), 𝐶𝑃𝑏(𝑡), . . , 𝐶𝑃𝑏(𝑡−𝐿), 𝐶𝑂𝑔(𝑡), . . , 𝐶𝑂𝑔(𝑡−𝐿), 𝐶𝐶𝑟(𝑡), . . , 𝐶𝐶𝑟(𝑡−𝐿), 𝑇(𝑡), . . , 𝑇(𝑡−𝐿))}
 
 

 
 

 

(12) 

 

Figure 13. Training (blue) and validation batches (red). 

Four batches (blue lines in Figure 13) are considered as the input-output training set, while two 

batches (red lines in Figure 13) are used for the testing purpose. On the other side, a second training 

set including 400 samples or instances is generated by the proposed procedure for dynamic DOCE, 

considering the expected variation domain of the process variables 𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, and 𝑇: [0  : 1.2, 

0 : 0.6, 0 : 1.2, 0 : 0.6, 698.15 : 748.15 ] 

Both types of training data, input-output signals and DOCE, are utilized for fitting the models set in 

Eqs.(12), considering also the different techniques and lags as in the previous sections. The trained 

sets of models are used to predict the evolution of the process outputs, 𝐶𝐾𝑟, 𝐶𝑃𝑏 , 𝐶𝑂𝑔, 𝐶𝐶𝑟, over 100 

time steps, corresponding to each validation scenario of the temperature, 𝑇 (red lines in Figure 13). 

The performance of each one of the dynamic models is illustrated in Table 3 and Figure 14, where the 

prediction NRMSE is shown for each model independently and for the set of dynamic models. It can 

be noticed that the multivariate dynamic models possess quite satisfactory level of accuracy (Figure 

14-(c, f) and the last two column in Table 3), specially taking into account the complex nature of the 
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considered case. This complexity is expressed by the higher dimensionality of the output, the complex 

reactions mechanisms (see Eqs.(10)), the high nonlinear relations in the system (see Eqs.(11)) and by 

the nature of the process as a batch type that often included transient dynamics and sophisticated 

reaction kinetics and stoichiometry. Besides, the kerogen concentration, 𝐶𝐾𝑟, seems to be the easiest 

output to be modeled (Figure 15, red lines), however, the organic carbon residue, 𝐶𝐶𝑟, represents the 

most difficult behavior to be captured (Figure 15, yellow lines). 

Table 3. NRMSE (%) of the multivariate dynamic metamodels (oil shale Pyrolysis). 

Training data 

type 
Lag 

�̂�𝑲𝒓(𝒕+𝟏)  �̂�𝑷𝒃(𝒕+𝟏)  �̂�𝑶𝒈(𝒕+𝟏)  �̂�𝑪𝒓(𝒕+𝟏)  

Average  

(�̂�𝑲𝒓(𝒕+𝟏), �̂�𝑷𝒃(𝒕+𝟏),  

�̂�𝑶𝒈(𝒕+𝟏) , �̂�𝑪𝒓(𝒕+𝟏) ) 

OK ANN OK ANN OK ANN OK ANN OK ANN 

Signal 

0 3.7 2.5 5.4 4.6 3.7 2.5 8.4 6.9 5.3 4.1 

1 2.6 2.6 4.5 8.0 1.6 4.9 8.0 7.4 4.2 5.8 

2 1.7 4.0 3.4 7.4 1.5 4.8 7.9 9.4 3.6 6.4 

3 1.7 1.8 2.9 5.9 1.5 4.0 7.8 6.8 3.5 4.6 

 
𝝁 = 𝟒. 𝟐, 
𝝈 = 𝟎. 𝟖 

𝝁 = 𝟓. 𝟐, 
𝝈 = 𝟏. 𝟏 

DOCE 

0 3.6 1.4 5.6 3.9 4.2 3.0 5.2 5.9 4.6 3.6 

1 4.2 0.4 7.2 0.9 6.0 0.6 8.5 2.9 6.5 1.2 

2 1.4 0.7 3.4 1.1 3.0 0.5 5.2 1.0 3.3 0.8 

3 1.7 0.1 3.0 0.2 3.9 0.2 1.5 0.7 2.5 0.3 

 
𝝁 = 𝟒. 𝟐, 
𝝈 = 𝟏. 𝟕 

𝝁 = 𝟏. 𝟓, 
𝝈 = 𝟏. 𝟓 
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Figure 14. NRMSE of the multi-step-ahead predictions of the output variables (𝐶𝐾𝑟, 𝐶𝑃𝑏, 𝐶𝑂𝑔, 𝐶𝐶𝑟) of 

the oil shale pyrolysis process versus the considered lag of the dynamic models: (a,b,c) training using 

input-output signals data and (d,e,f) training using DOCE data. 

