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Abstract. Interfaces are formed e.g. by the contact surface of different materials of het-
erogeneous solids or by crack flanks within damaged bodies. Since the combination of
temperature evolution and mechanical loadings influences significantly the deformation
and thermal behavior of interfacial layers, these failure layers are thermally and mechan-
ically described in the presented approach in a fully coupled sense. Thermomechanical
interface descriptions can be used for prediction of crack propagation and, as soon as a
designated failure layer exists, to predict the thermomechanical behavior of the observed
solid. The presented interface approach for finite deformation introduces a consistent
framework derived from principle thermodynamical laws.

1 INTRODUCTION

Interfacial layers are caused by e.g. the manufacturing process of heterogeneous solids,
where they determine a designated failure layer between the different components of
such a solid. Also crack flanks in homogeneous bodies determine an interface. In order
to predict crack propagation within homogeneous solids or within heterogeneous solids,
thermomechanical interface descriptions can be used (see [1]). The presented framework is
introduced in a spatial setting of the thermodynamical balance equations. Consequently,
the true mechanical and true thermal quantities are constitutively described. Bonds
between the opening flanks are the main phenomena of a separation process. The trans-
mission of tractions and heat is constitutively described in terms of elastic and inelastic
thermomechanical behavior. The mechanical part of the material description is obtained
by considering the equilibrium of forces within the bonds between the interface surfaces,
while the thermal part of the constitutive formulations is derived from the balance of
thermal energy within the interface. Finally, numerical examples are shown in order to
demonstrate the capabilities of the element formulation.
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2 KINEMATICS OF INTERFACES

Consider B as the observed solid body having different subbodies Bi, for which Bi ⊂ B
holds. Let ϕ : B × R3 → R3 be the nonlinear deformation map of B at material point
X ∈ B and time t ∈ R. Therewith, ϕ maps points X ∈ B onto points x = ϕ(X, t).
F := ∂

X
ϕ(X, t) is the deformation gradient with the Jacobian J := det [F ] > 0. The

velocity field is given with ϕ̇ = v = ∂tϕ(X, t) and defines the spatial velocity gradient
l := ∂

x
ϕ̇(X, t). In terms of an interface between two subbodies Bi and Bk, the boundaries

∂Bi ⊃ Ω and ∂Bk ⊃ Ω are piecewise identical along the connective interface Ω ⊂ B. The
opening displacement between two points (+) ∈ Ω and (−) ∈ Ω can be described by the
opening vector ∆ = x+ − x−, where x+ ∈ Bi and x− ∈ Bk. The related points are
initially connected having the same coordinates X+ ∈ Bi , X− ∈ Bk at Ω+

ref and Ω−

ref .
Both points start to seperate as soon as the bonding between them is smaller than its
connective forces. The unified kinematics of not separating into tangential and normal
directions are firstly introduced in [2].

3 THERMOMECHANICS OF AN INTERFACE AND RELATED FINITE
ELEMENT EQUATIONS

In the following section, the continuum balance principles of linear momentum and en-
ergy are extended to the interfacial description. The expressions have to be supplemented
by additional boundary terms related to Ω.

3.1 Mechanical equlibrium

The balance of linear momentum

ρv̇ = ρb + div(σ) (1)

represents the mechanical equilibrium condition of any deformation process. The Galerkin
method is applied on its spatial form

∫

B

δu · div(σ) dv −

∫

B

δu · (ρü − ρb) dv = 0 , (2)

where δu is a test function, satisfying δu := {δu ∈ B0|δu = 0 on ∂B0u
}. Since the Cauchy

stresses are symmetric and the divergence theorem div(σδu) = div(σ) ·δu+σ : grad (δu)
as well as the Gauss theorem holds, one can express Eq. (2) as

