
Experiences on the characterization of parallel applications in
embedded systems with Extrae/Paraver

Adrian Munera
adrian.munera@bsc.es

Barcelona Supercomputing Center

Sara Royuela
sara.royuela@bsc.es

Barcelona Supercomputing Center

Germán Llort
german.llort@bsc.es

Barcelona Supercomputing Center

Estanislao Mercadal
estanislau.mercadal@bsc.es

Barcelona Supercomputing Center

Franck Wartel
franck.wartel@airbus.com
Airbus Defence and Space

Eduardo Quiñones
eduardo.quinones@bsc.es

Barcelona Supercomputing Center

ABSTRACT
Cutting-edge functionalities in embedded systems require the use
of parallel architectures to meet their performance requirements.
This imposes the introduction of a new layer in the software stacks
of embedded systems: the parallel programming model. Unfortu-
nately, the tools used to analyze embedded systems fall short to
characterize the performance of parallel applications at a parallel
programmingmodel level, and correlate this with information about
non-functional requirements such as real-time, energy, memory
usage, etc. HPC tools, like Extrae, are designed with that level of ab-
straction inmind, but their main focus is on performance evaluation.
Overall, providing insightful information about the performance of
parallel embedded applications at the parallel programming model
level, and relate it to the non-functional requirements, is of para-
mount importance to fully exploit the performance capabilities of
parallel embedded architectures.

This paper contributes to the state-of-the-art of analysis tools
for embedded systems by: (1) analyzing the particular constraints
of embedded systems compared to HPC systems (e.g., static setting,
restricted memory, limited drivers) to support HPC analysis tools;
(2) porting Extrae, a powerful tracing tool from the HPC domain, to
the GR740 platform, a SoC used in the space domain; and (3) aug-
menting Extrae with new features needed to correlate the parallel
execution with the following non-functional requirements: energy,
temperature and memory usage. Finally, the paper presents the
usefulness of Extrae to characterize OpenMP applications and its
non-functional requirements, evaluating different aspects of the
applications running in the GR740.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; Empirical software validation; Software performance;
• Computer systems organization → Embedded systems; •
Hardware→ Power estimation and optimization; Temperature mon-
itoring.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record is available at https://

doi.org/10.1145/3404397.3404440

 ©2020 Association for Computing Machinery

KEYWORDS
Embedded systems, parallel programming models, performance
evaluation, analysis tools, OpenMP
ACM Reference Format:
Adrian Munera, Sara Royuela, Germán Llort, Estanislao Mercadal, Franck
Wartel, and Eduardo Quiñones. 2020. Experiences on the characterization
of parallel applications in embedded systems with Extrae/Paraver. In 49th
International Conference on Parallel Processing - ICPP (ICPP ’20), August
17–20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3404397.3404440

1 INTRODUCTION
The computing capabilities of current parallel embedded proces-
sor architectures (e.g., GR740 [14], Xilinx UltraScale+ [21], MPPA
Coolidge [3], NVIDIA Jetson [22]) provide embedded systems with
the level of performance needed to implement the most advanced
functionalities, e.g., autonomous driving. This promotes the evolu-
tion of embedded software stacks from simple micro-controllers,
where sequential execution is predominant, to complex parallel
frameworks, where parallel programming models are key to fully
exploit the performance capabilities of parallel architectures. In
this context, fine-grained models such as OpenMP or Pthreads
[27, 35, 41] are already being considered as appropriate solutions to
leverage the potential of the newest embedded systems. Particularly,
OpenMP has been shown to provide time predictability [30, 31] and
correctness [26] capabilities at parallel programming model level.

Parallel programming models introduce challenges in current
embedded software stacks, specifically in the tools used for guaran-
teeing the correct operation of the system. In this sense, parallelism
affects the functional behavior of the system, regarding its oper-
ation in response to the inputs, and the non-functional behavior,
referring to the operation of the system within the time, energy,
memory, etc., budgets imposed by the environment. As a result,
there is a need for correlating the behavior of parallel embedded
applications with the impact parallelism has on their functional and
non-functional requirements. This paper focuses on the correlation
of parallel performance and non-functional requirements at the
OpenMP parallel programming model level.

High-performance computing (HPC) systems already require
the exploitation of parallel programming models in order to extract
the best performance from highly parallel architectures. For this
purpose, analysis frameworks targeting these systems, like Extrae
[37] and Score-P [18], offer an accurate description of the paral-
lel behavior, and allow relating this information with the parallel

https://doi.org/10.1145/3404397.3404440

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Munera and Royuela, et al.

programming model. However, these tools mainly focus on per-
formance analysis, and do not take into account non-functional
requirements, such as energy, temperature and memory usage,
which are critical for the correct operation of embedded systems.
There is hence a need to complement the information provided by
HPC tools with the information relevant in embedded systems.

Applying HPC to embedded systems raises further issues, mostly
related with the tighter constraints of these systems. These are: (1)
environments are often static, meaning that software is developed
in ROM, evolve very little, and may last the lifetime of the electronic
product (consider for instance, the systems controlling satellites in
the space domain); and (2) the amount of software available for em-
bedded systems is restricted, e.g., drivers offer reduced information
of the system, compilers might not support rare architectures and
libraries might not support rare operating systems. Furthermore,
HPC analysis tools do not support the analysis of non-functional
requirements, as their main objective is performance.

This paper contributes in the field of analysis tools for embed-
ded systems in different aspects: (1) it analyzes the most common
aspects to be considered when porting HPC analysis tools to em-
bedded systems; (2) it illustrates the adaptation by porting Extrae, a
well-known tracing tool from the HPC domain, to the GR740 board,
a state-of-the-art system-on-chip (SoC) used in the space domain; (3)
it extends the introspection capabilities of Extrae introducing new
features to trace non-functional requirements, including tempera-
ture, energy and application memory usage, and allows correlating
this information with the execution of the application at the par-
allel programming model level; and (4) it uses Extrae and Paraver
[38], a wide-spread visualization tool also from the HPC domain,
to analyze the behavior of two different applications parallelized
with OpenMP in the GR740. This experience can be of great help
for those adapting tools from HPC to embedded systems.

Overall, the extended capabilities of Extrae allow describing
the performance behavior of OpenMP embedded applications at a
parallel programming model level, and relating this information
with several non-functional requirements. This contribution is para-
mount to exploit the benefits of parallelism in embedded systems
and so facilitate the development of advanced functionalities.

2 RELATEDWORK
Embedded applications usually must satisfy precise constraints to
match the specifications of the system, including functional, i.e.,
operate correctly in response to the inputs, or fail in a predictable
manner, and non-functional, i.e., satisfy the timing, energy, tempera-
ture, etc. requirements due to cyber-physical interactions of the sys-
tem. Consequently, visualization technologies for non-functional
requirements are wide-spread in embedded systems. ULINKplus
Debug Adapter [17] is a debug and trace adapter that allows trac-
ing events and timing information. Together with the µVision®

IDE [16], it allows for visualizing power consumption, exceptions,
variable changes, and operating system (OS) events (i.e., cycles per
instruction, exceptions overhead, load/store cycles, and folded in-
structions). Similarly, J-Trace Debug Probe [28], a debug probe that,
together with SystemView analyzer [29], a real-time recording and
visualization tool for embedded systems, offers different views with

OS information, such as task execution, task switches, and interrup-
tions, based on a timeline. Although powerful, these options require
specific hardware and are limited to Arm Cortex-based devices.