The best performances (input-output training signal) have been achieved by the sets of dynamic 

models based on ANNs with 𝐿=0 and OK with 𝐿=3, finding NRMSE of 4.1 %, and 3.5 %, 

respectively. The dynamic models sets (DOCE training) based on ANNs with 𝐿= 3 and OK with 𝐿= 3 

have provided the best performances, finding NRMSE of 0.3% and 2.5%, respectively. Again, the 

models trained using data generated by the proposed DOCE procedure exhibit enhanced performance 

with respect to those trained by the data generated using the input-output signal. 

Figure 15 shows the evolutions of the kerogen, 𝐶𝐾𝑟(𝑡+1), pyrolytic bitumen, 𝐶𝑃𝑏(𝑡+1), oil and 

gas, 𝐶𝑂𝑔(𝑡+1), and the organic carbon residue, 𝐶𝐶𝑟(𝑡+1), concentrations in two validation batches, 

predicted by the set of OK-based dynamic models.  Similarly, the worst and best performances with 

respect to each training data type are highlighted by the aforementioned colors. The Figure shows that 

even in the worst modeling trials (blue and red dotted lines) quite satisfactory levels of accuracy are 

achieved, especially for the OK and ANN cases. The step-ahead prediction of the ANN-based 

dynamic models is showed in Figure S3. 
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Figure 15. Multi-step ahead prediction of the output variables of the oil shale pyrolysis process 

(𝐶𝐾𝑟, 𝐶𝑃𝑏, 𝐶𝑂𝑔, 𝐶𝐶𝑟) in two validation batches (left and right), predicted by different sets of OK-based 

dynamic models, trained using different data selection procedures and considering different lags of 

the dynamic models: solid black line is the exact behavior of the process, blue and brown dashed lines 

are, respectively, the best and worst predcions of the metamodels sets tained using aribiraray inpu-

output signals, respectively, and the green and red dashed lines are, respectively, the best and worst 

predcions of the metamodels sets tained using data selected by the proposed DOCE.  

Figure 16 shows the training data collected by the input-output signal generation (red crosses) and the 

proposed dynamic DOCE (cyan circles) procedures projected onto some of the metamodels input 

dimensions. The Figure shows that when the methodology is used for approximating a complex FPM, 

it is capable of efficiently generating all the possible combinations of the process variables values by 

the proposed DOCE procedure, in order to collect dataset covering the entire domain of the models 

input and, consequently, to enhance its prediction accuracy. However, when the methodology is meant 

to be applied to a real process, the FPM model is considered as a process plant, but with only few 
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input-output datasets available, which have been generated following the procedure in Section 3.4 

(one/few signal(s) or “profile(s)” evolving through the complete set of feasible situations). See Figure 

16, where the training data in the latter case (red crosses) represent a small local subset within the 

entire domain of variability of the model input variables. In this case, these “profiles” have been 

generated in a random way (see Section 3.4) since we do not know the control mechanism (problem) 

of each specific process and, moreover, this is the typical procedure used in the literature [38, 1]. 

For real situation, where a database of the process variables measurements history is available, the 

training data selection should cover as much as possible the dynamic conditions of the process, in 

order to feed model with sufficient information about the process [53].  

 

Figure 16. Comparison between the training data selected by the proposed DOCE procedure (cyan 

circles) and the training data in the case of using input-output signals (red crosses), both projected 

over arbitrary selected pairs of the dynamic models input dimensions: (a,b) bioreactor,(c,d) three-

tanks and (e,f) oil shale pyrolysis. 
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Figure 17. Computational times required for the: (a) generation of the training datasets using the 

proposed DOCE, (b) training of the multivariate dynamic models sets based on OK and ANN and for 

(c) the prediction of the testing scenarios of the oil shale pyrolysis case study.  (Intel core i5-6200U 

CPU@2.3GHz.) 