∫

B

σ : grad (δu) dv −

∫

∂B

(σδu) · n da+

∫

B

δu · (ρü − ρb) dv −

∫

Ω+

δu+ · t+dΩ+ −

∫

Ω−

δu− · t−dΩ− = 0 . (3)
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The boundary term of Eq. (3) contains the external tractions (σδu)·n = δu·(σn) = δu·te.
Together with the body forces b as well as the inertia term ρü, the external forces are
represented. The integrals over Ω+ and Ω− are the contributions coming from the opening
interface. The test function δu+ is defined at Ω+ and the test function δu− is defined
at Ω−. Subsequently, Eq. (3) has to be discretized, using e.g. linear ansatz functions
N(ξ) for the shape of the elements, according to the isoparametric concept of the finite
element method with local coordinates ξ. The displacement field u = x−X is discretized
according to u = N(ξ)dE, where dE denotes the nodal displacements of one element.
The test function is also discretized by δu = N (ξ)δdE. The gradient of the test function
is discretized by grad(u) = ∂xN(ξ)dE = B(ξ)dE. Now, the finite element equations of
the discretized equilibrium condition can be formulated

GM =
N

A
E=1




�

BE

BT σ dv +




�

BE

NT ρN dv


 d̈

E
−

�

BE

NT (ρb) dv −

�

∂BE

NT te da

−

�

Ω+

E

NT
Ω+t+dΩ+ −

�

Ω−

E

NT
Ω−t−dΩ−


 (4)

=
N

A
E=1

�
fE

int + mEd̈
E
− fE

ext − fE
ifc

�
= 0 . (5)

The test function defined at the boundaries Ω+ and Ω−, are discretized by

δu+ = N(ξ1, ξ2, ξ3 = +1)δdE (6)

= NΩ+δdE (7)

δu− = N(ξ1, ξ2, ξ3 = −1)δdE (8)

= NΩ−δdE . (9)

3.2 Thermal equilibrium

Before dealing with the thermal equilibrium, an evolution equation for the temperature
is needed. This property can be obtained by the following briefly described steps. Starting,
the spatial description of dissipation is defined ργθ ≥ 0. The dissipation has to be
additively split into local (Dloc) and conductive (Dcon) parts, D = Dloc + Dcon. It is
common to require a strict positiveness for both parts. Therefrom, the Clausius-Planck
inequality

Dloc := ρθη̇ − ρr + div(q) ≥ 0 , (10)

is introduced. One can incorporate the spatial energy balance

ρė = σ : (gl) + ρr − div(q) (11)
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into Eq. (10) resulting in

Dloc := ρθη̇ − ρė + σ : (gl) ≥ 0 . (12)

Following, the Helmholtz free energy ψ has to be defined through the partial Legendre
transformation ψ := e − θη, which implies certain dependencies of the Helmholtz free
energy. One can consider a homogeneous inelastic material, where the free energy ψ =
ψ(g,F , θ, G,I) is a function of the temperature gradient G, the deformation gradient F ,
the absolute temperature θ and a set of internal variables I. The spatial metric g is needed
in order to map deformation measures onto the reference configuration. Consequently,
the time derivative of the free energy reads

ψ̇ = ∂
F
ψ : Ḟ + ∂θψ · θ̇ + ∂Iψ : İ + ∂Gψ : Ġ . (13)

Using the Legendre transformation, the time derivative of the internal energy yields the
form

ė := ψ̇ + θ̇η + θη̇ . (14)

Incorporating Eq. (14) into Eq. (12) results in

σ : (gl) − ρψ̇ − ρηθ̇ ≥ 0 . (15)

Next, the time derivative of the free energy (Eq. (13)) has to be plugged into Eq. (15).
Using the definition of the spatial velocity gradient l = Ḟ F−1 and the conservation of
mass, J · ρ = ρ0 as well as the relation between Cauchy and first Piola-Kirchhoff stress,
σ = 1/J · PF T , the resulting thermodynamic restriction is defined as

[gP − ρ0∂F
ψ] : Ḟ − ρ0 [η + ∂θψ] · θ̇ − ρ0

[
∂Gψ

]
: Ġ − ρ0 [∂Iψ] : İ ≥ 0 . (16)

Following [3, 4], the thermodynamic restriction should be fulfilled for an arbitrary rate of
deformation gradient, temperature and temperature gradient, which yields in Eq. (16),

ρ0∂F
ψ = gP , (17)

η = −∂θψ , (18)