Hardware-independent solutions have been around for years,
e.g., LTTng [4], an open source technology for software-based
tracing in Linux, that can record several kernel-level activities,
including scheduling events, system calls, interrupt requests (IRQs),
memory management, and other kernel-level activities. There are
also tools specific in the embedded market, such as RapiTime and
RapiTask [34], RTOS scheduling analysis and visualization tools to
help understanding the timing behavior of applications (e.g., worst-
case execution time, execution time, response time), and spotting
rare timing events such as race conditions, priority inversions or
deadlocks. Finally, Tracealyzer [24], is a trace visualization tool
for RTOS-based and Linux-based embedded systems that offers
information about the run-time behavior, including task scheduling,
timing and priorities, CPU load, and memory usage, among others.

The previous tools can be very useful to understand the behav-
ior of a system at an OS level, considering interactions among
applications and kernel activity. But the low-level system measure-
ments they provide are difficult to correlate, especially when parallel
computing is involved. Overall, the tools lose sight of the global
structure of the application where the interaction with the paral-
lel runtime affects aspects like load-balance and synchronizations,
which have a critical impact on performance.

3 THE IMPORTANCE OF CHARACTERIZING
THE PARALLEL PROGRAMMING MODEL

On-chip parallelism found on modern embedded multi-core and
many-core processor architectures delivers high performance and
reduced energy consumption at a lower cost, essential for systems
with constrained execution environments. Efficiently leveraging
the performance of parallel architectures requires to parallelize
applications. OpenMP [23] is a high-level directive-based parallel
programming model considered the state-of-the-art solution for
parallel tasking, thanks to its great expressiveness and evinced
performance. It is actively being considered as a possible solu-
tion for exploiting fine-grained parallelism in embedded systems
[1, 13, 35], by virtue of its delimited functional safety [26] and time
predictability [30, 31]. Yet the OpenMP framework does not include
a performance monitoring tool for characterizing the parallel exe-
cution1, and the existing analysis tools for embedded systems lack
the capability to express detailed per-thread performance infor-
mation at the parallel programming model level. For this reason,
this section (1) introduces the important features of the OpenMP
model to be considered in the analysis tool; and (2) describes the
existing techniques used in HPC analysis tools, motivating the use
of Extrae/Paraver.

3.1 OpenMP: Characterization Aspects
OpenMP defines a relaxed fork-join execution model in which
parallelism is spawned with the parallel directive, and distributed
based on two different approaches: (1) the threading model, which
defines an abstraction of user-level threads to work as proxies for
1OpenMP v.5.0 introduces OMPT (Chapter 4 of the specification [23]), an application
program interface (API) for helping performance analysis of first-party tools.

Experiences on the characterization of parallel applications in embedded systems with Extrae/Paraver ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

the physical processors, and allows defining a rather structured
parallelism with worksharing constructs such as for; and (2) the
tasking model, which is oblivious of the physical layout focusing on
exposing parallelism rather than mapping parallelism onto threads,
and facilitates the definition of unstructured and highly dynamic
parallelism with constructs such as task and taskloop.

Regarding synchronization, the thread-based model only allows
for full synchronizations with the barrier construct. The tasking
model allows, additionally, different forms of partial and fine-grain
synchronization, including the taskwait construct, which forces
waiting only for those tasks that are children of the current task,
and the depend clause that, attached to a task, allows ordering the
execution of tasks based on a data-flow model.

Figure 1 depicts the execution model of OpenMP with the thread
model (left) and the task model (right). The picture shows the
structured and unstructured nature of each model, respectively.
While the former distributes work among threads (more or less
evenly) based on the workload of each chunk and the scheduling
configuration, the latter distributes work based on the amount of
parallelism exposed in the application. In this case, the parallelism
can be represented in the form of a Task Dependency Graph (TDG),
where nodes are tasks and edges are dependencies between them.

Parallel loop chunk

Initial task

for

parallel

single

barrier

TDG

Master thread

Worker thread

Implicit task

Explicit task

Figure 1: OpenMP execution model using (left) threads and
(right) tasks.

Characterization-wise, each model poses different interesting
challenges. In the thread model, it is important to be able to recog-
nize how parallelism is spawned and joined to evaluate the overhead
of synchronizations, and also understand how parallel loops are
distributed among the existing resources to evaluate the load bal-
ance of the application. The tasking model, instead, introduces the
possibility of asynchronous execution: tasks are instantiated when
they are encountered (i.e., task input data is captured at that time)
and can be executed immediately or deferred, depending on fac-
tors such as the scheduling policy, the available resources, and the
readiness of the task (i.e., the task depends on previous tasks that
have not finished yet). In both cases, understanding the amount
of parallelism exposed by the application taking into account the
different features of the two models at the parallel programming
level is fundamental to efficiently exploit the thread-based and task-
based parallelism. These and more features are considered in the
evaluation presented in Section 5.

3.2 A Glance at Analysis Techniques
The mechanisms used in analysis tools for gathering information
can be classified as follows:
• Based on the way data is gathered:
– Basic measurements, like clock cycles or elapsed wall-clock
time between two points, are easy to obtain, but come with-
out information concerning the factors that explain them.

– Samplingmechanisms, based on probing the program counter
to identify the most time-consuming parts, can provide a
better understanding of the structure of the application.
However, the ability to characterize fine-grained tasks and
outliers relies on a delicate trade-off between the sampling
frequency and the overhead.

– Instrumentation mechanisms, based on capturing the rel-
evant activity of the application, provide a more precise
picture of the actual program behavior.

• Based on how data is stored:
– Profiling mechanisms can picture general information about
the execution, but fail to connect that information to specific
points in time because data is summarized in counters.

– Tracing mechanisms store events in a timeline basis, hence
are the most reliable to get an exact picture of the behavior
of the program.

The level of information required at analysis time narrows down
the mechanisms to be used. Particularly, our work aims at allowing
a detailed description of the complete parallel execution. For this
reason, the use of tracing mechanisms for storing data is fundamen-
tal. In this context, there are two main frameworks available for
HPC systems: Score-P [18] and Extrae [37]. The former, Score-P,
is a performance measurement infrastructure for profiling, event
tracing, and online analysis of parallel applications, with a strong
focus on user code instrumentation by the insertion of calls to the
measurement system into the application, either fully automati-
cally at compile-time, or with a certain amount of control handed
to the software developer. Score-P makes use of a common plugin
interface [25] to standardize the gathering of metrics, so additional
metrics can be easily added. The traces generated with Score-P are
used by a number of analysis tools, including Scalasca [9], Vampir
[44], and TAU [33]. The latter, Extrae, is a dynamic instrumentation
package for parallel programs that focuses on measuring the par-
allel activity of the runtime rather than on the syntactic structure
of the application. This empowers analysis to work with codes
without the need for previous knowledge or experience with them.
Furthermore, Extrae for HPC neither requires access to the source
code, nor recompiling, nor relinking, facilitating the analysis of al-
ready existing binaries. These characteristics as well as its support
for OpenMP, among many other programming models, are the key
aspects for which we select the Extrae measurement system for our
studies. Next subsection describes important details about this tool.