Figure 17-(a) shows the computational time required for the training data generation using the 

proposed DOCE procedure. The time required for generating the other type of training data (input-

output signal, see Figure 13) is (again) constant and equals to an average of  9.0 sec. Figure 17-(b) 

illustrates the escalation of the training time with the increase of the dynamic models lag and that the 

training times of the OK-based dynamic models (mauve color) are (again) larger relative to the ANN 

(green color) escalation. Figure 17-(c) shows the average prediction time of the entire 100 steps ahead 

of one testing profile. It emphasizes again the capabilities of the dynamic models for real time 

predictions, requiring an order of magnitude from 10−2 to  10−1 sec for one-step ahead prediction. 

Finally, it should be mentioned that in all the analyzed cases but, especially, in situations where only 

few input-output signals are available for the training and/or they may represent a biased or partial 

view of the process (as in the last case study, see Figure 16-(e,f), red crosses), the resulting dynamic 

models may be very sensible to the eventual evolution of the real process behavior through the time, 

which may drive it to unexpected/unexplored conditions, either due to the natural evolution of the 

process (e.g.: heat exchanger fouling, process aging, drifting, etc.), or because a wrong/incomplete 

selection of the training dataset. In such situations, the dynamic models can perform poorly, because 

they are going to be applied outside the domain of knowledge/information on which they have been 

trained. An online updating mechanism that continuously feeds/updates the dynamic models with new 

data (information) collected from the process would be the solution for such problem.  

In this sense, the practical application of the proposed methodology needs to account for the 

uncertainty or confidence about the model prediction, which should be more reliable when the model 

is to be used for control and optimization (e.g.: in order to assess how the control actions will tolerate 

the model predictions errors, or in order to detect that the process is evolving into a new or not well 

mailto:CPU@2.3GHz
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described working area). Ensemble and Monte-Carlo-based methods are suitable for the uncertainty 

quantification of data-driven models. 

5 Conclusions 

This work presents a robust and generic methodology for data-driven multivariate dynamic modelling 

and multi-step ahead prediction of nonlinear chemical processes using surrogate models. The proposed 

methodology utilizes surrogate models for building a group of NARX models, each of them able to 

predict the evolution of one output as a function of the other inputs and outputs of the process. The set 

of multivariate dynamic models are, then, used to forecast the process outputs along larger time 

intervals, through a recursive and inter-coordinated prediction scheme. The methodology also offers a 

new procedure for training data selection for dynamic modeling, based on the “design of computer 

experiments” technique when a FPM of the process is available.  

The application of the proposed methodology is illustrated through three case-studies of nonlinear 

dynamic processes selected from the process engineering literature, including a bioreactor, three-tanks 

and an oil-shale pyrolysis batch reactor. The results make explicit the promising capabilities of the 

developed multivariate dynamic models in terms of: 1) a high prediction accuracy, 2) the capability of 

simulating complex dynamic profiles over large prediction time horizons, and 3) the generality and 

robustness required to handle cases of different nature (biological, industrial and chemical systems), 

integrating different metamodel types (ANN and OK), managing situations based on either FPM 

approximations or where only a  limited set of process input-output signals are available, exhibiting 

very good behavior with respect to the sensitivity against the training data size and the noise in the 

training data. 

The proposal extends the capabilities of the OK techniques (until now only proposed in simpler 

dynamic situations) and efficiently introduces them to full dynamic scenarios, showing very 

competitive characteristics with respect to other leading techniques such as ANNs, in terms of 

accuracy and, more significantly, in terms of flexibility and systematic tuning of parameters. The only 

disadvantage is the relatively high computational effort required for fitting. 

The sets of multivariate dynamic models provided by the methodology fit very well with the 

requirements and needs of different engineering applications as model predictive control, dynamic 

optimization, monitoring, etc., where the future values of many process outputs must be accurately and 

rapidly predicted.  

The good results obtained with models trained with a limited quantity of input-output data justify the 

generalization of the message and the potential applicability of the proposed procedure to situations 
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when no FPM is available or the conditions from the training data may significantly change, although 

this is to be further investigated. On the other hand, the main issues which main appear during the 

application of the proposed methodology, associated to the availability, representativeness and quality 

of the training data, and common to the application of machine-learning techniques, represent 

potential lines of future research, such as the development of online updating method to overcome the 

process evolution, or the development of prediction assessment methods in dynamic environments. 