∂Gψ = 0 . (19)

Considerung Eqs. (17), (18) and (19), Eq. (10) reduces to

Dloc := −ρ0∂Iψ : İ ≥ 0 . (20)

Furthermore, inserting Eq. (13) into Eq. (14) reads

ė = ∂
F
ψ : Ḟ + ∂θψ · θ̇ + ∂Gψ︸︷︷︸

=0

: Ġ + ∂Iψ : İ + ηθ̇ + θη̇ . (21)
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Inserting this expression into the balance of energy, under the use of Eqs. (17), (18) and
(19), the balance of entropy equation

ρθη̇ = −ρ · [∂Iψ] : İ + ρr − div q (22)

is obtained. The last step is the insertion of the rate of entropy

η̇ = −∂2
θθψ · θ̇ − ∂2

Fθψ : Ḟ − ∂2
Iθψ : İ (23)

into Eq. (22). Under consideration that the heat capacity is defined as c = −θ · ∂2
θθψ, the

transient heat conduction equation

ρcθ̇ = − div(q) + ρr + ρ ·
[
θ · ∂2

Fθψ
]

: Ḟ︸ ︷︷ ︸
wext

− ρ ·
[
∂Iψ − θ · ∂2

Iθψ
]

: İ︸ ︷︷ ︸
wint

(24)

is formulated. Furthermore, one has to apply the Galerkin method to the transient heat
conduction equation in order to achieve the finite element equations. Therefore, Eq. (24)
is multiplied with an arbitrary test function δθ satisfying δθ := {δθ ∈ B0|δθ = 0 on ∂B0θ

}.
The integration over the current volume yields

∫

B

δθρcθ̇ dv −

∫

B

δθρr dv +

∫

B

δθ div(q) dv −

∫

B

δθwext dv +

∫

B

δθwint dv = 0 . (25)

The divergence theorem (δθ div(q)) = (div(δθq)) − (grad (δθ) · q) can be applied and,
together with the Gauss theorem, results in

∫

B

δθρcθ̇ dv −

∫

B

δθρr dv +

∫

∂B

δθ · (q · n) da −

∫

B

grad (δθ) · q dv −

∫

B

δθ · wext dv+

∫

B

δθ · wint dv +

∫

Ω+

δθ+ · (q+ · n+ − w+)dΩ+ +

∫

Ω−

δθ− · (q− · n− − w−)dΩ− = 0 . (26)

The external thermal conduction energy (q · n) = he is identified as the boundary term.
The additional contributions at the boundaries Ω+ and Ω− have to be considered, since
they are caused by the opening crack flanks. The thermal conduction energies h+ = (q+ ·
n+) and h− = (q− ·n−), as well as the power terms w+ = w+

ext−w+
int and w− = w−

ext−w−

int

describe the energy of the surfaces Ω+ and Ω−, since they are originated in heat flux and
power terms of the bonds between the opening flanks. Furthermore, the temperature
field is discretized as θ = N θ(ξ)θE, as well as the test function δθ = N θ(ξ)δθE. The test
function defined at the boundaries Ω+ and Ω−, are discretized by

δθ+ = N θ(ξ1, ξ2, ξ3 = +1)δθE (27)

= N
θΩ+δθE (28)

δθ− = N θ(ξ1, ξ2, ξ3 = −1)δθE , (29)

= N
θΩ−δθE . (30)
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(a) Equilibrium of forces (b) Balance of thermal conduction en-
ergy

Figure 1: Schematical description of a bond of an opened interface element

Finally, one can formulate the finite element equations of the thermal equilibrium

GT =
N

A
E=1




�

BE

NT
θ ρcθ̇ dv −

�

BE

NT
θ r dv +

�

∂BE

NT
θ he da

−

�

BE

BT
θ q dv −

�

BE

NT
θ wext dv +

�

BE

NT
θ wint dv

+

�

Ω+

E

NT

θΩ+ (q+ · n+ − w+)dΩ+ +

�

Ω−

E

NT

θΩ− (q− · n− − w−)dΩ−


 = 0 . (31)

