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Abstract. Vectorial mechanics and analytical mechanics are two time-honored forms of 
classical mechanics. Vectorial mechanics is mainly based on Newton’s laws in a clear and 
simple mathematical form. It has achieved a high degree of sophistication and success in solid 
mechanics. Analytical mechanics is based on the principle of virtual work and D'Alembert’s
principle, which is highly universal. Often, the term vectorial mechanics is applied to the form 
based on Newton's work, to contrast it with analytical mechanics which uses two scalar
properties of motion, the kinetic and potential energies, instead of vector forces, to analyze the 
motions. Analytical mechanics was primarily developed to extend the scope of classical 
mechanics in a systematic, generalized and efficient way to solve problems using the concept 
of constraints on systems and path integrals. In this paper, we give a functional of fluid in 
Lagrangian form. Then we demonstrate that the momentum equations of incompressible 
viscous flow can be achieved after several mathematical operations. At last, we show the 
Eulerian approximation of the energy functional under some assumptions. Our work lays a
good foundation for our numerical methods.

1 INTRODUCTION
As well as in solid mechanics, there are also two time-honored approaches in 

hydrodynamics, namely, vectorial mechanics and analytical mechanics. Vectorial mechanics 
is mainly based on Newton’s laws in a clear and simple mathematical form. Due to Newton’s
contribution to mechanics, vectorial mechanics has achieved an overwhelming advantage to 
analytical mechanics. The reference [1] gives several reasons why vectorial mechanics is 
preferred by engineers. In contrast to vectorial mechanics, analytical mechanics is based on 
the principle of virtual work and D'Alembert’s principle, which are highly universal. That is, 
if one more physical effect is to consider, just incorporate the corresponding energy into the 
total energy functional. With the development of FEM (finite element method), analytical 
mechanics has been widely used in solid mechanics. However, there is relatively less 
scientific research on variational principles of incompressible viscous flow. In hydrodynamics, 
the study of variational principles lags behind although several researchers have studied the 
variational principles in fluid mechanics [3, 4, 5, 6]. As Chien Wei-zang [2] stated, most of 
the work were focusing on inviscid flow and external flow. Based on the weak form of the 
momentum equations for incompressible flow, Chien Wei-zang[2] established an energy 
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functional in Eulerian form. Unfortunately, he gave an integral formulation for the terms 
corresponding the convective terms without the specific functional. Lu Wentang [1] 
developed a functional in Lagrangian form and showed the equivalence to incompressible 
viscous flow based the principle of least action. In his paper, the work done by the viscous 
force is evaluated along the path line of a fluid particle, which is relatively difficult to use in 
numerical methods. Due to the convective terms in the equations of incompressible viscous in 
Eulerian form, the symmetry would not exist and the equations can often become unstable if 
the Galerkin method is used. That is, when the incompressible flow problems are solved by 
the standard Galerkin method which employs the equal order basis for the velocity and 
pressure field, we will not be able to obtain simultaneously the satisfactory results for velocity 
and pressure [8]. Zienkienwicz [7] proposed the CBS (characteristic-based split) algorithm to 
circumvent the BB restrictions. So, it is essential to establish a more meaningful and practical 
functional. It is just what we are trying to do in the present paper.

The outline of the present paper is arranged as follows. First, we will develop a functional 
for incompressible viscous flow in Lagrangian form. Every term in the energy functional 
stands for a more physical meaning. We will also demonstrate its equivalence to the 
momentum equations of incompressible viscous flow using the Lagrangian equations. Once 
this is done, the Eulerian approximation to the Lagrangian energy functional will be given in 
section 3.  In section 4, several conclusions will be drawn.   

2 THE ENERGY FUNCTIONAL IN LAGRANGIAN FORM
Let

,

1
2
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k i i b i i ij i j

v ij ij p i i f i i

v v d pu n dS u n dS

d pu d f u d

ρ τ

τ ε
Ω ∂Ω ∂Ω

Ω Ω Ω

∏ ≡ ∏ +∏ +∏ +∏ +∏

∏ ≡ Ω ∏ ≡ − +

∏ ≡ Ω ∏ ≡ Ω ∏ ≡ Ω

∫ ∫ ∫

∫ ∫ ∫
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where Ω is an arbitrary system full of material points, ∂Ω is the boundary of the domain , X
are the curvilinear coordinates attached to the material while x are the spatial coordinates,

( )( ); ;i iu u t t= x X and ( )( ); ;i iv v t t= x X are components of the displacement and velocity of 
material point X at time t respectively, p is the pressure, ijε and ijτ are the strain and stress 
respectively, if is the body force (per unit volume), in is the unit outwards normal vector to 
the boundary. In incompressible flow, the density ρ is assumed constant and the velocity iv
is subjected to the following constraints

 , 0i iv =  (2) 