 

 

References 
 

[1]  Nagy, Z. K. Model based control of a yeast fermentation bioreactor using optimally designed artificial 

neural networks. Chemical Engineering Journal, vol. 127, pp. 95-109, 2007.  

[2]  Caballero, J. A. and Grossmann, I. E. An algorithm for the use of surrogate models in modular flowsheet 

optimization. AIChE Journal, vol. 54, p. 2633–2650, 2008.  

[3]  Ažman, K. and Kocijan, J. Dynamical systems identification using Gaussian process models with 

incorporated local models. Engineering Applications of Artificial Intelligence, Vols. 398-408, p. 24, 2011.  

[4]  Davis, E. and Ierapetritou, M. A kriging method for the solution of nonlinear programs with black-box 

functions. AIChE journal, vol. 53, pp. 2001-2012, 2007.  

[5]  Davis, E. and Ierapetritou, M. A Kriging-Based Approach to MINLP Containing Black-Box Models and 

Noise. Ind. Eng. Chem. Res., vol. 47, pp. 6101-6125, 2008.  

[6]  Qin, S. J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 

vol. 36, pp. 220-234, 2012.  

[7]  Kajero, O.; Chen, T.; Yao, Y.; Chuang, Y.-C. and Wong, D. S. H. Meta-modelling in chemical process 

system engineering. Journal of the Taiwan Institute of Chemical Engineers, vol. 73, pp. 135-145, 2017.  

[8]  Ali, J. M.; Hussain, M. A.; Tade, M. O. and Zhang, J. Artificial Intelligence techniques applied as estimator 

in chemical process systems – A literature survey. Expert Systems with Applications, vol. 42, pp. 5915-

5931, 2015.  

[9]  Shokry, A.; Vicente, P.; Gerard, E.; Pérez-Moya, M.; Graells, M. and Espuña, A. Data-driven soft-sensors 

for online monitoring of batch processes with different initial conditions. Computers & Chemical 

Engineering, vol. 118, pp. 159-179, 2018.  

[10]  Bradford, E.; Schweidtmann, A. M.; Zhang, D.; Jing, K. and Rio-Chanona, E. A. Dynamic modeling and 

optimization of sustainable algal production with uncertainty using multivariate Gaussian processes. 

Computers & Chemical Engineering, vol. 118, pp. 143-158, 2018.  

[11]  Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy 

Models, Berlin: Springer, 2001.  

[12]  Boukouvala, F.; Muzzio, F. J. and Ierapetritou, M. G. Dynamic Data-Driven Modeling of Pharmaceutical 

Processes. Ind. Eng. Chem. Res, vol. 50, p. 6743–6754, 2011.  

[13]  Baraldi, P.; Cadini, F.; Mangili, F. and Zio, E. Model-based and data-driven prognostics under different 

available information. Probabilistic Engineering Mechanics, vol. 32, pp. 66-79, 2013.  



44 

 

[14]  Amozeghar, M. and Khorasani, K. An ensemble of dynamic neural network identifiers for fault detection 

and isolation of gas turbine engines. Neural Networks, vol. 76, pp. 106 -121, 2016.  

[15]  Tsai, C.-S. and Chang, C.-T. Dynamic process diagnosis via integrated neural networks. Computers & 

Chemical Engineering, vol. 19, pp. 747-752, 1995.  

[16]  Adebiyi, O. A. and Corripio, A. B. Dynamic neural networks partial least squares (DNNPLS)identification 

of multivariable processes. Computers and Chemical Engineering, vol. 27 , pp. 143-155, 2003.  

[17]  Banu, U. S. and Umab, G. ANFIS based sensor fault detection for continuous stirred tank reactor. Applied 

Soft Computing, vol. 11, pp. 2618-2624, 2011.  

[18]  Zhou, L.; Chen, J. and Song, Z. Recursive Gaussian Process Regression Model for Adaptive Quality 

Monitoring in Batch Processes. Mathematical Problems in Engineering, vol. 2015, pp. 1-9, 2015.  

[19]  Mattosa, C. L. C.; Dai, Z.; Damianou, A.; Barreto, G. A. and Lawrence, N. D. Deep recurrent Gaussian 

processes for outlier-robust system identification. Journal of Process Control, vol. 60, pp. 82-94, 2017.  