3.3 Analysis Tools: Extrae/Paraver
Extrae [37] is an open-source tracing framework of the Barcelona
Supercomputing Center (BSC) tool-suite that generates Paraver [38]
trace-files. This package automatically instruments applications
using the LD_PRELOADmechanism to capture information from par-
allel programming models such as OpenMP, Pthreads, OpenCL,

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Munera and Royuela, et al.

CUDA, MPI, OmpSs, and combinations of them. This information
includes the activity of the parallel runtime (e.g. parallel loops in
OpenMP), performance counters through PAPI [15], and source
code references through libunwind and GNU binutils to respectively
walk the call stack and fetch human-readable debugging informa-
tion from the binary. The same mechanism is used to configure
Extrae to instrument specific vendor implementations of a given
language (i.e., APIs). Extrae also offers sampling mechanisms to get
performance details for long non-instrumented regions.

The result of an instrumented run with Extrae is a Paraver trace
[39], which consists of a sequence of time-stamped entries that
record the actual execution of the application. There are three
types of records: (1) events, representing punctual actions of the
program (e.g., entry and exit of routines), (2) states, displaying
activity for a period of time (e.g., scheduling or transferring data),
and (3) communications, reflecting interactions between two pro-
cesses/threads (e.g., task data dependencies). Paraver is the visual-
ization tool of the BSC tool-suite that enables visual and numerical
inspection of the trace through timelines, histograms and profiles,
to get insight of the potential bottlenecks (examples of the views
offered in Paraver are provided in Section 5). Since the format of
the Extrae traces has not changed, the Paraver tool has not been
modified. Hence, the tool is only used for evaluation purposes, to
plot the traces generated with our modified version of Extrae.

The benefits of using Extrae and Paraver to evaluate the per-
formance of parallel applications and architectures has been thor-
oughly proved in the context of HPC systems [19, 32, 43]. However,
there exist a number of challenges to benefit from the virtues of Ex-
trae in embedded systems: (1) adapt Extrae to work in constrained
embedded systems, and (2) augment Extraewith the features needed
to evaluate the non-functional characteristics of the system, so these
can be related with the parallel programming model and the per-
formance. This work contributes in these two aspects, as follows:
(1) we have ported Extrae to the GR740 platform, a SoC used in
the space domain, addressing the main factors to be tackled when
porting an analysis tool to a restricted environment composed of a
SPARC V8 architecture and a RTEMS operating system, and (2) we
have extended Extrae as to record information about non-functional
requirements including temperature, energy and memory consump-
tion. The remainder of this paper introduces these contributions.

4 FROM HPC TO EMBEDDED SYSTEMS:
ACCOMMODATING EXTRAE TO GR740

HPC systems are usually designed with symmetric and scalable
computing nodes, where the software stack is supported by most
compilers and chip vendors, and the system is frequently config-
ured dynamically. Differently, embedded systems are much more
heterogeneous, and the variety of boards and drivers makes the
porting of tools difficult. Furthermore, they tend to be statically
configured, so the applications are built together with the OS, as in
the case of the GR740 running RTEMS. This makes difficult to use
HPC tools in embedded systems. The next subsections describe (1)
the GR740 platform, (2) different aspects relevant to the porting of
Extrae to the GR740, and (3) new features implemented in Extrae2.

2The modified version of Extrae is publicly available at https://github.com/bsc-
performance-tools/extrae/tree/gr740.

LEON4

FPU

MMU L1

GPIO
port

UART

Timer units Timer units Ethernet

L2

STAT. UNIT

AHB/APB
Bridge

AHB/APB
Bridge

AHB Bridge
IOMMU

AHB
Status

AHB/AHB
Bridge

DSU4
AHB/APB

Bridge
SpW RMAP

DCL

Ethernet

AHBTRACE

Memory
Scrubber

IRQ(A)MP

SDRAM
CTRL w.

EDAC

PROM & IO
CTRL w.

EDAC

PC100
SDRAM

JTAG DCL

MIL-STD-
1553B

CAN
Controller

SpW router
PCI

Target
PCI

DMA
PCI

Master
AHB

Status

PROM IO

Pad/PLL
controller

Clock gating
unit

Temperature
sensor

Timer
unit

GPIO
port

UART

Timer
units (4)

Bootstrap
GP register

TDP
controller

SPI
controller

LEON4

FPU

MMU L1

LEON4 F P U

MMU L1

Processor bus (128-bit)
Interrupt bus
Statistics

Master I/O bus (32-bit)
Slave I/O bus (32-bit)
Snoop interface

Debug bus (32-bit)
Memory bus (128-bit)
APB bus (32-bit)

LEON4 F P U

MMU L1

Figure 2: GR740 SoC micro-architecture.

4.1 The GR740 System-on-Chip
The GR740 is a radiation-hard system-on-chip designed as the
European Space Agency’s (ESA) Next Generation Microprocessor
and developed by Cobham Gaisler. This SoC is targeted at high-
performance general purpose processing, and is suitable for both
symmetric and asymmetric multiprocessing.

Architecture. TheGR740 device features a quad-core fault-tolerant
LEON4 SPARC V8 processor with a frequency of 250MHz, each
equipped with a double-precision IEEE-754 floating point unit and a
16 KB instruction and data caches. The SoC offers a 2MB write-back
L2 cache with memory access protection (fence registers), and eight
port SpaceWire router, 2x 10/100/1000 Mb Ethernet interfaces, and
a 33MHz PCI initiator/target interface. Different dedicated AMBA3

High-performance (AHB) buses for memory, processors, debug, and
IO. Finally, some modules of interest are: (1) the LEON4 Statistics
Unit, L4stat, used to count events in the LEON4 processor (the ar-
chitecture offers up to 16 registers to store hardware counters, and
the available counters are listed in the documentation of the board
[2]), (2) the AHB bus, and (3) the Temperature Sensor Controller, a
peripheral that provides an interface to the on-chip temperature
sensor. Figure 2 shows an overview of the micro-architecture of the
GR740. The colored parts are those that will be later involved in the
evaluation, and include: the 4 cores, the FPUs, the memory caches
L1 and L2, the four timer units, the statistics unit, the temperature
sensor, and the AMBA High-performance Bus (AHB).