The boundary consists of two kinds of boundaries, namely velocity boundary 1S and stress 
boundary 2S . The conditions for velocity iv and traction it are introduced as follows:

 ( ){ }
1

, , 2

ˆ

ˆ
i i

i ij i j j i j i

v v on S

t p v v n t on Sδ µ

=

= − + + =
 (3) 

where the superposed＾denotes the functions which are given on the boundary.
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In addition, the initial conditions consist of specifying the values of velocity and pressure 
at the initial time:

 
( ) ( ) ( )
( ) ( ) ( )

0

0

,0

,0
i i i i

i i

v x v x

p x p x

=

=
 (4) 

The Lagrangian law states that the motion of a system subjected to complete constrains is 
governed by the following equations:

 ( )1,2, ,k
k k

d T T Q k N
dt q q
 ∂ ∂

− = = ∂ ∂ 



 (5) 

The above equations are called Lagrangian equations. Effectively, the Lagrangian law is 
also applied to a continuum. Now we will show how to get the momentum equation using the 
Lagrangian law.

2.1 Kinetic energy

Considering that the density ρ is constant, we know

,
k i

i j i j
i

vd d v d d v v d
dt v dt t

ρ ρ ρ
Ω Ω Ω

 ∂∏ ∂
= Ω = Ω+ Ω ∂ ∂ 

∫ ∫ ∫  (6) 

In the above equation, the Reynolds theorem and law of mass conservation are used.

2.2 Pressure energy

Given the Guass’s theorem, the energy p∏ can be written in the following form

, . , ,= ( )p i i i i i i i i i ipu d pu d p u d pu n dS p u d
Ω Ω Ω ∂Ω Ω

∏ Ω = Ω− Ω = − Ω∫ ∫ ∫ ∫ ∫  (7) 

2.3 Viscous energy
For Newtonian fluid, the work done by the viscous stress can be achieved by the following 

formulation

, , , ,

, , , ,

,

=v ij ij i j i j i j j i
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∫ ∫

 (8) 

where µ is the dynamics viscosity.

2.4 Summary of the equations

Substituting k∏ , p∏ , v∏ , b∏ and f∏ into the Lagrangian equations, we get

 , , , 0i
j i j i ij j i

v d v v d p d d f d
t
ρ ρ τ

Ω Ω Ω Ω Ω

∂
Ω+ Ω+ Ω− Ω− Ω =

∂∫ ∫ ∫ ∫ ∫  (9) 

1047



Shihai Li, Ningning Li and Wenjie Duan.

4

Considering that theΩ is arbitrary, the momentum equations of incompressible flow can be
achieved as shown

 , , , 0i
j i j i ij j i

v v v p f
t

ρ ρ τ∂
+ + − − =

∂
 (10) 

The above equation (10) or (11) is completed with the boundary conditions (2) and initial 
conditions (3).

3 AN EULERIAN APPROXIMATION TO THE ENERGY FUNCTIONAL

For any time interval [ ],Tτ , there is a one-to-one transformation as shown

 
( )
( )

= ;t

= ;τ

x x X

X x X
 (11) 

Therefore, the velocity of fluid particle X is given by

 ( )( ) ( );
; ;

t
v t t

t
∂

=
∂

X

x X
x X  (12) 

Based on the work of Duarte [9], we can build an approximation to x as follows
 ( ) ( )( ); ;t τ τ τ= + −x X v x X  (13) 

It can be easily shown that this approximation will result in a first-order error of ( )O t τ− .
For simplicity, we introduce a general variable ϕ . We denote τΩ and tΩ , respectively , as 

the spatial domain occupied by a definitive system of fluid particles at time τ and t . Hence, 
we can obtain
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Given the Guass’s theorem and the constraint of incompressibility, we can get the following 
approximation
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From the viewpoint of numerical methods, the Equation (16) is always rewritten as

 ( )( ) ( ) ( )
,

,

; ; + k kt
t
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X X Xx X

x X (16) 
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In principle, b∏ should be expressed in Eulerian form. However, we still evaluate the 
integral over τΩ instead of tΩ since  the time interval t T τ∆ = − is always sufficiently small.  
For the same reason, the second term on the right-hand side of Equation (12) is also ommitted. 
Hence, we obtain the Eulerian approximation to the energy functional:
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Using the Lagrangian equations on the Eulerian energy functional, we will get the 
momentum equations:
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Inside the integration domain, the momentum equations can be obtained as follows
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On the boundaries, the momentum equations satisfy:
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4 CONCLUSIONS
In this article, we give an energy functional of fluid in Lagrangian form and demonstrate 

the equavalence to the equations of incompressible viscous flow. In addition,  under several 
assumptions, an approximation of the functional in Eulerian form is established. This 
functional lays a good foundation to develop a new numerical method of incompressible 
viscous flow.
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