[20]  Himmelblau, D. M. Applications of artificial neural networks in chemical engineering. Korean Journal of 

Chemical Engineering, vol. 17, p. 373–392, 2000.  

[21]  Poznyak, A.; Chairez, I. and Poznyak, T. A survey on artificial neural networks application for 

identification and control in environmental engineering: Biological and chemical systems with uncertain 

models. Annual Reviews in Control (in press https://doi.org/10.1016/j.arcontrol.2019.07.003), 2019.  

[22]  Dua, V. A mixed-integer programming approach for optimal configuration of artificial neural networks. 

Chemical Engineering Research and Design, vol. 88, pp. 55-60, 2010.  

[23]  Ludermir,T. B.; Yamazaki, A. and Zanchettin, C. An Optimization Methodology for Neural Network 

Weights and Architectures. IEEE Transactions on Neural Networks, vol. 17 , pp. 1452-1459, 2006.  

[24]  Benardos, P. and Vosniako, G.-C. Optimizing feedforward artificial neural network architecture. 

Engineering Applications of Artificial Intelligence, vol. 20, pp. 365-382, 2007.  

[25]  Leperi, K. T.; Yancy-Caballero, D.; Snurr, R. Q. and You, F. 110th Anniversary : Surrogate Models Based 

on Artificial Neural Networks To Simulate and Optimize Pressure Swing Adsorption Cycles for CO 2 

Capture. Ind. Eng. Chem. Res., Vols. 58, 39, pp. 18241-18252, 2019.  

[26]  Masters, T. Practical Neural Network Recipies in C++, San Diego New York: Academic Press, 1993.  

[27]  Rigamonti, M.; Baraldi, P.; Zio, E.; Roychoudhury, I.; Goebel, K. and Poll, S. Ensemble of optimized echo 

state networks for remaining useful life prediction. Neurocomputing, vol. 281, pp. 121-138, 2018.  

[28]  Godarzi, A. A.; Amiri, R. M.; Talaei, A. and Jamasb, T. Predicting oil price movements: A dynamic 

Artificial Neural Network approach. Energy Policy, Vols. 371-382, p. 68, 2014.  

[29]  Panapakidis, I. P. and Dagoumas, A. S. Day-ahead electricity price forecasting via the application of 

artificial neural network based models. Applied Energy, vol. 172, pp. 132-151, 2016.  

[30]  Sadeghassadi, M.; Macnab, C. J. B.; Gopaluni, B. and Westwick, D. Application of neural networks for 

optimal-setpoint design and MPC control in biological wastewater treatment. Computers & Chemical 

Engineering, vol. 115, pp. 150-160, 2018.  

[31]  Xu, D.; Jiang, B. and Shi, P. Adaptive Observer Based Data-Driven Control for Nonlinear Discrete-Time 

Processes. IEEE Transactions on Automation Science and Engineering, vol. 11, pp. 1037-1045, 2014.  

[32]  Caccavale, F.; Digiulio, P.; Iamarino, M.; Masi, S. and Pierri, F. A neural network approach for on-line 

fault detection of nitrogen sensors in alternated active sludge treatment plants. Water Science & 

Technology, vol. 62, pp. 2760-2768, 2010.  

[33]  Li, S. and Li, Y. Neural network based nonlinear model predictive control for an intensified continuous 

reactor. Chemical Engineering and Processing: Process Intensification, vol. 96, pp. 14-27, 2015.  

[34]  Lee, W. J.; Na, J.; Kim, K.; Lee, C.-J.; Lee, Y. and Lee, J. NARX modeling for real-time optimization of air 



45 

 

and gas compression systems in chemical processes. Computers & Chemical Engineering, vol. 115, pp. 

262-274, 2018.  

[35]  O'Hagan, A. and Kingman, J. F. C. Curve Fitting and Optimal Design for Prediction. Journal of the Royal 

Statistical Society. Series B (Methodological) , vol. 40, pp. 1-42 , 1978.  

[36]  O'Hagan,A.; Kennedy, M. C. and Oakley, J. E. Uncertainty analysis and other inference tools for complex 

computer codes. In Bayesian Statistics 6, (J. M. Bernardo et al (eds.)), Oxford University Press, pp. 503-

524, 1999.  

[37]  Deisenroth, M. P.; Rasmussen, C. E. and Peters, J. Gaussian process dynamic programming. 

Neurocomputing, vol. 72, pp. 1508-1524, 2009.  