4 THERMAL ENERGY AND TRACTION-SEPARATION-LAW (TSL)

After having derived the finite element equations, the constitutive descriptions of an
interface can be defined. The main mechanism of debonding is the development of con-
nective bonds between opening interface surfaces as depicted in Fig. 1. In order to have
equilibrium of forces (see Fig. 1(a)) within the interface element, t+ := −t · J+

A and
t− := +t · J−

A are introduced. The traction quantities t+ and t− can have different val-
ues on the opposite surfaces Ω+ and Ω−, since in general different changes of the area
of these surfaces are allowed. This is achieved by scaling the current tractions t ac-
cording to the change of their related differential area. The area change is described by
J+

A = dΩ+
ref/dΩ+ and J−

A = dΩ−

ref/dΩ− and can be generally determined from the area

map n da = JF−T N dA and the current normal definition n = F−T N , that leads to the
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expressions

n da =JF−T N dA = Jn dA , (32)

JA =
dA

da
=

1

J
. (33)

Therewith, the condition for the equilibrium of forces

f+ = − f− , (34)
∫

Ω+

t+dΩ+ =

∫

Ω−

t−dΩ− (35)

is fulfilled for the same initial area Ωref of both surfaces. It is possible to think of the
current traction vectors t+ and t− as Cauchy tractions at the crack surfaces, while the
transformation with J+

A and J−

A results in Kirchhoff tractions +t and −t. This transfor-
mation yields a change of the integration areas, while evaluating the reaction forces at
the ends of a delamination bond (compare Fig. 1(a)).

Considering an opened crack within the observed body B, the crack surfaces as well
as the bonds between them undergo different thermal conduction and convection mech-
anisms, respectively. The thermal convection at the crack surfaces, that transfers heat
between the subbodies Bi and the surrounding environment is not considered in the
proposed element formulation. The thermal conduction through the connective bonds
between the crack surfaces is denoted by a zero sum of the total heat in- and outflux of
the Ω+ and the Ω− surfaces, due to a zero loss or gain of thermal heat flux energy on an
interface element. Therefore, the balance of thermal conduction energy (see Fig. 1(b)) is
obtained according to

h+ = − h− , (36)
∫

Ω+

(
q+ · n+

)
dΩ+ =

∫

Ω−

(
q− · n−

)
dΩ− . (37)

The balance condition in Eq. (37) can be fulfilled for (q · n)+ := −(q · n) · J+
A and

(q·n)− := (q·n)·J−

A . Similiar to the traction quantities t+ and t−, the thermal conduction
quantities (q · n)+ and (q · n)− are spatial objects. The constitutive descriptions of the
introduced quantitties t+, t− and (q ·n)+, (q ·n)− are given in the following subsections.

4.1 Traction-separation-laws

The tractions are defined as t+ := −t · J+
A and t− := +t · J−

A . The relation between
the spatial tractions t and current separation ∆ can be obtained from a TSL-potential.

7
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4.1.1 Elastic TSL-potential

The proposed elastic potential is an extension of the one in [5] and it is defined per
unit reference area. The specific form of the proposed potential reads

Φ(∆, [[θ]]) := φ −
φ

δ
(�∆� + δ) exp

(
−
�∆�

δ

)
−

1

2
αt

φ

δ2
[[θ]] �∆�2 , (38)

where φ is a material parameter, representing the work or energy of separation, δ is a
characteristic opening length and αt is the thermal expansion coefficient. To derive the
TSL, the derivative ∂

∆
Φ(∆, [[θ]]) is needed. In case of Eq. (38), it reads

t(∆, [[θ]]) = ∂
∆

Φ(∆, [[θ]]) =
φ

δ2
exp

(
−
�∆�

δ

)
∆ − αt

φ

δ2
[[θ]]∆ . (39)

4.1.2 Inelastic TSL-potential

The inelastic traction separation law is derived from a viscoelastic potential Φ =
Φe(θ,∆) + Φv(θ,∆,∆v), that consists of an elastic Φe part and a viscous Φv part. The
total separation ∆ = ∆e + ∆v is split into an elastic and a viscous part. Consequently,
the total tractions are determined by an addition of the elastic and viscous tractions,
t = te + tv. The elastic part Φe(θ,∆) of the TSL potential reads