Operating System and Tools. The GR740 runs, among others, a
Real-Time Executive for Multiprocessor Systems (RTEMS) Real-
Time Operating System (RTOS). Cobham Gaisler offers the RTEMS
LEON GNU Cross Compilation System (RCC) [8], a multi-platform
development system including a RTEMS-5.0 C/C++ real-time ker-
nel v5.1 with pre-compiled Board Support Packages (BSP) for Sym-
metric Multiprocessing (SMP) support. The fact that this OS was
designed for uniprocessors, makes its adaptation to SMPs a chal-
lenge. The ESA has dedicated important efforts to the improvement
and actual qualification of RTEMS SMP [36]. There are however
some modules that still do not support SMP in the GR740, like the
3The Advanced Microcontroller Bus Architecture (AMBA) is an open standard for the
connection and management of functional blocks in a system-on-chip.

https://github.com/bsc-performance-tools/extrae/tree/gr740
https://github.com/bsc-performance-tools/extrae/tree/gr740

Experiences on the characterization of parallel applications in embedded systems with Extrae/Paraver ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

statistics unit, the GPIO, and the SDRAM scrubber. This prevents
the use of these modules when running multi-threaded applica-
tions, and instrumented applications will not be able to extract any
information from them. Additionally, the GR740 incorporates the
L4stat driver, which is used to count events in the LEON4 processor
and the AHB bus. For the purpose of this work, we have used the
GCC compilation toolchain, and the GR740 BSP with SMP support.

4.2 Adapting Extrae: Challenges and Solutions
This section introduces the relevant challenges addressed during
the porting of Extrae to the GR740. This experience can be of great
help for those adapting tools from HPC to embedded systems.

4.2.1 Intercepting calls in a static system.
Vanilla Extrae is loaded before the system libraries required by the
application under analysis, including those responsible of the par-
allel execution, using a mechanism provided by the dynamic linker
on Unix systems through the LD_PRELOAD environment variable.
This mechanism allows intercepting calls to the runtime system
(e.g., GNU’s OpenMP runtime library) by defining the symbols to
be intercepted. Hence, when a function call is intercepted by Extrae,
it first takes performance measurements, and then bypasses the
call to the real implementation of the symbol found with the dlsym
method from libdl.

This mechanism is not available on statically linked binaries as
it is the case of the GR740, in which the final executable loaded
in the board includes the RTEMS OS and the application statically
linked. As a result, we can no longer rely on the dynamic wrapping
of runtime functions of Extrae. To recreate this behavior in a static
environment, we propose two different solutions:
(1) The use of the --wrap linker flag, which allows defining a wrap-

per function for a specific symbol. The principle is that any un-
defined reference to symbol will be resolved to __wrap_symbol,
and any undefined reference to __real_symbol will be resolved
to symbol. This mechanism allows users to define the list of
functions that are to be instrumented, boosting precision and
so possibly reducing overheads. However, it can become a bur-
den when the list is too long (e.g., instrumenting the libgomp
features, which have tens of calls including runtime routines
and API functions).

(2) The implementation of the wrapping logic in the compiler4,
so it can transform the calls to the runtime library into calls
to Extrae. This mechanism is much more transparent to the
user, and could still be tuned with input from the users if a flag,
similar to --wrap, was added to the compiler.
In both cases, the Extrae API has to be modified: in the for-

mer option, implementing the wrapped functions with the name
__wrap_function instead of function; in the latter option, imple-
menting the wrapped functions with the names agreed between
the compiler and Extrae. To solve this issue we are currently using
the GNU linker feature for wrapping, accessed via the --wrap flag,
because it does not require complex modifications, while providing
the full functionality.
4Compiler automatic instrumentation through the -finstrument-functions is not con-
sidered because it would require deeper changes in Extrae, as well as extra work on
the programmer to define the symbols that should not be instrumented, so the traces
have a reasonable size.

4.2.2 POSIX dependence.

The Extrae original sampling mechanism has a tight dependency
on the POSIX API, particularly of: (1) the setitimer function to define
an interval timer to each process, i.e., a timer which generates
a signal each time a specified time interval expires; and (2) the
ucontext structure, to gather thread context information such as
the program counter, as well as information about signals. These
features are typically defined in libc, the standard library for C
programming. There are several implementations of this standard,
targeting different operating systems, e.g., glibc [11] for Linux, and
newlib [42] for embedded systems, among others. Although the
libraries common in HPC systems (i.e., glibc) include the features
mentioned above, not all implementations satisfy this dependency.
This is the case of RTEMS and the newlib version for the GR740.

To overcome the lack of the mentioned features, we propose the
next solutions:
(1) Regarding the setitimer functionality, this could be implemented

following two different approaches: (1) use the hardware timers
available in the GR740 (purple boxes in Figure 2), through the
RTEMS API (e.g., rtems_timer_create, rtems_timer_fire_after),
and (2) use software interruptions with signal alarms defined in
the POSIX API and available in newlib (e.g alarm, ualarm). The
GR740 system handles hardware interrupts by a pseudorandom
CPU, so there is no guarantee all cores can be interrupted at
the same time using the four timers available in the SoC. On
the other hand, software alarms do not queue in RTEMS, hence
only one software alarm can be active per-process at the same
time (newer calls to an alarm from threads of the same process
will reschedule the alarm). Due to this behavior, the interrupted
core must be in charge of reading the state of the other cores
without stopping them. Since hardware interruptions tend to be
faster, we decided to use the hardware timers for this purpose.

(2) Regarding the ucontext functionality, particularly to retrieve the
information about the user functions, we propose two solutions:
(1) implement the missing features in the corresponding newlib
library (these could be ported from existing implementations
such as FreeBSD [20]); and (2) use the information from the
RTEMS Thread_Control structure associated to the thread ex-
ecuting the instrumented region. Seeking a trade-off between
complexity and functionality, we have chosen the second option.
This mechanism is however limited when the instrumentation
occurs through interruptions (i.e., when sampling is enabled).
This is so because only information about the user-function
being executed on the thread handling the interruption can be
restored. Nonetheless, even in this case, meaningful information
about hardware counters can still be gathered for all threads.

4.2.3 Retrieving function names.
Extrae uses the GNU’s Binary Utilities library collection [10], binu-
tils, particularly the Binary File Descriptor library, bfd, and libiberty
[12], to translate addresses into source code function names. This
functionality is fundamental for the readability of the traces, hence,
these libraries have to be ported to the target device. Luckily, Cob-
ham Gaisler provides both the libraries and a cross-compiler (see
Section 4.1 for details) that allows for generating the target version
straightforwardly.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Munera and Royuela, et al.

4.2.4 Trace generation.
Extrae stores events during the execution of the application, and
flushes the full trace at once at the end of the program, avoiding
interfering with the application as much as possible. The size of
the traces is proportional to the number of times an instrumented
event is executed, and the time the application is running. As a
consequence, trace files might be huge. This entails several issues
for the GR740 ecosystem:
(1) File size. The RTEMS OS defines in its headers the variable

IMFS_MEMFILE_DEFAULT_BYTES_PER_BLOCK, to allow defining
the maximum file size allowed in the system. This value is
originally determined in a preventive manner, set to a small
size in order to avoid possible memory fragmentation issues
(a typical problem of file systems). The OS can be recompiled
changing this value to tune it as desired.