[38]  Ažman, K. and Kocijan, J. Application of Gaussian processes for black-box modelling of biosystems. ISA 

Transactions, vol. 46, pp. 443-457, 2007.  

[39]  Rasmussen, C. E. and Williams, C. K. I. Gaussian Processes for Machine Learning. Adaptive Computation 

and Machine Learning series, Cambridge, Massachusetts: MIT Press, 2006.  

[40]  Murray-Smith, R.; Sbarbaro, D.; Rasmussen, C. E. and Girard, A. Adaptive, cautious, predictive control 

with Gaussian process priors. IFAC Proceedings Volumes, vol. 36, pp. 1155-1160, 2003.  

[41]  Kocijan, J.; Girard, A.; Banko, B. and Murray-Smith, R. Dynamic systems identification with Gaussian 

processes. Mathematical and Computer Modelling of Dynamical Systems, vol. 11, pp. 411-424 , 2005.  

[42]  Girard, A.; Rasmussen, C. E. R. and Murray-Smith, R. Gaussian Process priors with Uncertain 

Inputs:Multiple-Step-Ahead Prediction. Technical Report DCS TR-2002-119, University of Glasgow, 

Glasgow, 2002.  

[43]  Rasmussen, C. E. and Deisenroth, M. P. Probabilistic Inference for Fast Learning in Control. 229-242, 

2008.  

[44]  Forrester, A.; Sobester, A. and Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide, 

Southampton, UK: John Wiley and Sons, 2008.  

[45]  Wang, Z. and Ierapetritou, M. A Novel Surrogate-Based Optimization Method for Black-Box Simulation 

with Heteroscedastic Noise. Ind. Eng. Chem. Res., vol. 56, pp. 10720-10732, 2017.  

[46]  Beck, J.; Friedrich, D.; Brandani, S. and Frag, E. S. Multi-objective optimisation using surrogate models for 

the design of VPSA systems. Computers & Chemical Engineering, vol. 82, pp. 318-329, 2015.  

[47]  Egea, J. A.; Vries, D.; Alonso, A. A. and Banga, J. R. Global Optimization for Integrated Design and 

Control of Computationally Expensive Process Models. Ind. Eng. Chem. Res., vol. 46, pp. 9148-9157, 

2007.  

[48]  Hernandez, A. F. and Grover, M. A. Stochastic dynamic predictions using Gaussian process models for 

nanoparticle synthesis. Computers & Chemical Engineering, vol. 34, pp. 1953-1961, 2010.  

[49]  Espinosa, J. J. and Vandewalle, J. Fuzzy Modeling and Identification, A guide for the user. 1998a.  

[50]  Espinosa, J. J. and Vandewalle, J. Predictive control using fuzzy models applied to a steam generating unit. 

Proceedings of the 3rd International Workshop on Fuzzy Logic and Intelligent Technologies for Nuclear 

Science and Industry, 1998b.  

[51]  Shokry, A. and Espuña, A. Sequential Dynamic Optimization of Complex Nonlinear Processes based on 

Kriging Surrogate Models. Procedia Technology, vol. 15, p. 376–387, 2014b.  

[52]  Shokry, A.; Ardakani, Escudero, M. H.;G.; Graells, M. and Espuña, A. Dynamic Kriging based Fault 

Detection and Diagnosis Approach for Nonlinear Noisy Dynamic Processes. Computers & Chemical 

Engineering, Vols. 758-776, p. 106, 2017a.  

[53]  Shokry, A.; Pérez-Moya, M.; Graells, M. and Espuña, A. Data-Driven Dynamic Modeling of Batch 

Processes Having Different Initial Conditions and Missing Measurements. Computer Aided Chemical 

Engineering, vol. 40, pp. 433-438, 2017b.  



46 

 

[54]  Wang, S.; Zhou, L.; Ji, X.; Karimi, I. A.; He, G.; Dang, Y. and Xu, X. A Surrogate-Assisted Approach for 

the Optimal Synthesis of Refinery Hydrogen Networks. Ind. Eng. Chem. Res., vol. 58, pp. 16798-16812, 

2019.  

[55]  Fang, K.-T.; Li, R. and Sudjianto, A. Design and modelling for computer experiment, New York: Chapman 

and Hall/CRC, 2005.  