Φe (∆, θ) = φ −
φ

δ
(�∆� + δ) exp

(
−
�∆�

δ

)
exp

(
−ϑ

θb

)
. (40)

Similar to Eq. (38), φ denotes the work of separation and δ is the characteristic opening
length. The change of the temperature ϑ = θr − θ relative to the reference temperature
θr at the middle of the interface is related to characteristic temperature θb at the middle
of the interface. The viscous part of the inelastic TSL is given as

Φv (∆,∆v, θ) =
1

2
β

φ

δ2
exp

(
−
�∆�

δ

)
exp

(
−ϑ

θb

)
�∆ − ∆v�2 , (41)

where β is a material parameter representing the relation between the elastic and the
viscous part of the work of separation. The elastic tractions can be derived from the
elastic part of Φ and read

te (∆, θ) =
∂

∂∆
Φe =

φ

δ2
exp

(
−
�∆�

δ

)
exp

(
−ϑ

θb

)
∆ , (42)

while the viscous tractions are given as

tv (∆,∆v, θ) = −
∂

∂∆v Φv = β
φ

δ2
exp

(
−
�∆�

δ

)
exp

(
−ϑ

θb

)
(∆ − ∆v) . (43)
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The motivation for the chosen viscous potential and the resulting tractions is, to achieve
the viscous tractions as a function of the elastic tractions. It can be seen that

tv = β �te�
(∆ − ∆v)

�∆�
. (44)

The characteristic length δ is calculated from the material parameters, according to

δ =
φ · exp

(
−ϑ
θb

)

Tmax · exp (1)
. (45)

The evolution law for the viscous part of the separation reads

∆̇
v

=
δv

η
tv , (46)

where η is the viscosity and the characteristic length δv for the viscous part is determined
by

δv = βδ. (47)

The viscosity is temperature dependent and may be described by Williams-Landel-Ferry
equation

η = η0

(
−C1 (θ − θr)

C2 + θ + θr

)
, (48)

where η0 is the viscosity at the reference temperature and C1and C2 are additional material
parameters.

4.2 Thermal conduction energy and rate of work

As stated in Eq. (37), (q · n)+ and (q · n)− have to be expressed. Additionally, the
rate of work done by the tractions at the Ω+ and Ω− surfaces is derived. The proposed
formulations of the thermal conduction energy per unit reference areas are given by

(q · n)+ := − (q · n) · J+
A = −

(
−k

[[θ]]

�∆�

)
· J+

A , (49)

(q · n)− :=(q · n) · J−

A =

(
−k

[[θ]]

�∆�

)
· J−

A . (50)

One can assume that the heat is mainly transferred along the connective bonds, as soon
as the separation process between the two materials has started �∆� > 0 and as soon
as a difference between the temperatures of both sides [[θ]] = θ+ − θ− at the initially
connected points is found. The introduced formulations of Eq. (49) and Eq. (50) are phe-
nomenological descriptions. The computation of the derivatives ∂[[θ]](q · n) and ∂

∆
(q · n)

9
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are required for the incorporation of the element formulation into a FE-framework and
are given as

∂
∆

(q · n) =

(
k[[θ]]

∆

�∆�3

)
, (51)

∂[[θ]](q · n) =

(
−k

1

�∆�

)
. (52)

The total rates of work w+ = w+
ext − w+

int and w− = w−

ext − w−

int at the opposite flanks
of the interface are the result of the subtraction of the internal power from the external
power (compare Eq. (24)). Their specific form in terms of the elastic TSL potential reads

w+ :=
1

2
wifcJ+

A =
1

2
[[θ]]

[
∂[[θ]]t

]
· ∆̇ J+

A , (53)

w− :=
1

2
wifcJ−

A =
1

2
[[θ]]