(2) Buffer size. Currently, RTEMS only supports the NFS5 (Network
File System) version 2. This version limits the maximum size
of an on-the-wire NFS read or write operation to 8KB (8192
bytes). To overcome this limitation, Extrae has been modified
to write to disk the trace in smaller pieces so it can be safely
written through NFS v2. Particularly, it reduces the maximum
size of each write function call, so in case the maximum size is
exceeded the data is divided in smaller pieces.

(3) Heap size. Although the heap memory is bounded to the total
RAM of the device, it was artificially reduced by RTEMS in the
GR740. This is so because the OS allocated an extra workspace
area to store objects created by RTEMS itself, such as tasks,
semaphores, and message queues. To overcome this limitation,
we have configured the workspace area to be shared with the
heap, adding the environment variable provided by RTEMS
called CONFIGURE_UNIFIED_WORK_AREAS.

4.2.5 Supporting hardware counters.
The support for hardware counters depends on the target archi-
tecture (i.e., how many registers are built for storing hardware
counters, if any) and the driver that implements the access and man-
agement of the counters. Extrae relies on PAPI, a portable interface
in the form of a library available in most modern microprocessors,
to gather hardware performance counters information. In this con-
text, the best solution for porting the support for hardware counters
would be implementing a new component in PAPI, which will use
the target hardware counter driver (so Extrae remains unperturbed).
However, PAPI is neither supported for RTEMS nor for SPARC V8.

Although Extrae only supports PAPI, it has been conveniently
designed to easily add new software modules with the logic to
gather hardware counters other than PAPI. To that end, RTEMS
provides the L4stat driver, which allows to configure and access the
different hardware counters of the L4stat hardware module6, and
assign each one of them to an event and a core. Themodule provides
up to 16 configurable hardware counter slots that can be assigned

5The NFS system is needed to permanently store the traces because RAM is erased
after the execution of the application.
6The L4stat module of the GR740 is clockgated by default to save energy con-
sumption. To set it up, (1) the module has to be enabled manually using the
SoC debug tool GRMON, and the command line interface grcg, which config-
ures the clockgating module, and (2) the applications must define the variable
CONFIGURE_DRIVER_AMBAPP_GAISLER_L4STAT in order for the OS to initialize the
driver adequately.

to any core. In this scenario, we implemented hardware counters
support for the GR740 adding an extra module on Extrae that uses
the API provided by the L4stat driver instead of the PAPI API. The
usage of the hardware counters is defined by the environment
variable EXTRAE_COUNTERS, where the user can specify the id of
the hardware events to be gathered.

4.2.6 Statically defining the Extrae environment.
Extrae is originally configured via the XML file defined in the
EXTRAE_CONFIG_FILE environment variable. Migrating this mech-
anism to our system is costly because of three reasons: (1) it requires
cross-compiling libxml for the GR740, (2) it adds a new dependency
to Extrae, and (3) it forces reading an extra file through the NFS
system at initialization phase. For these reasons, we have used some
already defined environment variables to set up the configuration
of Extrae from the application, and we have added new ones, i.e.,
EXTRAE_SAMPLING_PERIOD, for defining the period of the sampling
mechanism, and EXTRAE_PROGRAM_NAME, for defining the prefix of
the resulting intermediate trace files (it is essential that the latter
matches the binary name, so binutils can find the binary copy and
translate the program addresses properly).

4.3 New in Extrae: Relating Performance and
Non-functional Information

Additionally to the porting, we have included three new function-
alities in Extrae to correlate information about the performance of
the parallel execution with the temperature, power consumption
and the memory usage. Moreover, we have enhanced Extrae with a
new feature for tracing communications in order to better visualize
the relationship between the amount of parallelism exposed and
exploited when the task-based programming model is used.

The GR740 temperature sensor. As shown in Figure 2, the GR740
SoC includes a sensor that provides information of the on-chip
temperature. However, the board’s software package does not
include a specific driver to interact with this module. Instead,
it implements a memory mapped peripheral that, according to
the documentation [6], uses three registers: (1) a control register,
used to initialize the peripheral, setting the desired frequency,
enabling the alarm and enabling the clock, (2) a status register,
used to store the current temperature, together with maximum
and minimum read values, and a field that indicates when a new
value is available, and (3) a threshold register, which holds the
maximum temperature value that triggers the alarm bit in the
control register. We have extended the Extrae hardware coun-
ters module to be able to manage this chip with a new event by
defining the initialize and read functions for the specific chip.

Power consumption. The GR740 does not include any hardware
performance counter to gather power consumption information.
Instead, Cobham Gaisler offers a spreadsheet [7] for computing
the core power consumption based on the configuration of the
SoC, e.g. clock rate, and information about the execution of
the application, e.g., CPUs usage. We have modified Extrae to
include in the execution trace all the information needed to
compute the power consumption based on the information given
in the mentioned spreadsheet and the efficiency of the parallel
execution.

Experiences on the characterization of parallel applications in embedded systems with Extrae/Paraver ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Memory consumption. Memory consumption is a critical aspect
in embedded systems due to the typically restricted constraints
they have. Particularly, stack and heap analysis are fundamen-
tal to ensure the system’s stability and reliability. In this sense,
we have implemented new support in Extrae to analyze the
use of the stack and heap memories in the GR740. This imple-
mentation relies on RTEMS, and uses information extracted
from the Thread_Start_information structure contained in the
Thread_Control associated to each executing thread to retrieve
the state of the stack, and information from the Heap_Control
structure, particularly the area_begin and area_end fields, to
retrieve the state of the heap. This new features allow two evalu-
ations: (1) relating the application and the parallel programming
model to the use of memory, and (2) bounding the amount of
memory used by the application, both partially and globally.

Task communication. The workloads of embedded applications
are smaller to those considered in HPC. As a result, the exploita-
tion of fine-grain parallelism is fundamental in embedded sys-
tems, especially when exploiting irregular parallelism with the
OpenMP task-based model. With the objective of better under-
standing if the amount of parallelism exposed by the application
is efficiently exploited by the underlying architecture or, on the
contrary, there are not sufficient resources to exploit it, we use
an experimental API of Extrae that allows for combining records.
It is based on a structure, called extrae_combined_events_t,
that holds a number of events and communications occurring
at the same point in time. In the OpenMP tasking model, com-
munications can be task creations, tasks dependencies, and task
synchronizations, among others. We focus on task dependen-
cies, which define a data-flow model among tasks that can be
characterized as a Task Dependency Graph (TDG), generated
at run-time (regular implementations), or at compile-time [40].
The TDG allows analyzing an application in terms of the amount
of parallelism exposed, defined by the width of the graph. The
information about the time a task has to wait although its de-
pendencies are already solved, provides information about the
amount of parallelism exploited, so the longer the time the less
parallelism is being exploited.

5 EVALUATION
This section shows the potential of the Extrae/Paraver tool-suite,
including the proposed modifications presented in Section 4.3. This
analysis has been performed in two applications parallelized with
OpenMP and executed on the GR740. It is important to remark that
the purpose of this section is not to perform a detailed analysis of
a particular application, but rather showing in an educative way,
how Extrae is useful to correlate the performance of the application
at the OpenMP parallel programming model level with informa-
tion about non-functional requirements, particularly temperature,
power consumption and memory usage.