[56]  Jurecka, F. Robust Design Optimization Based on Metamodeling Techniques, München: PhD thesis, 

Technische Universität München, 2007.  

[57]  Garud, S. S.; Karimi, I. A. and Kraftb, M. Design of computer experiments: A review. Computers & 

Chemical Engineering, vol. 106, pp. 71-95, 2017.  

[58]  Ibrahim, M.; Al-Sobhi, S.; Mukherjee, R. and AlNouss, A. Impact of Sampling Technique on the 

Performance of Surrogate Models Generated with Artificial Neural Network (ANN): A Case Study for a 

Natural Gas Stabilization Unit. Energies, vol. 12, pp. 1-12, 2019.  

[59]  Joseph, V. R. Space-filling designs for computer experiments: A review. Quality Engineering, vol. 28, pp. 

28-35, 2016.  

[60]  Jones, D. R.; Schonlau, M. and Welch, W. J. Efficient global optimization of expensive black-box 

functions. Journal of Global Optimization, vol. 13, pp. 455-492, 1998.  

[61]  Forrester, A. and Keane, A. Recent advances in surrogate-based optimization. Progress in Aerospace 

Sciences, vol. 45, pp. 50-79, 2009.  

[62]  Conti, S.; Gosling, J. P.; Oakley, J. and O’Hagan, A. Gaussian process emulation of dynamic computer 

codes. Biometrika, vol. 96, pp. 663-676, 2009.  

[63]  Cho, J.; Principe, J. C.; Erdogmus, D. and Motter, M. A. Quasi-sliding mode control strategy based on 

multiple-linear models. Neurocomputing, vol. 10, pp. 960-974, 2007.  

[64]  Suykens, J. A.; Vandewalle, J. and De Moor, B. L. Artificial Neural Networks for Modelling and Control of 

Non-Linear Systems, 1 ed., Springer US, 1996.  

[65]  Gauthier, J. P.; Hammouri, H. and Othman, S. A simple observer for nonlinear systems applications to 

bioreactors. IEEE Transactions on Automatic Control, vol. 37, pp. 875-880, 1992.  

[66]  Frank, P. and Ding, X. Survey of robust residual generation and evaluation methods in observer-based fault 

detection systems. Journal of Process Control, vol. 17, pp. 403-424, 1997.  

[67]  Kouadri, A.; Aitouche, M. A. and Zelmat, M. Variogram-based fault diagnosis in an interconnected tank 

system. ISA Transactions, vol. 51, p. 471–476, 2012.   

[68]  Sarailo, M.; Rahmani, Z. and Rezaie, B. A novel model predictive control scheme based on bees algorithm 

in A class of nonlinear systems: application to A three tank system. Neurocomputing, vol. 152, p. 294–304, 

2015.  

[69]  Patton, R.; Chen, J. and Siew, T. Fault diagnosis in nonlinear dynamic systems via neural networks. Proc. 

of IEE Int. Conf. on Control, pp. 1346-1351, 1994.  

[70]  Carrasco, E. F. and Banga, J. R. Dynamic Optimization of Batch Reactors Using Adaptive Stochastic 

Algorithms. Ind. Eng. Chem. Res, vol. 36 , p. 2252–2261, 1997.  

[71]  Wen, C. and Yen, T. Optimization of oil shale pyrolysis. Chemical Engineering Science, vol. 32, pp. 346-

349, 1977.  

[72]  Theilliol, D.; Noura, H. and Ponsart, J.-C. Fault diagnosis and accommodation of a three-tank system based 

on analytical redundancy. ISA Transactions, vol. 41, pp. 365-382, 2002.  

[73]  Wang, P.; Zhenzhou, L. and Tang, Z. An application of the Kriging method in global sensitivity analysis 

with parameter uncertainty. Applied Mathematical Modelling, vol. 37, pp. 6543-6555, 2013.  

[74]  Simpson, T. W.; Lin, D. K. J. and Chen, W. Sampling strategies for computer experiments: design and 



47 

 

analysis. International Journal of Reliability and Applications, vol. 2, pp. 209-240, 2001.  

[75]  Sacks, J.; Schiller, S. B. and Welch, W. J. Design for computer experiments. Technometrics, vol. 31, pp. 

41-47, 1989.  

[76]  Krige, D. G. A statistical approach to some mine valuations and allied problems at the Witwatersrand, 

Johannesburg: Master thesis, University of the witwatersrand, 1951.  