[
∂[[θ]]t

]
· ∆̇ J−

A (54)

and is assigned equally with the coefficient 1/2 to the sides Ω+ and Ω− in a phenomenolog-
ical way. The contributions of the rates of work in terms of the viscoelastic TSL potential
are given as

w+ :=
1

2
ϑ
[
∂2

ϑ∆
Φ
]
· ∆̇ J+

A −
1

2

[
∂
∆

vΦv − ∂2
ϑ∆

vΦv
]
· ∆̇v J+

A , (55)

w− :=
1

2
ϑ
[
∂2

ϑ∆
Φ
]
· ∆̇ J−

A −
1

2

[
∂
∆

vΦv − ∂2
ϑ∆

vΦv
]
· ∆̇v J−

A . (56)

5 NUMERICAL EXAMPLES

Subsequently, two numerical model problems are given for the verification of the pro-
posed element formulation.

5.1 Thermal conduction

The first example is a pure thermal conduction simulation, where the top surface is
loaded with a constant temperature rate of θ̇e = 1.5 K/s for a time of 100 s and, subse-
quently, the temperature is kept constant for the next 300 s. At the bottom, the thermal
boundary condition is a free surface. The solid elements are thermomechanical linear
elements. The geometry of 10x10x20 mm is discretized with 128 solid elements and 16 of
the proposed thermomechanical elastic interface elements at the middle of the height of
the specimen. The mechanical boundary conditions are set such that a stress free state
is ensured. The results of the computation containing interface elements are illustrated
in Fig. 2, where Fig. 2(a), Fig. 2(b) and Fig. 2(c) contain the graphical illustration of the
change in the temperature field at three different times for the computation with the pro-
posed thermoelastic interface elements. Interpreting the obtained results, it is concluded,
that the thermal conductivity behavior of the elastic interface element is expressed in a
correct manner.
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(a) Temperature change t = 0 s (b) Temperature change t = 100 s (c) Temperature change t = 400 s

Figure 2: Illustration of thermal conduction simulation

5.2 Predictive tensile simulation

The second example is a tensile test simulation. The geometry of the specimen of
10x10x20 mm is discretized with 54 thermomechanical linear solid elements containing
thermoelastic Neo-Hooke material. In the middle of the height of the specimen 9 ther-
moviscoelastic interface elements are placed. The bottom surface is totally fixed, while
a constant rate of displacment of 0.16 mm/s is applied to the top surface for 25 s and
afterwards held constant for 75 s. The resulting stress relaxation behavior is depicted in
Fig. 3, where the initial stress free configuration is depicted in Fig. 3(a), the maximum
stress situation is shown in Fig. 3(b) and relaxation of stress can be seen from Fig. 3(c).
The stress relaxation within the interface generates an increase in the opening of the inter-
face. Therefrom, a physically correct behavior of the proposed element and constitutive
formulation is concluded.

6 CONCLUSIONS

- A thermomechanically coupled interface element formulation in the spatial setting
is introduced.

- Elastic and inelastic thermomechanical TSL-potentials for deriving tractions and
internal, as well as external work terms are introduced.

- Numerical examples are shown in order to demonstrate the potential capabilities of
the proposed formulations.
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(a) Stress state t = 0 s

100 20 30 35

(b) Stress state t = 25 s (c) Stress state t = 100 s

Figure 3: Illustration of predictive tensile test simulation

REFERENCES

[1] Fleischhauer, R., Behnke, R. and Kaliske, M. A thermomechanical interface element
formulation for finite deformations. Comput Mech (2013) DOI 10.1007/s00466-013-
0862-7.

[2] van den Bosch, M.J., Schreurs, P.J.G. and Geers, M.G.D. A cohesive zone model
with large displacement formulation for interfacial fibrilation. Eur J Mech A-Solid

(2007) 26:1–19.

[3] Coleman, B. and Gurtin, M.E. Thermodynamics with internal state variables. J

Chem Phys (1967) 47:597–613.

[4] Coleman, B. and Noll, W. The thermodynamics of elastic materials with heat con-
duction and viscosity. Arch Ration Mech An (1963) 13:167–178.

[5] van den Bosch, M.J., Schreurs, P.J.G. and Geers, M.G.D. On the development of a
3D cohesive zone element in the presence of large deformations. Comput Mech (2008)
42:171–180.

12

1093