5.1 Experimental Setup
Evaluations have been conducted on the GR740 [14] (see details in
Section 4.1), and Extrae has been ported to the board as explained

in Section 4.2. Furthermore, we have selected the following repre-
sentative applications7:
Image Processing, Proc this application from Airbus Defence and

Space (ADS) receives a stream of images purportedly from an
optical instrument. The application performs infinite iterations
of a loop that first reads a new image, and then applies a series
of pipelined phases over it. Each phase might use information
computed from previous phases, and even from previous itera-
tions (previous images). In the parallel version, four phases (the
ones consuming >90% of the total execution time) have been
parallelized using the OpenMP thread model, concretely using
parallel loops.

Matrix Factorization, LU This benchmark implements an LU de-
composition, typically used for numerical solution of linear equa-
tions. The application decomposes a four-dimensional sparse
matrix in four steps: lu0, fwd, bdiv, and bmod. We use two differ-
ent parallel versions of the benchmark: one using parallel loops,
LU-for, and other using tasks and dependencies for synchroniza-
tion LU-tasks.

5.2 Performance Analysis with Extrae
This section uses Extrae and Paraver to analyze the performance
and the non-functional requirements, and relates this data with the
OpenMP parallel programming model in the GR740.

5.2.1 Memory consumption.
To evaluate the new feature introduced in Extrae to analyze the
memory consumption, including information about the stack and
the heap, we consider the LU application parallelized with the
worksharing-loop construct.

Figure 3 relates the state of the application (3a), including the
fork/join and synchronization operations of the worksharing-loop
construct, and the call to malloc and free, with different views of
the memory, including stack (3b), amount of dynamically allocated
memory using malloc-like calls (3c), and the heap (3d). The stack
view reveals that the master thread, running in core 1, uses more
stack. This is because this thread holds the structures that are
common to all threads in the application. Although the variations
among the other threads and parts of the code are not significant,
this view allows to upper bound the use of stack in each part of
the application, which ranges between 1000 and 2000 bytes. The
dynamic allocation view (already provided by Paraver), allows to
know the amount of memory allocated and deallocated in each
moment. Furthermore, the newly introduced heap view, allows
for upper bounding the heap use and, together with the previous
view, characterizes the usage of the heap. This information is of
paramount importance due to the stringent memory constraints of
embedded systems, specially when dynamic memory is allowed.

5.2.2 Temperature and power consumption. This section focuses on
the evaluation of the new features introduced in Extrae to analyze:
(1) the temperature (using the GR740 temperature sensor) and (2)
the power consumption (using the CG spreadsheet) of the SoC. For

7The sources of the Proc application are not distributed due to confidentiality issues.
The sources of the LU benchmark are very similar to those provided in the Barcelona
OpenMP Task Suite (BOTS) [5].

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Munera and Royuela, et al.

(a) Paraver parallel functions view.

(b) Paraver stack view.

(c) Paraver dynamic (de)allocation view.

(d) Paraver heap view.

Figure 3: Analysis of the memory usage for the LU-for benchmark.

this purpose, we consider the LU application parallelized with the
worksharing-loop construct.

Figure 4 shows two views of Paraver, extracted from the same
execution of the LU benchmark, containing two types of Extrae
events: (top) the work-sharing view, showing when threads are ex-
ecuting a worksharing-loop construct, and (bottom) information
collected from the temperature sensor (as explained in Section 4.3).
In the top trace, red color indicates the core is working and white
color indicates the core is idle. The bottom trace plots the values
as a function line, and the y-axis shows the values of the function.
As the combined traces reveal, the temperature ranges between 53
and 54 degrees Celsius when parallel execution of the four cores
stabilize. Furthermore, as spotted with circles, when the parallel
execution cannot exploit all four cores, this has a downward im-
pact in the temperature. In some cases, however, as shown in the
shadowed circles, the temperature is not reduced. This is because
the temperature is stabilizing, and even though for a period of time
some cores are idle, the overall context of the execution forces the
temperature up.

Figure 5 shows two different Paraver views of the same Extrae
trace used previously for analyzing the temperature: (top) the useful
computation view, showing in blue the periods of time a core is

executing (i.e., actual time the CPU is working, not considering, for
example, the time a thread is blocked waiting for synchronization),
and (bottom) the power consumption view, showing the values of
power consumption inmW for each period of the trace (as explained
in Section 4.3). As emphasized in the trace, the power consumption
is directly related with the number of cores running at the same
time. The view clearly shows that most of the time, the consumed
energy is 1045,28mW (top line). To get an average value of the
power consumption, we use the efficiency histogram offered with
Paraver, which allows extracting the profile shown in Table 1. This
table summarizes the percentage of time each core is idle/running,
together with the total percentage and its average. This information,
used in the Cobham Gaisler spreadsheet, gives an average power
consumption of 944.5mW, as anticipated in the trace.

5.2.3 Task communications. To evaluate the amount of parallelism
exposed in the TDG with respect to the actual parallelism exploited,
we consider the LU application parallelized with the tasking model.
Figure 6 represents the TDG of the application. The width and
the height of the TDG are defined by the dependencies between
tasks: the height is determined by the critical path, and the width
is determined by the amount of parallelism exposed. Applications

Experiences on the characterization of parallel applications in embedded systems with Extrae/Paraver ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

Figure 4: Analysis of the temperature for the LU-for benchmarkwith Paraver: (top) useful parallel execution view, and (bottom)
temperature view.

1,045.28mW

864.42mW

683.57mW

502.72mW

Figure 5: Analysis of the power consumption for the LU-for benchmark with Paraver: (top) useful computation view, and
(bottom) power consumption view.

Table 1: Paraver efficiency profile for trace in Figure 5.

CPU idle CPU Running
1.rtems 11.53% 88.47%
2.rtems 14.08% 85.92%
3.rtems 11.44% 88.56
4.rtems 18.67% 81.33%
Total 55.72% 344.28%

Average 13.96% 86.07%

with a wider TDG might use better the processing resources, as
more parallel work can be done. Ideally, the width is maintained
across all layers of the TDG. Despite this, the width and the number
of resources available are tightly related: there is no benefit of
having more resources than the actual parallelism exposed (TDG
width), and there is also no benefit on exposing more parallelism
than actual resources.

Figure 7 shows a Paraver view of the LU benchmark with the
task constructs filter (each color represents a different task, match-
ing the colors in Figure 6) and the communications shown as yellow
lines. The flatter the communication lines, the longer the time a task
has to wait although its dependencies are already solved (notice
that the description shown in Paraver includes the amount of time
spent in the communication, as well as its type). We conclude that

lu fwd bdiv bmod

Figure 6: TDG of the LU-tasks benchmark.

the architecture does not fully exploit the parallelism exposed by
the LU benchmark: The GR740 features 4-cores, while the maxi-
mum amount of parallelism exposed is 9, as shown by the width of
the TDG presented in Figure 6.

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Munera and Royuela, et al.