[77]  Fisher, R. A. The Design of Experiments, 9 ed., London: Macmillan Pub. Co., 1971.  

[78]  Fisher, B. J. R.A. Fisher and the design of experiments (1922-1929). The American Statistician, vol. 34, pp. 

1-7, 1980.  

[79]  Matheron, G. Principles of geostatistics.  Economic Geology, vol. 58, p. 1246–1266, 1963.  

[80]  Shokry, A. and Espuña, A. Applying Metamodels and Sequential Sampling for Constrained Optimization of 

Process Operations. Lecture Notes in Computer Science, vol. 8468, pp. 396-407, 2014a.  

[81]  Cadini, F.; Agliardi, G. L. and Zio, E. Estimation of rare event probabilities in power transmission networks 

subject to cascading failures. Reliability Engineering & System Safety, vol. 158, pp. 9-20, 2017.  

[82]  Turati, P.; Pedronia, N. and Zio, E. Simulation-based exploration of high-dimensional system models for 

identifying unexpected events. Reliability Engineering & System Safety, vol. 158, pp. 9-20, 2017.  

[83]  Cadini, F.; Gioletta, A. and Zio, E. Improved metamodel-based importance sampling for the performance 

assessment of radioactive waste repositories. Reliability Engineering & System Safety, vol. 134, pp. 188-

197, 2015.  

[84]  Zio, E.; Di Maio, F. and Stasi, M. A data-driven approach for predicting failure scenarios in nuclear 

systems. Annals of Nuclear Energy, vol. 37, pp. 482-491, 2010.  

[85]  Subraveti,S. G.; Li, Z.; Prasad, V. and Rajendran, A. Machine Learning-Based Multiobjective Optimization 

of Pressure Swing Adsorption. Ind. Eng. Chem. Res. , Vols. 58, 44, pp. 20412-20422, 2019.  

 

 

 

 



48 

 

 

For Table of Contents Only 

 

 

 

 

 

 

 

 

Dynamic surrogate models 

�̂�1,𝑡+1  = 𝑓1   
𝑌𝑡, . . 𝑌𝑡−𝐿 ,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

�̂�𝑗,𝑡+1  = 𝑓𝑗   
𝑌𝑡, . . 𝑌𝑡−𝐿,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

⁞                                     ⁞ 

�̂�𝐷𝑦,𝑡+1 = 𝑓𝐷𝑦 
𝑌𝑡, . . 𝑌𝑡−𝐿 ,  
𝑈𝑡, . . 𝑈𝑡−𝐿

൨ 

 

Real process 

Coolant 

Tcool(t) 

Product 

Creact(t), 

Treact(t) 

Reactant B 
Reactant A 

Cfeed(t) 

𝑑𝐶𝐾𝑟
𝑑𝑡

=  −𝑘1 𝐶𝐾𝑟 − (𝑘1 + 𝑘4 + 𝑘5 ) 𝐶𝐾𝑟𝐶𝑃𝑏

𝑑𝐶𝑃𝑏
𝑑𝑡

=       𝑘1 𝐶𝐾𝑟 − 𝑘2𝐶𝑃𝑏 + 𝑘3 𝐶𝐾𝑟𝐶𝑃𝑏       

𝑑𝐶𝑂𝑔

𝑑𝑡
=       𝑘2𝐶𝑃𝑏 − 𝑘4 𝐶𝐾𝑟𝐶𝑃𝑏                         

𝑑𝐶𝐶𝑟
𝑑𝑡

=       𝑘5 𝐶𝐾𝑟𝐶𝑃𝑏                                          

𝑘𝑖 = 𝑘𝑖0 𝑒𝑥𝑝
(
𝐸𝑖
𝑅𝑇) , 𝑖 = 1,2,3,4,5 }

 
 
 
 

 
 
 
 

 

Or complex analytical model 

Multistep-ahead predictions 

Dynamic surrogate 

models 

𝑓1 , 
…, 
𝑓𝑗, 

…, 
𝑓𝐷𝑦 

 

…. 

Z-L 
 

Z-1 

�̂�𝑡+1 

Z-1 
 

Z-L 
 

�̂�𝑡 
… 

�̂�𝑡−𝐿 

𝑈𝑡 

𝑈𝑡−𝐿  

 

𝑈𝑡−1 