Figure 7: Analysis of the parallelism exposed and exploited for the LU-tasks benchmark with Paraver: user tasks view with
communications.

(a) Sampling period: 10 ms.

(b) Sampling period: 250 ms. AHB utilization per cycle (top) and parallel user functions (bottom).

Figure 8: Analysis of the AHB utilization per cycle for different sampling periods for the Proc benchmark with Paraver.

5.2.4 The AMBA bus with sampling. This section further evalu-
ates the analysis capabilities of Extrae, by using the new sampling
mechanism, based on hardware interruptions of the Timer modules
available in the GR740 architecture, when executing the Proc appli-
cation. We take advantage of our new implementation using the
L4stat unit in the GR740 in order to analyze, based on sampling, the
utilization of the AMBA bus connecting the processors and the L2
cache (see details of the AHB bus in Figure 2). This is a specifically
interesting component of many embedded systems because it may
be a bottleneck for communications among cores, as well as for ac-
cessing the L2 level cache. Moreover, the AMBA bus is widely used
on a range of ASIC and SoC parts, allowing to apply this analysis
in many embedded processor architectures.

Figures 8a and 8b (top) show the same AHB Utilization per Cycle
view for two different sampling periods: 10ms and 250ms respec-
tively. The flags indicate the events, and the different colors are
a gradient expressed in the legend below the images: light green
color corresponds to values close to 0%, while dark-green colors
are above 0.5%. The trace with a period of 10ms does not add much
information compared to that of 250ms, while adds much more

overhead. Hence, for this application a period of 250ms is reason-
able. Furthermore, adding the parallel functions view, where each
color represents a different user task (user-function names are
anonymized due to confidentiality issues) allows us to relate each
parallel function with the use of the AHB processors bus.

6 CONCLUSIONS
The need for analysis tools for embedded systems that are able to
correlate parallel performance with non-functional requirements
at the parallel programming model level has been thoroughly moti-
vated in this paper. As a consequence, the paper represents a step
forward in the introduction of parallel programming models into
embedded systems by virtue of its contributions: (1) the analysis
of the constraints of embedded systems to be considered when
implementing/porting analysis tools for such systems; (2) the port-
ing of Extrae, a well-known tracing tool for HPC systems, to the
GR740 SoC; (3) the introduction of new features in Extrae/Paraver
to trace non-functional requirements (i.e, temperature, energy and
memory consumption);and (4) the evaluation of the new capabili-
ties of Extrae/Paraver when analyzing applications in the GR740

Experiences on the characterization of parallel applications in embedded systems with Extrae/Paraver ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

SoC. The work done exposes that the requirements for adapting
vanilla Extrae to a embedded system are a POSIX API, a standard
C library, and a GCC or LLVM toolchain. Other features like the
NFS could be replaced to other similar options like TFTP if it is not
available in the target system. Regarding the extra features added
to Extrae, each one has a different applicability depending on the
environment: (a) the temperature and power measurements are
applicable to only the GR740 with any OS, (b) the head and stack
memory measurements are applicable to any system with RTEMS,
and (c) the task communication instrumentation is applicable to
any system.

Overall, we conclude that the enhanced version of Extrae can
provide insightful information about the parallel performance of
embedded applications and correlate this information with the
non-functional requirements of the system. More importantly, the
combined use of Extrae and Paraver allow relating the different
levels of information (i.e., hardware, operating system and parallel
programming model) in a very user-friendly interface, making the
debugging and analysis process easier.

ACKNOWLEDGMENTS
This work has been partially funded from the HP4S (High Perfor-
mance Parallel Payload Processing for Space) project under the
ESA-ESTEC ITI contract№ 4000124124/18/NL/CRS.

REFERENCES
[1] Barbara Chapman, Lei Huang, Eric Biscondi, Eric Stotzer, Ashish Shrivastava, and

Alan Gatherer. 2009. Implementing OpenMP on a high performance embedded
multicore MPSoC. In International Symposium on Parallel & Distributed Processing.
IEEE, 1–8.

[2] Cobham Gaisler. 2019. Quad Core LEON4 SPARC V8 Processor Data Sheet.
https://www.gaisler.com/doc/gr740/GR740-UM-DS-2-3.pdf

[3] Benoit Dupont de Dinechin. 2015. Kalray MPPA®: Massively parallel processor
array: Revisiting DSP acceleration with the Kalray MPPA Manycore processor.
In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 1–27.

[4] Mathieu Desnoyers and Michel R Dagenais. 2006. The LTTng Tracer: A Low
Impact Performance and Behavior Monitor for GNU/Linux. In OLS (Ottawa Linux
Symposium). 209–224.

[5] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguade. 2009. Barcelona OpenMP Tasks Suite: A set of benchmarks targeting
the exploitation of task parallelism in OpenMP. In International Conference on
Parallel Processing. IEEE, 124–131.

[6] Cobham Gaisler. 2020. GR740 Data Sheet and User’s Manual. https://www.
gaisler.com/doc/gr740/GR740-UM-DS-1-10.pdf

[7] Cobham Gaisler. 2020. GR740 Power Calculator Spreadsheet. http://gaisler.com/
doc/gr740/GR740powercalculator.xlsx

[8] Cobham Gaisler. 2020. RTEMS Cross Compilation System (RCC). https://www.
gaisler.com/index.php/products/operating-systems/rtems

[9] Markus Geimer, Felix Wolf, Brian JN Wylie, Erika Ábrahám, Daniel Becker, and
Bernd Mohr. 2010. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22, 6 (2010), 702–719.

[10] GNU. 2020. Binutils. https://www.gnu.org/software/binutils/.
[11] GNU. 2020. The GNU C library (glibc). https://www.gnu.org/software/libc/.
[12] GNU. 2020. Libiberty. https://gcc.gnu.org/onlinedocs/libiberty/.
[13] Toshihiro Hanawa, Mitsuhisa Sato, Jinpil Lee, Takayuki Imada, Hideaki Kimura,

and Taisuke Boku. 2009. Evaluation ofmulticore processors for embedded systems
by parallel benchmark program using OpenMP. In International Workshop on
OpenMP. Springer, 15–27.

[14] Magnus Hijorth, Martin Aberg, Nils-Johan Wessman, Jan Andersson, Remy
Chevallier, Russel Forsyth, Rolad Weigand, and Luca Fossati. 2015. GR740: Rad-
hard Quad-core LEON4FT System-on-chip. In DAta Systems in Aerospace.

[15] Innovative Computing Laboratory, University of Tennessee. 2019. Performance
Application Programming Interface, PAPI. https://icl.utk.edu/papi/index.html

[16] Keil, An Arm® Company. 2019. µVision® IDE. http://www2.keil.com/mdk5/
uvision/

[17] Keil, An Arm® Company. 2019. ULINKplus Debug Adapter. http://www2.keil.
com/mdk5/ulink/ulinkplus/

[18] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm,
Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Mal-
ony, et al. 2012. Score-P: A Joint Performance Measurement Run-time Infras-
tructure for Periscope, Scalasca, Tau, and Vampir. In Tools for High Performance
Computing 2011. Springer, 79–91.

[19] Germán Llort, Antonio Filgueras, Daniel Jiménez-González, Harald Servat, Xavier
Teruel, Estanislao Mercadal, Carlos Álvarez, Judit Giménez, Xavier Martorell,
Eduard Ayguadé, et al. 2016. The Secrets of the accelerators unveiled: tracing
heterogeneous executions through OMPT. In International Workshop on OpenMP.
Springer, 217–236.

[20] Marshall Kirk McKusick, George V Neville-Neil, and Robert NM Watson. 2014.
The design and implementation of the FreeBSD operating system. Pearson Educa-
tion.

[21] Nick Mehta. 2013. Xilinx ultrascale architecture for high-performance, smarter
systems. Xilinx White Paper WP434 (2013).

[22] Sparsh Mittal. 2019. A Survey on optimized implementation of deep learning
models on the NVIDIA Jetson platform. Journal of Systems Architecture (2019).

[23] OpenMP ARB. 2018. OpenMP Application Program Interface, version 5.0. https:
//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf.

[24] Percepio. 2019. Tracealyzer. https://percepio.com/tracealyzer/
[25] Robert Schone, Ronny Tschuter, Thomas Ilsche, Joseph Schuchart, DanielHack-

enberg, Wolfgang E. Nage. 2017. Extending the Functionality of Score-P Through
Plugins: Interfaces and Use Cases. Tools for High Performance Computing (2017).

[26] Sara Royuela, Alejandro Duran, Maria A Serrano, Eduardo Quiñones, and Xavier
Martorell. 2017. A Functional Safety OpenMP* for Critical Real-Time Embedded
Systems. In International Workshop on OpenMP. Springer, 231–245.

[27] Michael Schmid, Florian Fritz, and JuergenMottok. 2019. Parallel Programming in
Real-Time Systems. In 32nd International Conference on Architecture of Computing
Systems. VDE, 1–7.

[28] SEGGER. 2019. J-Trace Streaming Trace Proves. https://www.segger.com/
products/debug-probes/j-trace/

[29] SEGGER. 2019. SystemView. https://www.segger.com/products/development-
tools/systemview/

[30] Maria A Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko
Bertogna, and Eduardo Quinones. 2015. Timing characterization of OpenMP4
tasking model. In 2015 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES). IEEE, 157–166.

[31] Maria A Serrano, Sara Royuela, and Eduardo Quiñones. 2018. Towards an
OpenMP specification for critical real-time systems. In International Workshop
on OpenMP. Springer, 143–159.

[32] Harald Servat, Germán Llort, Juan González, Judit Giménez, and Jesús Labarta.
2015. Low-Overhead Detection of Memory Access Patterns and Their Time
Evolution. In Euro-Par 2015: Parallel Processing. 57–69.

[33] Sameer S. Shende and Allen D. Malony. 2006. The TAU Parallel Performance
System. International Journal of High Performance Computing Applications 20, 2
(2006), 287–311.

[34] Rapita Systems. 2019. Products. https://www.rapitasystems.com/products
[35] Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. 2018. Unleashing

Fine-grained Parallelism on Embedded Many-core Accelerators with Lightweight
OpenMP Tasking. IEEE Transactions on Parallel and Distributed Systems 29, 9
(2018), 2150–2163.

[36] The European Space Agency. 2017. RTEMS-SMP Improvement for LEON multi-
core. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/
Software_Systems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-
core

[37] BSC Performance Tools. 2019. Extrae. https://tools.bsc.es/extrae
[38] BSC Performance Tools. 2019. Paraver. https://tools.bsc.es/paraver
[39] BSC Performance Tools. 2019. Paraver Trace File Description. https://tools.bsc.

es/doc/1370.pdf
[40] Roberto E. Vargas, Sara Royuela, Maria A Serrano, Xavi Martorell, and Eduardo

Quiõnes. 2016. A lightweight OpenMP4 run-time for embedded systems. In 2016
21st ASP-DAC. IEEE, 43–49.

[41] Angelo Nery Crestani Vieira, Paulo Silas Severo de Souza, Wagner Santos dos
Marques, Marcelo Silva da Conterato, Tiago Coelho Ferreto, Marcelo Caggiani
Luizelli, Arthur Francisco Lorenzon, Antonio Carlos S Beck Filho, Fábio Diniz
Rossi, and Jorji Nonaka. 2019. The Impact of Parallel Programming Interfaces on
the Aging of a Multicore Embedded Processor. In International Symposium on
Circuits and Systems. IEEE.

[42] Corinna Vinschen and Jeff Johnston. 2020. Newlib. https://sourceware.org/
newlib.

[43] Michael Wagner, Germán Llort, Estanislao Mercadal, Judit Giménez, and Jesús
Labarta. 2017. Performance Analysis of Parallel Python Applications.. In ICCS.
2171–2179.

[44] Matthias Weber, Ronny Brendel, Michael Wagner, Robert Dietrich, Ronny
Tschüter, and Holger Brunst. 2017. Visual Comparison of Trace Files in Vampir.
In Programming and Performance Visualization Tools. Springer, 105–121.

https://www.gaisler.com/doc/gr740/GR740-UM-DS-2-3.pdf
https://www.gaisler.com/doc/gr740/GR740-UM-DS-1-10.pdf
https://www.gaisler.com/doc/gr740/GR740-UM-DS-1-10.pdf
http://gaisler.com/doc/gr740/GR740powercalculator.xlsx
http://gaisler.com/doc/gr740/GR740powercalculator.xlsx
https://www.gaisler.com/index.php/products/operating-systems/rtems
https://www.gaisler.com/index.php/products/operating-systems/rtems
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/libc/
https://gcc.gnu.org/onlinedocs/libiberty/
https://icl.utk.edu/papi/index.html
http://www2.keil.com/mdk5/uvision/
http://www2.keil.com/mdk5/uvision/
http://www2.keil.com/mdk5/ulink/ulinkplus/
http://www2.keil.com/mdk5/ulink/ulinkplus/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://percepio.com/tracealyzer/
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/debug-probes/j-trace/
https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/products/development-tools/systemview/
https://www.rapitasystems.com/products
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Syst ems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Syst ems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Syst ems_Engineering/RTEMS-SMP_Improvement_for_LEON_multi-core
https://tools.bsc.es/extrae
https://tools.bsc.es/paraver
https://tools.bsc.es/doc/1370.pdf
https://tools.bsc.es/doc/1370.pdf
https://sourceware.org/newlib
https://sourceware.org/newlib

	Abstract
	1 Introduction
	2 Related Work
	3 The Importance of Characterizing the Parallel Programming Model
	3.1 OpenMP: Characterization Aspects
	3.2 A Glance at Analysis Techniques
	3.3 Analysis Tools: Extrae/Paraver

	4 From HPC to Embedded Systems: Accommodating Extrae to GR740
	4.1 The GR740 System-on-Chip
	4.2 Adapting Extrae: Challenges and Solutions
	4.3 New in Extrae: Relating Performance and Non-functional Information

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Analysis with Extrae

	6 Conclusions
	Acknowledgments
	References

